
Institut for Matematik og Datalogi
Syddansk Universitet

April 27, 2015
JFB

DM553 Lecture 14 — DM508 Lecture 5

Lecture, April 27

We showed that HAMILTONIAN CIRCUIT is NP-Complete. Then we started on lower
bounds from section 2.4 in the notes, covering the basic ideas about information theoretic
lower bound and the worst case lower bound for sorting by comparisons. (Part of this is
also in section 8.1 of CLRS.)

Lecture, April 29

We will finish section 2.4 from the notes, covering the average case lower bound for sorting
by comparisons. Then, we will begin on sections 3.1, 3.2, 3.3, and 3.5 from the notes.

Lecture, May 4

We will finish sections 3.3 and 3.5 from the notes if we haven’t already. Then we will being
on approximation algorithms from chapter 35 of CLRS.

Problems to be discussed in U142 on May 5

1. Do problem 3.10 from page 141 of the notes.

2. Prove a lower bound for merging two lists of lengths n and m which meets the upper
bound of n+m− 1 (assume n = m).

3. From the following pages of that book by Baase:

Consider the problem of determining if a bit string of length n contains
two consecutive zeros. The basic operation is to examine a position in
the string to see if it is a 0 or a 1. For each n = 2, 3, 4, 5 either give an
adversary strategy to force any algorithm to examine every bit, or give and
algorithm that solves the problem by examining fewer than n bits.

and

a. You are given n keys and an integer k such that 1 ≤ k ≤ n. Give an
efficient algorithm to find any one of the k smallest keys. (For example,
if k = 3, the algorithm may provide the first-, second- or third-smallest
key. It need not know the exact rank of the key it outputs.) How many

1



key comparisons does your algorithm do? (Hint: Don’t look for something
complicated. One insight gives a short, simple algorithm.)
b. Give a lower bound, as a function of n and k, on the number of com-
parisons needed to solve this problems.

4. From Baase’s textbook: Suppose L1 and L2 are arrays, each with n keys sorted in
ascending order.

a. Devise an O((lgn)2) algorithm (or better) to find the ith smallest of the 2n keys.
(For simplicity, you may assume the keys are distinct.)

b. Give a lower bound for this problem.

5. Design and analyze an efficient algorithm to find the third largest item in an array.

6. Consider the problem of Sorting by Reversals. You are given a permutation of the
numbers from 1 to n in an array, A. The operation you have is to choose two indices,
i and j, and to reverse the elements in the subarray from A[i] to A[j], inclusive. The
objective is to end with a sorted array. For example, given A = [8, 6, 4, 2, 7, 5, 3, 1],
the first operation could be (3, 6), resulting in A = [8, 6, 5, 7, 2, 4, 3, 1]. Then doing the
operations (2, 4), (3, 4), (5, 7), (5, 6), (1, 8) would finish sorting the array. The question
is: What is the shortest sequence of operations which will sort the array?

a. Give an algorithm which sorts the array in O(n) operations.

b. Prove that any algorithm needs at least Ω(n) operations in the worst case.

c. Why doesn’t the information-theoretic lower bound of Ω(n log n) apply here?

2


