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Conditional Probability

Thm. [Baye’s Theorem] For events A, B , with p(A) > 0,
p(B) > 0, p(A|B) = p(A)p(B|A)

p(B) .

Pf. By the def of conditional probability,

p(A ∩ B) = p(B)p(A|B).
p(A ∩ B) = p(A)p(B|A).
So p(B)p(A|B) = p(A)p(B|A).
Divide both sides by p(B). 2

Example: With 2 fair dice, what is the probability that the sum is
7, given that both dice are ≥ 3?

Answer: p(sum is 7 | both ≥ 3) = p(sum is 7)·p(both ≥3 | sum is 7)
p(both ≥3) =

1
6 ·

1
3

2
3 ·

2
3
= 1/8.
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The Birthday Problem (Paradox)

What is the minimum number of people who need to be in a room
so that the probability at least 2 have the same birthday > 1

2?

Assume: all birthdays equally likely, 366 days in a year.

pn = probability first n have different birthdays

p1 = 1 p2 = 365
366 (Poll)

p3 = 365
366 ·

364
366

If j − 1 people in room with j − 1 different birthdays, probability jth
is different is 366−(j−1)

366

pn = 365·364·363···(367−n)
366n

1− p22 ≈ 0.475

1− p23 ≈ 0.506 Answer = 23
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Probability of Collision – Hash Functions

hash function h : L→ S |S | = m

Assume for random key k ∈ L, prob(h(k) = s ∈ S) = 1
m

Sign(h(m1)) = Sign(h(m2)) iff h(m1) = h(m2).

pn = prob n keys all hash to different locations

prob jth key hashes to different than h(k1), h(k2), . . . , h(kj−1)

(assuming all different) = m−(j−1)
m

pn = (m−1)(m−2)···(m−n+1)
mn

For n ≈ 1.177
√
m, pn > 1

2 .
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Monte Carlo Algorithms

Monte Carlo Algorithms – Randomized algorithms

Produce answer (quickly), possibly wrong.

Las Vegas algorithms – always correct, can take long

Expected good running time

Decision problem – result is true/false

Monte Carlo algorithm, ALG:

Case: Answer false – ALG always answers false

Case: Answer true – ALG answers true with prob p

(Poll)
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Monte Carlo Algorithms

In some cases, want ALG to answer “unknown” instead of “false”.

How do you run ALG on input m?

i ← 0
repeat

if ALG(m) answers true, then return true; halt
i ← i + 1

until (i = n)
return false/unknown

Probability of error is (1− p)n.
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Example: Quality control

Suppose we have batches of chips.

Each batch was either tested or not.

If a batch was tested, they are all good.

Otherwise, 1
10 are bad.

To find out if a given batch is tested or not:

Test k chips in the batch at random.

If tested, no errors will be found.

If not tested, prob of no errors is ≤ ( 9
10)

k .
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Example: Primality testing n

n − 1 = 2sm

Choose x randomly. Check:

xm (mod n), x2m (mod n),. . . , x2s−2m (mod n), x2s−1m (mod n)

If none = n − 1 and xm (mod n) 6= 1, n is not prime.

If n not prime, prob ≤ 1
4 that (one = n − 1) or (xm (mod n) = 1).

Repeat k times.

If never returns “not prime”, answer “probably prime”.

Prob error ≤ (1
4)

k .
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Probabilistic Method

Goal: Prove the existence of object without necessarily being able
to exhibit it.

Consider set S (graphs) with some property P (having clique or
independent set of size k)

Suppose prob s ∈R S does not have property P is < 1.

Then ∃ s ∈ S with property P .

Thm. k ≥ 2 ⇒ R(k , k) ≥ 2k/2.
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Random Variables

Def. For a sample space S , a random variable is a function
f : S → R.

Example

Suppose a coin is flipped until the result is “heads”. Let X be the
random variable that equals the number of coins flipped.

X (H) = 1, X (TTH) = 3, X (TTTH) = 4

Let p(X = r) denote the probability the X takes the value r .

Def. The distribution of the random variable X on a sample space
S is the set

{(r , p(X = r)) | r ∈ X (S)},

For a fair coin, the distribution of X is {(i , 1/2i ) | i ≥ 1}.
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Expectations
Recall:

Def. A random variable is a function f : S → R.

Def. For a finite sample space S = {s1, s2, ..., sn}, the expected
value of the random variable X (s) is

E (X ) =
n∑

i=1

p(si )X (si ).

Def. For a countably infinite sample space S = {si | i ≥ 1}, the
expected value of the random variable X (s) is
E (X ) =

∑∞
i=1 p(si )X (si ).

Example: What is the expected number of successes in n Bernoulli
trials? Probability of success = p. Probability of failure =
q = 1− p. (Poll)
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