
Institut for Matematik og Datalogi
Syddansk Universitet

October 30, 2003
JFB

Introduction to Computer Science
E03 – Lecture 9

Lecture, October 27

We covered security from section 3.7 in the textbook and began on cryptology
(not following the textbook, except a bit from section 11.6; there are some
notes on cryptography, from PGP, using a link on the course’s homepage).

Lecture, November 3

We will continue with RSA and exponentiation and then cover the first four
or five sections of chapter 11.

Lecture, November 10

Kim Skak Larsen will be lecturing on chapter 9.

Discussion section: week 45 – Terminal Room

Discuss the following problems in groups of two or three. You will be using
the program xmaple.

The best known public key cryptographic system, RSA, was presented in
lectures. It is one of the systems included in PGP and GPG. Its security is
based on the assumption that factoring large integers is hard. (The system
you are using in PGP is based on discrete logarithms, rather than factor-
ing, but the problems are similar in many ways. The factoring is easier to
understand and test in Maple.)

A user’s public key consists of a large integer n (currently numbers with at
least 1024 bits are recommended) and an exponent e. The integer n should

1



be a product of two prime numbers p and q, both of which should be about
half has long as n. Thus, in order to implement the system it must be possible
to find two large primes and multiply them together in a reasonable amount
of time. For the security of the system, it must be the case that no one who
does not know p or q could factor n.

At first glance this seems strange, that one should be able to determine
if a number is prime or not, but not be able to factor it. However, there
are algorithms for testing primality, which can discover that a number is
composite (not prime) without finding any of its factors. (The ones most
commonly used are probabilistic, so they could with small probability declare
a composite number prime; the probability of this happening can be made
arbitrarily small.)

Using Maple, you should try producing primes and composites and try fac-
toring.

1. Small numbers.

Start your Maple program. Type restart; at the beginning to make
it easier to execute your worksheet after you have made changes. You
can do this from Execute in the Edit menu.

Use help to find out about the function ithprime. Experiment to find
out approximately how big a prime it can find. When it cannot find
such a big prime, you can use the STOP button in order to continue
(it is a hand in a red background). To assign a value to a variable,
you use the assignment operator :=; for example x:= ithprime(4);.
Multiply two of the large primes it finds together, and try to factor the
result, using the function ifactor. Notice how quickly the factors are
found for these small numbers. (Large numbers are clearly necessary
for security.)

2. Finding larger primes.

In order to find good prime factors p and q for use in RSA, one can
choose random numbers of the required length and check each one for
primality until finding a prime.

Maple contains a function isprime which will test for primality. Try it
on some some small numbers, such as 3, 4, 7, 10. Maple has another
function rand which returns a random 12-digit number. Try typing

2



x:=rand(); and check if your result is prime. Rather than executing
these commands until you find a prime, you can use a while loop. You
want to continue creating new random numbers until you get a prime,
so you can type while (not isprime(x)) do, ignore the warning, and
type x:=rand(); on one line and end do; on the next. How many
different values were chosen before a prime was found? (I got 33, but
you could get another number.) Now create a second prime called y
(remember that y will need some value before your start your while
loop). Multiply x and y together and try factoring the result. This
should also go relatively quickly.

3. Finding even larger primes.

To get random numbers which are twice as long, you can create two
random numbers a and b and create 1012∗a+b. Unfortunately, two calls
to rand in the same statement will give the same result both times, so
you need to choose values for a and b independently and then combine
them. (Suppose you typed m1 := 10^12*rand() + rand();. Why
wouldn’t you ever find a prime testing values found this way?) Try find-
ing two primes, each 24 digits long. The first can be found by starting
with m1:=4; so you start out with a composite. Then use the follow-
ing: while (not isprime(m1)) do, a := rand();, b := rand();,
m1 := 10^12 * a + b;, and end do;. Multiply the two primes to-
gether and try to factor the result. Use the STOP button on the
toolbar after a few minutes; the computation takes too long. As you
might imagine, no known algorithm would factor a 1024-bit (about 300
digits) number on your PC in your lifetime. It is easy to find the primes
and multiply them together, but it is very difficult to factor the result!
(Or RSA would not be secure.)

To get a feeling for how long it takes to factor numbers of different
lengths, try changing the 1012 in your while loops to 109 and 1010.
With 109, it will probably take less than two minutes, and with 107,
probably about three minutes.

4. Discuss questions 2 and 3, and 5 on page 461.

5. Discuss question 2 on page 489.

6. Discuss questions 20 and 25 on page 491.

3



Assignment due 8:15, November 11

Late assignments will not be accepted. Working together is not allowed.
(You may write this either in English or Danish, but write clearly if you do
it by hand.)

1. Question 4a on page 490.

2. Question 14 on page 490.

4


