
Institut for Matematik og Datalogi
Syddansk Universitet

November 5, 2004
JFB

Introduction to Computer Science
E04 – Lecture 9

Lecture, November 1

Rolf Fagerberg lectured on file structures from section 9.5. Then we continued
with security.

Lecture, November 8

We will begin on encryption from section 11.6 and discuss exponentiation,
an efficiency concern with RSA and many other public key cryptosystems.
There are some notes on cryptography, from PGP, using a link on the course’s
homepage.

Lecture, November 15

We will begin on the theory of computation from chapter 11.

Supplementary notes on RSA

The textbook leaves out many important details regarding the implementa-
tion of RSA. For example, it gives the incorrect impression that in computing
me (mod n) that one would first compute me and then reduce modulo n. This
is not what occurs in practice since it is infeasible for the large numbers used.
The intermediate result would have about e log(m) bits, which would usually
be more than 2500 bits (either me or cd would be extremely long)! Thus, one
computes this using intermediate computations and reducing modulo n after
each step. This works because of the following:

Lemma. For all nonnegative integers a, b and any integer n > 1,
a · b (mod n) = (a (mod n))(b (mod n)) (mod n).

1

Note that this can be proven using the fact that a = x (mod n) if and only
if 0 ≤ a < n and there is an integer k such that a = x + k · n.

The powers can be computed efficiently using the following algorithm:

function power(a,exp,n)

Compute a^exp (mod n) for nonnegative exp

if exp = 0 then return(1)

else if (exp is odd) then

return((a*power(a,exp-1,n)) mod n)

else

c <- (power(a,exp/2,n))

return((c * c) mod n)

The values e and d are multiplicative inverses of each other modulo (p −
1)(q − 1) (i.e. e · d (mod (p − 1)(q − 1)) = 1). They can be computed by
using the Extended Euclidean Algorithm, which computes greatest common
divisors.

Def. gcd(a, b) = greatest common divisor of a and b = largest d ∈ ZZ (the
integers) such that d|a and d|b
If gcd(a, b) = 1, then a and b are relatively prime.

Thm. a, b ∈ IN (nonnegative integers). There exist s, t ∈ ZZ such that
sa + tb = gcd(a, b).

Claim: The integers d = gcd(a, b), s and t can be found efficiently, using
the Extended Euclidean Algorithm.

For RSA, the value e is chosen so that gcd(e, (p−1)(q−1)) = 1. To find d, we
also need a value k such that e ·d = 1+k(p−1)(q−1). Thus, we can compute
d by solving for s in the equation se + t(p− 1)(q − 1) = 1. This can be done
using the Extended Euclidean algorithm since gcd(e, (p − 1)(q − 1)) = 1.

Discussion section: week 46 – Terminal Room

Discuss the following problems in groups of two or three.

First, you will be using the program gpg to try encryption. Usage information
can be obtained by typing gpg -h | more (hitting the space bar will get the

2

rest of it; the vertical line says pipe the output through the next program,
and more shows a page at a time).

1. Create a public and private key using gpg --gen-key. You should
choose DSA and El Gamal, and size 1024. Go to the directory .gnupg

using cd .gnupg. List what is in the directory using ls -al. Try
the commands gpg --list-keys and gpg --fingerprint to list the
keys you have, with the fingerprints, which make it easier for you to
check that you have the correct key from someone. How would you use
fingerprints?

2. You can save your public key in a file in a form that can seen on a screen
using gpg --export -a Your Name >filename. You are “exporting”
your key and specifying where the output should go. Then look at it
using more filename; the -a made it possible to see it reasonably on
your screen, since it changes it to ASCII.

3. Mail this file to someone else. (Either another group or within your
own group.)

4. Try to figure out how to use gpg to “import” the public key you got
from someone else. Check the fingerprint.

5. Create a little file and encrypt it. You can use gpg -sea filename.
What does this do?

6. Mail your file to whoever has your public key. Read their file using the
command gpg -d inputfile >outputfile. Then look at the output
file you created.

7. You can also encrypt a file for your own use using a symmetric key
system protected by a pass phrase. Try using gpg --force-mdc -ca

filename. Then try decrypting as with the file you decrypted previ-
ously. Why might you want to do this?

In the following, you will be using the program xmaple:

The best known public key cryptographic system, RSA, was presented in
lectures. It is one of the systems included in PGP and GPG. Its security is
based on the assumption that factoring large integers is hard. (The system

3

you are using in GPG is based on discrete logarithms, rather than factor-
ing, but the problems are similar in many ways. The factoring is easier to
understand and test in Maple.)

A user’s public key consists of a large integer n (currently numbers with at
least 1024 bits are recommended) and an exponent e. The integer n should
be a product of two prime numbers p and q, both of which should be about
half has long as n. Thus, in order to implement the system it must be possible
to find two large primes and multiply them together in a reasonable amount
of time. For the security of the system, it must be the case that no one who
does not know p or q could factor n.

At first glance this seems strange, that one should be able to determine
if a number is prime or not, but not be able to factor it. However, there
are algorithms for testing primality, which can discover that a number is
composite (not prime) without finding any of its factors. (The ones most
commonly used are probabilistic, so they could with small probability declare
a composite number prime; the probability of this happening can be made
arbitrarily small.)

Using Maple, you should try producing primes and composites and try fac-
toring.

1. Small numbers.

Start your Maple program. Type restart; at the beginning to make
it easier to execute your worksheet after you have made changes. You
can do this from Execute in the Edit menu.

Use help to find out about the function ithprime. Experiment to find
out approximately how big a prime it can find. When it cannot find
such a big prime, you can use the STOP button in order to continue
(it is a hand in a red background). To assign a value to a variable,
you use the assignment operator :=; for example x:= ithprime(4);.
Multiply two of the large primes it finds together, and try to factor the
result, using the function ifactor. Notice how quickly the factors are
found for these small numbers. (Large numbers are clearly necessary
for security.)

2. Finding larger primes.

In order to find good prime factors p and q for use in RSA, one can
choose random numbers of the required length and check each one for

4

primality until finding a prime.

Maple contains a function isprime which will test for primality. Try it
on some some small numbers, such as 3, 4, 7, 10. Maple has another
function rand which returns a random 12-digit number. Try typing
x:=rand(); and check if your result is prime. Rather than executing
these commands until you find a prime, you can use a while loop. You
want to continue creating new random numbers until you get a prime,
so you can type while (not isprime(x)) do, ignore the warning, and
type x:=rand(); on one line and end do; on the next. How many
different values were chosen before a prime was found? (I got 33, but
you could get another number.) Now create a second prime called y
(remember that y will need some value before your start your while
loop). Multiply x and y together and try factoring the result. This
should also go relatively quickly.

3. Finding even larger primes.

To get random numbers which are twice as long, you can create two
random numbers a and b and create 10 ∗ ∗12 ∗ a + b (10 raised to
the power 12 times a plus b). Unfortunately, two calls to rand in the
same statement will give the same result both times, so you need to
choose values for a and b independently and then combine them. (Sup-
pose you typed m1 := 10**12*rand() + rand();. Why wouldn’t you
ever find a prime testing values found this way?) Try finding two
primes, each 24 digits long. The first can be found by starting with
m1:=4; so you start out with a composite. Then use the following:
while (not isprime(m1)) do

a := rand();

b := rand();

m1 := 10**12 * a + b;

end do;.
Multiply the two primes together and try to factor the result. If your
machine is not fast enough, use the STOP button on the toolbar after
a few minutes; the computation takes too long. Otherwise, use one of
the primes you already have and create another with 36 digits, multi-
ply them together and try factoring them. As you might imagine, no
known algorithm would factor a 1024-bit (about 300 digits) number on
your PC in your lifetime. It is easy to find the primes and multiply

5

them together, but it is very difficult to factor the result! (Or RSA
would not be secure.)

Try to get a feeling for how long it takes to factor numbers of different
lengths; you can try changing the 10 ∗ ∗12 or 10 ∗ ∗24 in your while
loops to larger or smaller values.

4. Find the multiplicative inverse of 25 modulo 43. You could try using
xmaple and finding out about the function for computing the Extended
Euclidean Algorithm by typing ?igcdex. Does it help?

5. Discuss questions 2 and 3, and 4 on page 489.

6. Discuss problems 50 and 52 on page 493.

7. Discuss issues 2, 6 and 7 on pages 493–494.

Assignment due 8:15, November 16

Late assignments will not be accepted. Working together is not allowed.
(You may write this either in English or Danish, but write clearly if you do
it by hand.) Show your work where it is relevant.

1. Find the multiplicative inverse of 39 modulo 77.

2. Find four different square roots of 4 modulo 77 (numbers which multi-
plied by themselves modulo 77 give 4). Note that all of these numbers
should be less than 77.

3. Add two of these different square roots which are not negatives of each
other modulo 77 (two where adding them together does not give 77).
Find the greatest common divisor of this result and 77. Subtract these
same two different square roots and find the greatest common divisor
of this result and 77. Think about why you get these results.

Announcement

Der er Matalogifest lørdag den 13. november. Festen afholdes i U26. Temaet
er ”Jubilæumsfest” i anledning af IMADA’s 100000 års jubilæum og Mat-
alogifestens 10000 års jubilæum. Tilmelding kan foretages p̊a sekretariatet.
Pris: 125 kroner.

6

