#### **Relative Worst Order Analysis**

Joan Boyar

University of Southern Denmark, Odense Currently visiting UCI

Joint work with

Lene M. Favrholdt

Kim S. Larsen

University of Southern Denmark

# **On-Line Bin Packing**





#### Result by Next-Fit:



#### **Competitive Ratio**

A is *c*-competitive if for any input seq. I,  $\mathbb{A}(I) \leq c \cdot \mathsf{OPT}(I) + b.$ optimal off-line algorithm constant

The competitive ratio of  $\mathbb{A}$  is

 $CR_{\mathbb{A}} = \inf \{ c \mid \mathbb{A} \text{ is } c\text{-competitive} \}.$ 



# **Any-Fit Algorithms**

Any-Fit algorithms only open if necessary.

First-Fit: put item in first bin where it fits Best-Fit: put item in most full bin where it fits Worst-Fit: put item in least full bin where it fits

 $\begin{array}{l} \mathsf{CR}_{\mathsf{First-Fit}} = 1.7 \; [\mathsf{Johnson, et.al. 1974}] \\ \mathsf{CR}_{\mathsf{Best-Fit}} = 1.7 \; [\mathsf{Johnson, et.al. 1974}] \\ \mathsf{CR}_{\mathsf{Worst-Fit}} = 2 \; [\mathsf{Johnson 1974}] \end{array}$ 

# **Any-Fit Algorithms**





 $CR_{Worst-Fit} = CR_{Next-Fit} = 2.$ 

Consider any item sequence *I*: Suppose Worst-Fit opens bin *t* now:

Inductively, assume Next-Fit uses bin  $t' \ge t$ .



If Worst-Fit puts more in bin t before opening bin t + 1:

Next-Fit uses bin  $t'' \ge t'$ .



When Worst-Fit opens bin t + 1:



Next-Fit uses bin  $t''' \ge t' + 1$ .



If Worst-Fit puts more in bin t before opening bin t + 1:

Next-Fit uses bin  $t'' \ge t'$ .



When Worst-Fit opens bin t + 1:

Next-Fit uses bin  $t''' \ge t' + 1$ .

Inductively, Next-Fit uses at least as many bins as Worst-Fit. But  $CR_{Worst-Fit} = CR_{Next-Fit} = 2$ .

#### **Refinements of competitive analysis**

Long list...

Max/Max Ratio [Ben-David, Borodin 94] Compares  $\mathbb{A}$  to OPT on worst sequences of length n.

#### Random Order Ratio

[Kenyon 95] Compares A to OPT on random ordering of same sequence.

#### **Relative Worst Order Ratio**



#### **Relative Worst Order Ratio**

[B.,Favrholdt 03], [B.,Favrholdt,Larsen 07] Formally: Given  $\mathbb{A}$  and  $\mathbb{B}$ ,

 $c_{\mathsf{I}}(\mathbb{A}, \mathbb{B}) = \sup \{ c \mid \exists b \colon \forall I \colon \mathbb{A}_{\mathsf{W}}(I) \ge c \mathbb{B}_{\mathsf{W}}(I) - b \}$  $c_{\mathsf{U}}(\mathbb{A}, \mathbb{B}) = \inf \{ c \mid \exists b \colon \forall I \colon \mathbb{A}_{\mathsf{W}}(I) \le c \mathbb{B}_{\mathsf{W}}(I) + b \}$ 

Relative worst-order ratio  $WR_{\mathbb{A},\mathbb{B}}$  of  $\mathbb{A}$  to  $\mathbb{B}$ :

 $c_{\mathsf{I}}(\mathbb{A}, \mathbb{B}) \ge 1 \Rightarrow \mathsf{WR}_{\mathbb{A}, \mathbb{B}} = c_{\mathsf{u}}(\mathbb{A}, \mathbb{B})$  $c_{\mathsf{u}}(\mathbb{A}, \mathbb{B}) \le 1 \Rightarrow \mathsf{WR}_{\mathbb{A}, \mathbb{B}} = c_{\mathsf{I}}(\mathbb{A}, \mathbb{B})$ 

#### **Relative Worst Order Ratio**

Values of  $WR_{\mathbb{A},\mathbb{B}}$ :

|                                         | minimization | maximization |
|-----------------------------------------|--------------|--------------|
| $\mathbb A$ better than $\mathbb B$     | < 1          | > 1          |
| ${\mathbb B}$ better than ${\mathbb A}$ | > 1          | < 1          |

$$\begin{split} \mathsf{WR}_{\mathbb{A},\mathbb{B}} < 1 \Rightarrow \mathbb{A} \text{ and } \mathbb{B} \text{ are} \\ \text{ comparable in } \mathbb{A}\text{'s favor.} \\ \mathsf{WR}_{\mathbb{A},\mathbb{B}} > 1 \Rightarrow \text{they are comparable in } \mathbb{B}\text{'s favor.} \end{split}$$

 $WR_{A,B}$  bounds how much better.

Shown: Next-Fit(I)  $\geq$  Worst-Fit(I)  $\forall$  I $\Rightarrow$  Next-Fit( $I_{WF}$ )  $\geq$  Worst-Fit( $I_{WF}$ )  $\Rightarrow$  Next-Fit( $I_{NF}$ )  $\geq$  Next-Fit( $I_{WF}$ )  $\geq$  Worst-Fit( $I_{WF}$ ) So WR<sub>Next-Fit,Worst-Fit</sub>  $\geq$  1.

Shown: Next-Fit(I)  $\geq$  Worst-Fit(I)  $\forall$  I $\Rightarrow$  Next-Fit( $I_{WF}$ )  $\geq$  Worst-Fit( $I_{WF}$ )  $\Rightarrow$  Next-Fit( $I_{NF}$ )  $\geq$  Next-Fit( $I_{WF}$ )  $\geq$  Worst-Fit( $I_{WF}$ ) So WR<sub>Next-Fit,Worst-Fit</sub>  $\geq$  1.

Recall example: Next-Fit used 2k bins Worst-Fit used k + 1 bins So WR<sub>Next-Fit,Worst-Fit</sub>  $\geq 2$ .

Theorem:  $WR_{Next-Fit,Worst-Fit} = 2$ . Proof:  $WR_{A,\mathbb{B}} \leq WR_{A,OPT} \leq CR_{A}$ .

Claim: WR<sub>Worst-Fit,First-Fit</sub>  $\geq 1$ . Consider First-Fit's packing of any item sequence *I*:



Give these items bin-by-bin to Worst-Fit:

Claim: WR<sub>Worst-Fit,First-Fit</sub>  $\geq 1$ . Consider First-Fit's packing of any item sequence *I*:



Give these items bin-by-bin to Worst-Fit:



Claim: WR<sub>Worst-Fit,First-Fit</sub>  $\geq 1$ . Consider First-Fit's packing of any item sequence *I*:



Give these items bin-by-bin to Worst-Fit:



Worst-Fit uses as many bins as First-Fit.

Claim: WR<sub>Worst-Fit,First-Fit</sub>  $\geq 2$ . Item sizes:  $n \times [1/2, \epsilon]$ 



**Result by Worst-Fit:** 



Claim: WR<sub>Worst-Fit,First-Fit</sub>  $\geq 2$ . Item sizes:  $n \times [1/2, \epsilon]$ 

**Result by First-Fit:** 



Theorem:  $WR_{Worst-Fit,First-Fit} = 2$ . Proof:  $WR_{A,\mathbb{B}} \leq CR_A$ .

Compare to:  $CR_{First-Fit} = 1.7$  [Johnson, et.al. 1974]  $CR_{Worst-Fit} = 2$  [Johnson 1974]

# **Paging Problem**

Cache: k pages
Slow memory: N > k pages

Request sequence: sequence of page numbers

Fault: page requested not in cache

Cost: 1 per fault to bring page into cache
 Goal: minimize cost

#### Algorithms: LRU vs. FWF

LRU – Least Recently Used FWF – Flush When Full Both have competitive ratio k.

Example sequence, k = 5:

 $\langle \mathbf{1}, 2, 3, 4, 5, \mathbf{6}, 5, 4, 3, 2, \mathbf{1}, 2, 3, 4, 5, \mathbf{6}, 5, 4, 3, 2 \rangle$ 

Total cost LRU = 8Total cost FWF = 20

#### FWF vs. LRU

 $I_{LRU}$  – worst ordering of I for LRU  $\forall I \quad FWF_W(I) \ge FWF(I_{LRU}) \ge LRU_W(I)$ Thus,  $WR_{FWF,LRU} \ge 1$  holds.

#### FWF vs. LRU

 $I^{n} = \langle 1, 2, ..., k, k + 1, k, ... 3, 2 \rangle^{n}$ FWF<sub>W</sub>(I<sup>n</sup>) = 2kn Worst ordering for LRU:  $\langle 2, ..., k, k + 1, 1 \rangle^{n}, \langle 2, ..., k \rangle^{n}$ LRU<sub>W</sub>(I<sup>n</sup>) = n(k + 1) + k - 1

Theorem: WR<sub>FWF,LRU</sub>  $\geq \frac{2k}{k+1}$ In fact: WR<sub>FWF,LRU</sub>  $= \frac{2k}{k+1}$ 

#### **Look-Ahead**

Model: A sees request + next l requests: Look-ahead(l)

On-line  $\rightarrow$  Look-ahead(l)  $\rightarrow$  OPT

Fact: k is still best possible competitive ratio, even with look-ahead l.

# Other Models of Look-Ahead

Resource-bounded look-ahead [Young 91]

**Strong look-ahead** [Albers 93]

Natural look-head [Breslauer 98]

#### Look-ahead

#### $LRU(\ell)$ :

- Sees current page and next *l* pages.
- Avoids evicting pages it sees.
- Evicts I.r.u. among others in cache.

First show  $WR_{LRU,LRU(\ell)} \ge 1$ . Theorem. For any sequence I,  $LRU_W(I) \ge LRU(\ell)_W(I)$ .



Sequence *I*. Partition into phases:  $LRU(\ell)$  faults k + 1 times per phase. Suppose  $\leq k$  distinct pages in phase *P*.

$$\langle \dots \underbrace{p_1, \dots, p, \dots, q, \dots, p}_{s}, \dots, p_s, p_{s+1}, \dots \rangle$$

phase P; k+1 faults for LRU( $\ell$ )

Page *p* evicted when *q* requested.

Least recently used not among next  $\ell$ .

Case p not among next  $\ell$ :

$$\langle \dots p_1, \dots, p_{\underbrace{\dots, q}, \dots, p}_{P' \subset P}, \dots, p_s, p_{s+1}, \dots \rangle$$

P' has q and  $\geq k - 1$  distinct pages. Phase P has  $\geq k + 1$  distinct pages.

Case p not among next  $\ell$ :

$$\langle \dots p_1, \dots, p_{\underbrace{\dots, q, \dots, p}_{P' \subset P}} p, \dots, p_s, p_{s+1}, \dots \rangle$$

P' has q and  $\geq k - 1$  distinct pages. Phase P has  $\geq k + 1$  distinct pages.

Case p among next  $\ell$ :

$$\langle \dots p_1, \dots, p, \dots, q , \dots, p_{s}, p_{s+1}, \dots \rangle$$

 $\geq k-1$  distinct in P'';  $\geq k+1$  in P.

Process *I* by phases. Example sequence, k = 5 and  $\ell = 2$ :

 $\langle 1, 2, 3, 4, 5, 6, || 5, 7, 1, 8, 4, 2, 5, 9, 3 \rangle$ 

Reorder phase with new pages first; others in order from last phase.

 $\langle 1, 2, 3, 4, 5, 6, || 7, 8, 9, 1, 2, 3, 4, 5, 5 \rangle$ 

LRU faults on  $\geq$  as many as LRU( $\ell$ ).

Consider  $I^n = \langle 1, 2, ..., k, k + 1 \rangle^n$ .  $I^n$  has only k + 1 pages. LRU faults on every page.

Suppose  $l \le k - 1$ . Whenever LRU( $\ell$ ) faults (after first k faults), it doesn't fault on next l requests.

Suppose  $l \ge k$ . LRU( $\ell$ ) faults on  $\le 1$  page out of k.

Theorem.  $WR_{LRU,LRU(\ell)} \ge \min\{l+1,k\}.$ 

# **Results for Paging**

- 1. All conservative algorithms equivalent.
- 2. RW is transitive: so FIFO and LRU( $\ell$ ) better than FWF.
- 3. (Randomized algorithm) MARK better than LRU.
- 4. New algorithm:  $WR_{LRU,RLRU} \geq \frac{k+1}{2}$ .
- LRU-2 and LRU are asymptotically comparable in LRU-2's favor [B., Ehmsen, Larsen]

#### **Results with Relative Worst Order Ratio**

- 1. Dual Bin Packing: First-Fit better than Worst-Fit.
- 2. Scheduling: minimizing makespan, 2 related machines, a post-greedy algorithm is better than scheduling all jobs on the fast machine [Epstein, Favrholdt, Kohrt].
- 3. Bin coloring: a natural greedy-type algorithm is better than just using one open bin at a time [Kohrt].
- 4. Proportional price seat reservation: First-Fit better than Worst-Fit [B.,Medvedev].

#### **Future Work**

Apply to other problems?

Many open problems!