Institut for Matematik og Datalogi
Syddansk Universitet

Assignment 4
Complexity and Computability — 2016

This is your fourth assignment in DM553. The assignment is due at
noon on Thursday, May 26. You may write this either in Danish or
English. Write your full name (or names if you do it together) clearly on the
first page of your assignment (on the top, if it’s not a cover page). Turn it
in as a PDF file via Blackboard through your DM553 course (only one per
group). The assignment hand-in is in the menu for the course and is called
“SDU Assignment”. Keep the receipt it gives you proving that you turned
your assignment in on time. Blackboard will not allow you to turn in an
assignment late.

Cheating on this assignment is viewed as cheating on an exam. If you have
questions about the assignment, come to Joan Boyar or Christian Kudahl.

Please note that you must have this assignment approved in order to pass
DM553. If it is not turned in on time, or if you do not get it approved, it will
count as one of your two retries in the course, and you must have it approved
on your only allowed retry for this assignment.

Assignment 4

1. On page 214 of CLRS, there is an algorithm, MINIMUM, for finding
the minimum element in an array. Design an algorithm A which first
uses MINIMUM to find the minimum element in the array and then
finds the second smallest element. (You do not have to use MINIMUM
as a black box. You may assume that you can see which comparisons
are performed and what the results of those comparisons are.) Design
your algorithm such that on at least one ordering of the inputs, your
algorithm only uses n— 1 comparisons in all (including the comparisons
done by MINIMUM).

(a) On which ordering does your algorithm do only n—1 comparisons?



(b) What is the largest number of comparisons it does? Use (a modifi-
cation of) the adversary for finding the largest and second largest
(to make it work for smallest and second smallest) to show which
input would produce this large number of comparisons.

2. Recall that in the game Cardstone,, two players have monsters battling
each other. A state in the game is represented by two arrays, one for
you and one for your opponent. Your array is called A, your opponent’s
array is called B.

Array A contains all your monsters (one in each space). Array B
contains all your opponent’s monsters (also one in each space). A
monster is represented by an attack value and a health value separated
by a slash.

On your turn, each of your monsters may attack (no more than once
each). You may decide the order in which they attack. A monster
attacks one opponent’s monster of your choice. When it does, they
both have their health reduced by the attack value of the monster they
fight. If a monster’s health is reduced to 0 or below, it dies and is
removed from the game.

The Max-Board-Clear problem we consider is the following: Given a
state in the game, give an assignment for each of your monsters to one
of your opponents monsters for which your monsters kill the maximum
number of your opponents monsters in a single turn. (Do not worry
about how many of yours die.)

(a) Since there is no proof that P # NP, we do not expect to be
able to easily find an exponential lower bound on the complexity
of Max-Board-Clear. Prove an Q(nlogn) lower bound using an
information theoretic argument. To do this, consider the case
where both you and your opponent have n monsters and only one
of yours will be needed to kill one of your opponent’s. The test
operation you should use is testing if a given subset (which can
have size one) of your monsters can kill a specified one of your
opponent’s monsters.

(b) Give a polynomial time 2-approximation algorithm for Max-Board-
Clear for the special case where all of your opponent’s monsters



have the same health values. Prove that it is a 2-approximation
algorithm.

Hint: Consider for each of your opponent’s monsters the last mon-
ster which attacked it (the one causing it to die) and how many
monsters it could have killed. Then consider for all of your op-
ponent’s monsters, all of your monsters that attacked them and
were not the monster that killed them and how many monsters
they could have killed.

As an extra (optional) challenge, try to find a similar 2-approximation
algorithm for the more general case where there are no restrictions
on the health values of your opponent’s monsters. Prove it.



