
Institut for Matematik og Datalogi
Syddansk Universitet

October 5, 2004
JFB

Introduction to Computer Science
E04 – Lecture 6

Lecture, October 4

Peter Kornerup lectured on networks. Afterwards, I continued with chapter
5, finishing up through section 5.3 in the textbook.

Lecture, October 18

We will finish chapter 5 on algorithms and cover sections 3.5 and 4.5 on
security.

Lecture, October 25

Kim Skak Larsen will lecture on databases.

Discussion section: week 43, in the Terminal Room

Discussion in groups (only two, or possibly three, people per group, since
you will sit at a computer):

The goal of this lab is to help you to gain some understanding of the fact
that most problems have more than one algorithmic solution and that these
solutions can differ greatly as to how practical they are. You will experiment
with three different sorting algorithms and compare them. Review sections
5.4, 5.5, and 5.6 in the textbook before coming to the lab.

To start up the program you should find the home page for this course

http://www.imada.sdu.dk/Courses/DM35/

1



Near the bottom of that page, there is a link to a sorting simulator. Click on
that link. Note that the program sorts bars of different lengths, rather than
numbers. It is easy to think of the bars as numbers, and it is easiest to see
what is happening with the bars. To the right, you will see program code for
a sorting algorithm in the programming language Java.

1. Under Algorithm, choose Insertion Sort.

Set the # of Blocks to 8. Click on Sort and watch the algorithm
execute (both the code on the right and the sorting of the bars on the
left). What does a red bar mean? A blue bar? A green bar? How many
comparisons are done and how many swaps? What is a swap?

After it has stopped, try starting it again on the sorted bars. Now how
many comparisons are done and how many swaps?

Note that if you want to start with fresh data, you can select the
Arrangement to be Random at any time. You may have to click on
Stop before clicking on Sort again.

2. Under Algorithm, choose Selection Sort. (See problem 6 on page
198 of your textbook.) Try running Selection Sort on random data.
What does the algorithm do? How does it work? Write down the current
values for # of Blocks, # of Swaps, and # of Comparisons. If
the number of bars is n, the number of comparisons should be

n∑
i=2

(i− 1) =
1

2
n2 − 1

2
n.

Why is this the number of comparisons? How many comparisons should
there theoretically be in this case, where n = 8? How does this compare
with practice? Explain why there were 7 swaps.

Increase the Speed by clicking on the arrows or moving the bar between
them. Try running Selection Sort with 25 bars, 50 bars, and 100 bars.
Write down in each case the # of Bars, # of Swaps, and # of
Comparisons. How do these compare with the predicted values? What
values would you expect if the number of bars was 10,000?

3. Change the Algorithm to Quick Sort. Try running Quick Sort on
random data with 8 bars and speed 1. What does the algorithm do?
How does it work? It may actually be easier to see what is happening

2



with 100 bars and speed 100. If the bar chosen to partition on ends up
in the middle of the current range every time, then you are left with
two problems (the left and right) half as big as the original, and it is
not too hard to show that the number of comparisons is Θ(n log n).
This does not happen every time, and a complete average case analysis
is beyond the scope of this course. It is not so hard to show that if the
pivot element is always within the middle 15/16 of the elements, then
you get Θ(n log n) time anyway. Intuitively, it seems likely that this
will happen most of the time, so that is why one generally gets this
behavior.

Increase the Speed. Try running it three times with 25 random bars,
writing down the # of Blocks, # of Swaps, and # of Comparisons.
Why didn’t you get the same answer every time?

Try repeating this with 50 bars and 100 bars. Write down in each case
the # of Bars, # of Swaps, and # of Comparisons. What do you
conclude about Quick Sort’s running time? Is Θ(n log n) believable?
(Note that Θ notation is discussed on pages 210–211 of the textbook.
Informally, it means in this case that for large n, the running time is
close to some constant times n log n.) Try to make an estimate as to
how long Quick Sort would take with 10,000 bars. How does Quick Sort
compare with Selection Sort?

4. Change the Arrangement of the bars to Ascending, so your initial
data starts out sorted, instead of random. Try running Quick Sort with
25 bars. How does this compare with Selection Sort? With Insertion
Sort? Explain your results.

5. (The next two problems are independent of the previous ones.) Do
problem 6 on pages 216 of the textbook. What precondition and loop
invariant should hold?

6. Consider the following problem (mentioned in lecture): There are three
politicians, A, B, and C. You know that one of them always tells the
truth, one of them always lies, and one of them sometimes tells the truth
and sometimes lies. You are allowed to ask these three politicians any
three true/false questions you like, and you may choose which politician
is asked which question. How would you determine how to order the
politicians by how often they tell the truth? This problem is quite

3



difficult. Try your problem solving abilities, but do not be disappointed
if you fail.

Assignment due 8:15, October 26

Late assignments will not be accepted. Working together is not allowed.
(You may write this either in English or Danish, but write clearly if you do
it by hand.) Remember to show your work.

1. How many comparisons would Selection Sort do if there were 250 num-
bers to be sorted? How many swaps?

2. What is the maximum number of entries that must be interrogated
when applying binary search to a list of 400 entries? What about a list
of 50,000 entries?

3. Do problem 23 on page 218. Note that the last statement is a recursive
call.

4


