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Conditional Probability

Thm. [Baye's Theorem] For events A, B, with p(A) > 0,
p(B) >0, p(A|B) = 2ARLEIA)

Pf. By the def of conditional probability,

p(AN B) = p(B)p(A|B).

p(AN B) = p(A)p(BIA).

So p(B)p(AIB) = p(A)p(BIA).

Divide both sides by p(B). O

Example: With 2 fair dice, what is the probability that the sum is
7, given that both dice are > 37

Answer: p(sumis 7 | both >3) = p(sum is 7)';((bb;’t’;h§33)| sumis7) _
=1/8.

o=
=

WIN|
WIN|
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The Birthday Problem (Paradox)

What is the minimum number of people who need to be in a room
so that the probability at least 2 have the same birthday > %?

Assume: all birthdays equally likely, 366 days in a year.
pn = probability first n have different birthdays

P1 = 1 P2 = ggg (PO”)
_ 365 364

P3 = 366 " 366

If j — 1 people in room with j — 1 different birthdays, probability jth

366—(j—1
is different is %

_ 365-364-363---(367—n)
pn - 366"

1-— P22 ~ 0.475
1 — po3 = 0.506 Answer = 23
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Probability of Collision — Hash Functions

hash function h: L — S |S|=m
Assume for random key k € L, prob(h(k) =s € S) = %

Sign(h(my)) = Sign(h(my)) iff h(m1) = h(mo).
pn = prob n keys all hash to different locations

prob jth key hashes to different than h(ky), h(kz), ..., h(kj-1)
(assuming all different) = W

pn = (m—l)(m—’i),;n(m—n—i-l)

For n ~ 1.177/m, p, > %
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Monte Carlo Algorithms

In some cases, want ALG to answer “unknown” instead of “false”.

How do you run ALG on input m?

i< 0

repeat
if ALG(m) answers true, then return true; halt
I i+1

until (i = n)

return false/unknown

Probability of error is (1 — p)".
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Example: Quality control

Suppose we have batches of chips.
Each batch was either tested or not.
If a batch was tested, they are all good.

Otherwise, 1—10 are bad.

To find out if a given batch is tested or not:
Test k chips in the batch at random.

If tested, no errors will be found.

)

) .

If not tested, prob of no errors is < (5

o
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Example: Primality testing n

n—1=2°m

Choose x randomly. Check:

x™ (mod n), x2™ (mod n),..., x> °™ (mod n), x* '™ (mod n)
If none = n—1 and x™ (mod n) # 1, n is not prime.

If n not prime, prob <  that (one = n— 1) or (x™ (mod n) = 1).

Repeat k times.
If never returns “not prime”, answer “probably prime”.

Prob error < (1)k.
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Probabilistic Method

Goal: Prove the existence of object without necessarily being able
to exhibit it.

Consider set S (graphs) with some property P (having clique or
independent set of size k)

Suppose prob s €z S does not have property P is < 1.
Then 9 s € § with property P.

Thm. k>2 = R(k, k) > 2k/2,



Q>
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Random Variables

Def. For a sample space S, a random variable is a function
f:S—R.

Example

Suppose a coin is flipped until the result is “heads”. Let X be the
random variable that equals the number of coins flipped.

X(H)y=1,  X(TTH)=3, X(TTTH)=4

Let p(X = r) denote the probability the X takes the value r.

Def. The distribution of the random variable X on a sample space
S is the set

{(rap(X: r)) | re X(S)}7

For a fair coin, the distribution of X is {(i,1/2") | i > 1}.
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expected value of the random variable X(s) is

E(X) = >, p(si)X(si).



Expectations

Recall:

Def. A random variable is a function f : S — R.

Def. For a finite sample space S = {s1, sy, ..., 5p}, the expected
value of the random variable X(s) is

E(X) = p(s)X(5).
i=1

Def. For a countably infinite sample space S = {s; | i > 1}, the
expected value of the random variable X(s) is

E(X) = >, p(si)X(si).

Example: What is the expected number of successes in n Bernoulli
trials? Probability of success = p. Probability of failure =

g=1—p. (Poll)



