
Institut for Matematik og Datalogi
Syddansk Universitet

September 19, 2006
JFB

Introduction to Computer Science
E06 – Lecture 6

Lecture, September 19

During the first hour, I lectured on algorithms from chapter 5, covering parts
of sections 5.4 and 5.6, using sequential search as the example. During the
second hour, Peter Kornerup lectured on networks from chapter 4.

Lecture, September 22

We will finish chapter 5 on algorithms and begin on sections 3.5 and 4.5 on
security. It is possible that we will also begin on section 11.6 on cryptography.

Lecture, September 26

Rolf Fagerberg will lecture about file structures from section 9.5.

Discussion section: week 39, starting in the Terminal
Room

Try to do the last problem on your own before coming to discussion section.
If you are not successful, there might be time to try to combine your ideas
in your group.

Discussion in groups (only two, or possibly three, people per group, since
you will sit at a computer):

The goal of this lab is to help you to gain some understanding of the fact
that most problems have more than one algorithmic solution and that these
solutions can differ greatly as to how practical they are. You will experiment
with three different sorting algorithms and compare them. Review sections

1



5.4, 5.5, and 5.6 in the textbook (including problem 6 on page 239) before
coming to the lab.

To start up the programs, you should find the home page for this course:
http://www.imada.sdu.dk/Courses/DM501/index.html.
Near the bottom of that page, there are links to a sorting simulator. Click
on the first of those two links. Note that the program sorts bars of different
lengths, rather than numbers. It is easy to think of the bars as numbers, and
it is easiest to see what is happening with the bars. Following the second link
instead of the first, you can find program code for these sorting algorithms.

1. Start using the xSortLab Applet from the first link. Choose the al-
gorithm Insertion Sort instead of Bubble Sort. Click on Go and
watch the algorithm execute. What do the pink and green rectangles
mean? How many comparisons are done and how many copies? What
is a copy?

Now use the Sorting Demo from the second link. Choose Insertion
Sort, a length of 10, a Special-case array, and Random. To start
it, click on Start Demo and then on OK in the applet. (Note that
you can make it run faster by decreasing the Delay in msec.) How
many comparisons are done and how many exchanges? What is an
exchange?

After it has stopped, try starting it again on sorted values. Killing
the window which is running the applet will allow you to start again,
and you simply choose Sorted instead of Random. Now how many
comparisons are done and how many exchanges? Try again with reverse
sorted data. Now how many comparisons are done and how many
exchanges? When does the algorithm do best and when worst. Why?

2. Go back to using the xSortLab Applet and choose Selection Sort.
(See problem 6 on page 239 of your textbook. The algorithm here finds
the largest entry remaining, instead of the smallest.) Try running Se-
lection Sort (note you get random data). What does the algorithm do?
How does it work? Write down the current values for Comparisons
and Copies. If the number of bars is n, the number of comparisons
should be

n∑
i=2

(i− 1) =
1

2
n2 − 1

2
n.

2

http://www.imada.sdu.dk/Courses/DM501/index.html


Why is this the number of comparisons? How many comparisons should
there theoretically be in this case, where n = 16? How does this compare
with practice? What is the maximum number of copies there could be?

3. In the following, when the program is just running for awhile, try going
on to something else, so you don’t just waste time. In the xSortLab Ap-
plet, change the Visual Sort to Timed Sort. Run both Insertion and
Selection Sort with 1000, 10,000, and 100,000 entries. Write down in
each case the # of Comparisons, # of Copies, and Approximate
Compute Time. How do these compare with the predicted values?
What values would you expect if the number of bars was 1,000,000?

4. Switch back to Visual Sort and Change the algorithm to QuickSort.
Try running QuickSort. What does the algorithm do? How does it
work? It might help to also try the other simulator which has program
code. If the bar chosen to partition on (the pivot element) ends up in
the middle of the current range every time, then you are left with two
problems (the left and right) half as big as the original, and it is not
too hard to show that the number of comparisons is Θ(n log n). This
does not happen every time, and a complete average case analysis is
beyond the scope of this course. It is not so hard to show that if the
pivot element is always within the middle 15/16 of the elements, then
you get Θ(n log n) time anyway. Intuitively, it seems likely that this
will happen most of the time, so that is why one generally gets this
behavior.

Switch back to Timed Sort. Try running it three times with 1000
random bars, writing down the # of Comparisons, # of Copies,
and Approximate Compute Time. Why didn’t you get the same
answer every time?

Try repeating this with 10,000 bars and 100,000 bars. Write down in
each case the # of Comparisons, # of Copies, and Approximate
Compute Time. What do you conclude about Quick Sort’s running
time? Is Θ(n log n) believable? (Note that Θ notation is discussed on
pages 252–253 of the textbook. Informally, it means in this case that
for large n, the running time is close to some constant times n log n.)
Try to make an estimate as to how long Quick Sort would take with
1,000,000 bars. How does Quick Sort compare with Selection Sort?

3



5. Using the Sorting Demo from the second link, try running Quicksort
using random data, sorted data, and reverse sorted data. How does
this compare with Insertion Sort? Explain your results.

6. (The next problems are independent of the previous ones.) Do problem
6 on pages 258 of the textbook. What precondition and loop invariant
should hold?

7. Do problem 50 on page 263.

8. Do all the questions on page 196 of the textbook.

9. Consider the following problem (mentioned in lecture): There are three
politicians, A, B, and C. You know that one of them always tells the
truth, one of them always lies, and one of them sometimes tells the truth
and sometimes lies. You are allowed to ask these three politicians any
three true/false questions you like, and you may choose which politician
is asked which question. How would you determine how to order the
politicians by how often they tell the truth? This problem is quite
difficult. Try your problem solving abilities, but do not be disappointed
if you fail.

Assignment due 8:15, October 3

Late assignments will not be accepted. Working together is not allowed.
(You may write this either in English or Danish, but write clearly if you do it
by hand.) Remember to show your work. When the question is “how many?”
and specific values are given, give integer answers, not just formulas. Do all
four problems.

1. How many comparisons would Insertion Sort do in the worst case if
there were 450 numbers to be sorted?

2. Suppose there were only 7 numbers to be sorted. Create a best case
and a worst case list in terms of the number of comparisons needed by
Insertion Sort. How many comparisons are needed in each case?

3. What is the maximum number of entries that must be interrogated
when applying binary search to a list of 450 entries? What about a list
of 4,500,000 entries?

4



4. Do problem 53 on page 264. Show either that the program segment
works correctly on all cases or give some case where it does not work
correctly.

5


