
Relative Worst Order Analysis
Joan Boyar

University of Southern Denmark, Odense

Currently visiting UCI

Joint work with

Lene M. Favrholdt

Kim S. Larsen

University of Southern Denmark

Toronto 2007 – p.1/38

On-Line Bin Packing

Item sizes: 5 × [ǫ, 1]
Bin size: 1

Result by Next-Fit:

Toronto 2007 – p.2/38

Competitive Ratio

A is c-competitive if for any input seq. I,

A(I) ≤ c · OPT(I) + b.
ր

optimal off-line algorithm
տ

constant

The competitive ratio of A is

CRA = inf {c | A is c-competitive} .

Toronto 2007 – p.3/38

Compare to OPT

Item sizes: 5 × [ǫ, 1]
Bin size: 1

Result by optimal off-line algorithm, OPT:

CRNext-Fit = 2 [Johnson 1974] Toronto 2007 – p.4/38

Any-Fit Algorithms

Any-Fit algorithms only open if necessary.

First-Fit: put item in first bin where it fits
Best-Fit: put item in most full bin where it fits
Worst-Fit: put item in least full bin where it fits

CRFirst-Fit = 1.7 [Johnson, et.al. 1974]
CRBest-Fit = 1.7 [Johnson, et.al. 1974]
CRWorst-Fit = 2 [Johnson 1974]

Toronto 2007 – p.5/38

Any-Fit Algorithms

Item sizes: 5 × [ǫ, 1]
Bin size: 1

Result:

Toronto 2007 – p.6/38

Next-Fit vs. Worst-Fit
CRWorst-Fit = CRNext-Fit = 2.

Consider any item sequence I:
Suppose Worst-Fit opens bin t now:

Inductively, assume Next-Fit uses bin t′ ≥ t.

Toronto 2007 – p.7/38

Next-Fit vs. Worst-Fit

If Worst-Fit puts more in bin t
before opening bin t + 1:

Next-Fit uses bin t′′ ≥ t′.

Toronto 2007 – p.8/38

Next-Fit vs. Worst-Fit

When Worst-Fit opens bin t + 1:

Next-Fit uses bin t′′′ ≥ t′ + 1.

Toronto 2007 – p.9/38

Next-Fit vs. Worst-Fit

If Worst-Fit puts more in bin t
before opening bin t + 1:

Next-Fit uses bin t′′ ≥ t′.

Toronto 2007 – p.10/38

Next-Fit vs. Worst-Fit

When Worst-Fit opens bin t + 1:

Next-Fit uses bin t′′′ ≥ t′ + 1.

Inductively, Next-Fit uses at least as many bins
as Worst-Fit.
But CRWorst-Fit = CRNext-Fit = 2.

Toronto 2007 – p.11/38

Refinements of
competitive analysis

Long list...

Max/Max Ratio
[Ben-David, Borodin 94]

Compares A to OPT
on worst sequences of length n.

Random Order Ratio
[Kenyon 95]

Compares A to OPT
on random ordering of same sequence.

Toronto 2007 – p.12/38

Relative Worst Order
Ratio

AW (I) : A
′s performance on worst permutation of I wrt. A

Intuitively: WRA,B = worst-case AW (I)
BW (I)

on long I

•AW(I) = BW(I)

•BW(K)

•AW(K)

•BW(J)

•AW(J)

•AW(N) = BW(N)

•BW(O)

•AW(O)

•AW(L)

•BW(L)

•BW(M)

•AW(M)

Toronto 2007 – p.13/38

Relative Worst Order
Ratio

[B.,Favrholdt 03], [B.,Favrholdt,Larsen 07]
Formally:
Given A and B,

cl(A, B) = sup {c | ∃b : ∀I : AW(I) ≥ c BW(I) − b}

cu(A, B) = inf {c | ∃b : ∀I : AW(I) ≤ c BW(I) + b}

Relative worst-order ratio WRA,B of A to B:

cl(A, B) ≥ 1 ⇒ WRA,B = cu(A, B)

cu(A, B) ≤ 1 ⇒ WRA,B = cl(A, B)
Toronto 2007 – p.14/38

Relative Worst Order
Ratio

Values of WRA,B:

minimization maximization
A better than B < 1 > 1

B better than A > 1 < 1

WRA,B < 1 ⇒ A and B are
comparable in A’s favor.

WRA,B > 1 ⇒ they are comparable in B’s favor.

WRA,B bounds how much better.
Toronto 2007 – p.15/38

Next-Fit vs. Worst-Fit
Shown: Next-Fit(I) ≥ Worst-Fit(I) ∀ I
⇒ Next-Fit(IWF) ≥ Worst-Fit(IWF)
⇒ Next-Fit(INF) ≥ Next-Fit(IWF) ≥ Worst-Fit(IWF)
So WRNext-Fit,Worst-Fit ≥ 1.

Toronto 2007 – p.16/38

Next-Fit vs. Worst-Fit
Shown: Next-Fit(I) ≥ Worst-Fit(I) ∀ I
⇒ Next-Fit(IWF) ≥ Worst-Fit(IWF)
⇒ Next-Fit(INF) ≥ Next-Fit(IWF) ≥ Worst-Fit(IWF)
So WRNext-Fit,Worst-Fit ≥ 1.

Recall example:
Next-Fit used 2k bins
Worst-Fit used k + 1 bins
So WRNext-Fit,Worst-Fit ≥ 2.

Theorem: WRNext-Fit,Worst-Fit = 2.

Proof: WRA,B ≤ WRA,OPT ≤ CRA.
Toronto 2007 – p.17/38

Worst-Fit vs. First-Fit

Claim: WRWorst-Fit,First-Fit ≥ 1.
Consider First-Fit’s packing of any item
sequence I:

Give these items bin-by-bin to Worst-Fit:

Toronto 2007 – p.18/38

Worst-Fit vs. First-Fit

Claim: WRWorst-Fit,First-Fit ≥ 1.
Consider First-Fit’s packing of any item
sequence I:

Give these items bin-by-bin to Worst-Fit:

Toronto 2007 – p.19/38

Worst-Fit vs. First-Fit

Claim: WRWorst-Fit,First-Fit ≥ 1.
Consider First-Fit’s packing of any item
sequence I:

Give these items bin-by-bin to Worst-Fit:

Worst-Fit uses as many bins as First-Fit.

Toronto 2007 – p.20/38

Worst-Fit vs. First-Fit

Claim: WRWorst-Fit,First-Fit ≥ 2.
Item sizes: n × [1/2, ǫ]

Result by Worst-Fit:

Toronto 2007 – p.21/38

Worst-Fit vs. First-Fit

Claim: WRWorst-Fit,First-Fit ≥ 2.
Item sizes: n × [1/2, ǫ]

Result by First-Fit:

Toronto 2007 – p.22/38

Worst-Fit vs. First-Fit

Theorem: WRWorst-Fit,First-Fit = 2.
Proof: WRA,B ≤ CRA.

Compare to:
CRFirst-Fit = 1.7 [Johnson, et.al. 1974]
CRWorst-Fit = 2 [Johnson 1974]

Toronto 2007 – p.23/38

Paging Problem

Cache: k pages

Slow memory: N > k pages

Request sequence: sequence of page
numbers

Fault: page requested not in cache

Cost: 1 per fault to bring page into cache

Goal: minimize cost
Toronto 2007 – p.24/38

Algorithms:
LRU vs. FWF

LRU – Least Recently Used
FWF – Flush When Full
Both have competitive ratio k.

Example sequence, k = 5:

〈1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2〉

Total cost LRU = 8
Total cost FWF = 20

Toronto 2007 – p.25/38

FWF vs. LRU

ILRU – worst ordering of I for LRU

∀I FWFW (I) ≥ FWF(ILRU) ≥ LRUW (I)

Thus, WRFWF,LRU ≥ 1 holds.

Toronto 2007 – p.26/38

FWF vs. LRU

In = 〈1, 2, .., k, k + 1, k, ...3, 2〉n

FWFW (In) = 2kn

Worst ordering for LRU:
〈2, ..., k, k + 1, 1〉n, 〈2, ..., k〉n

LRUW (In) = n(k + 1) + k − 1

Theorem: WRFWF,LRU ≥ 2k
k+1

In fact: WRFWF,LRU = 2k
k+1

Toronto 2007 – p.27/38

Look-Ahead

Model: A sees request + next l requests:
Look-ahead(l)

On-line → Look-ahead(l) → OPT

Fact: k is still best possible competitive ratio,

even with look-ahead l.

Toronto 2007 – p.28/38

Other Models of
Look-Ahead

Resource-bounded look-ahead [Young 91]

Strong look-ahead [Albers 93]

Natural look-head [Breslauer 98]

Toronto 2007 – p.29/38

Look-ahead

LRU(ℓ):

Sees current page and next l pages.

Avoids evicting pages it sees.

Evicts l.r.u. among others in cache.

First show WRLRU,LRU(ℓ) ≥ 1.
Theorem. For any sequence I,
LRUW (I) ≥ LRU(ℓ)W (I).

Toronto 2007 – p.30/38

LRU vs. LRU (ℓ)

Sequence I. Partition into phases:
LRU(ℓ) faults k + 1 times per phase.
Suppose ≤ k distinct pages in phase P .

〈... p1, ..., p, ..., q, ..., p, ..., ps
︸ ︷︷ ︸

phase P ; k+1 faults for LRU(ℓ)

, ps+1, ...〉

Page p evicted when q requested.

Least recently used not among next ℓ.

Toronto 2007 – p.31/38

LRU vs. LRU (ℓ)

Case p not among next ℓ:

〈...p1, ..., p , ..., q, ...,
︸ ︷︷ ︸

P ′⊂P

p, ..., ps, ps+1, ...〉

P ′ has q and ≥ k − 1 distinct pages.

Phase P has ≥ k + 1 distinct pages.

Toronto 2007 – p.32/38

LRU vs. LRU (ℓ)

Case p not among next ℓ:

〈...p1, ..., p , ..., q, ...,
︸ ︷︷ ︸

P ′⊂P

p, ..., ps, ps+1, ...〉

P ′ has q and ≥ k − 1 distinct pages.
Phase P has ≥ k + 1 distinct pages.

Case p among next ℓ:

〈...p1, ..., p, ..., q , ...,
︸︷︷︸

P ′′⊂P

p, ..., ps, ps+1, ...〉

≥ k − 1 distinct in P ′′; ≥ k + 1 in P .
Toronto 2007 – p.33/38

LRU vs. LRU (ℓ)

Process I by phases.
Example sequence, k = 5 and ℓ = 2:

〈1, 2, 3, 4, 5, 6, || 5, 7, 1, 8, 4, 2, 5, 9, 3〉

Reorder phase with new pages first;
others in order from last phase.

〈1, 2, 3, 4, 5, 6, || 7, 8, 9, 1, 2, 3, 4, 5, 5〉

LRU faults on ≥ as many as LRU(ℓ).

Toronto 2007 – p.34/38

LRU vs. LRU (ℓ)

Consider In = 〈1, 2, .., k, k + 1〉n.
In has only k + 1 pages.
LRU faults on every page.

Suppose l ≤ k − 1.
Whenever LRU(ℓ) faults (after first k faults),
it doesn’t fault on next l requests.

Suppose l ≥ k.
LRU(ℓ) faults on ≤ 1 page out of k.

Theorem. WRLRU,LRU(ℓ) ≥ min{l + 1, k}.
Toronto 2007 – p.35/38

Results for Paging

1. All conservative algorithms equivalent.

2. RW is transitive:
so FIFO and LRU(ℓ) better than FWF.

3. (Randomized algorithm)
MARK better than LRU.

4. New algorithm: WRLRU,RLRU ≥ k+1
2 .

5. LRU-2 and LRU are asymptotically
comparable in LRU-2’s favor [B., Ehmsen,
Larsen]

Toronto 2007 – p.36/38

Results with Relative
Worst Order Ratio

1. Dual Bin Packing:
First-Fit better than Worst-Fit.

2. Scheduling: minimizing makespan, 2 related
machines, a post-greedy algorithm is better
than scheduling all jobs on the fast machine
[Epstein, Favrholdt, Kohrt].

3. Bin coloring: a natural greedy-type algorithm
is better than just using one open bin at a
time [Kohrt].

4. Proportional price seat reservation: First-Fit
better than Worst-Fit [B.,Medvedev]. Toronto 2007 – p.37/38

Future Work

Apply to other problems?

Many open problems!

Toronto 2007 – p.38/38

	On-Line Bin Packing
	Competitive Ratio
	Compare to opt
	Any-Fit Algorithms
	Any-Fit Algorithms
	Next-Fit vs. Worst-Fit
	Next-Fit vs. Worst-Fit
	Next-Fit vs. Worst-Fit
	Next-Fit vs. Worst-Fit
	Next-Fit vs. Worst-Fit
	Refinements of \ competitive analysis
	Relative Worst Order Ratio
	Relative Worst Order Ratio
	Relative Worst Order Ratio
	Next-Fit vs. Worst-Fit
	Next-Fit vs. Worst-Fit
	Worst-Fit vs. First-Fit
	Worst-Fit vs. First-Fit
	Worst-Fit vs. First-Fit
	Worst-Fit vs. First-Fit
	Worst-Fit vs. First-Fit
	Worst-Fit vs. First-Fit
	Paging Problem
	Algorithms: \ LRU vs. FWF
	FWF vs. LRU
	FWF vs. LRU
	Look-Ahead
	Other Models of Look-Ahead
	Look-ahead
	$LRU $ vs. $LRU (ell)$
	$LRU $ vs. $LRU (ell)$
	$LRU $ vs. $LRU (ell)$
	$LRU $ vs. $LRU (ell)$
	$LRU $ vs. $LRU (ell)$
	Results for Paging
	Results with Relative Worst Order Ratio
	Future Work

