Institut for Matematik og Datalogi September 27, 2006
Syddansk Universitet JFB

Introduction to Computer Science
E06 — Lecture 8

Lecture, September 26

Rolf Fagerberg lectured about file structures from section 9.5.

Lecture, September 29

Kim Skak Larsen will lecture on databases from chapter 9.

Lecture, October 3

We will begin on encryption from section 11.6 and discuss exponentiation,
an efficiency concern with RSA and many other public key cryptosystems.
There are some notes on cryptography, from PGP, using a link on the course’s
homepage.

Supplementary notes on RSA

The textbook leaves out many important details regarding the implementa-
tion of RSA. For example, it gives the incorrect impression that in computing
m¢ (mod n) that one would first compute m® and then reduce modulo n. This
is not what occurs in practice since it is infeasible for the large numbers used.
The intermediate result would have about elog(m) bits, which would usually
be more than 259 bits (either m® or ¢? would be extremely long)! Thus, one
computes this using intermediate computations and reducing modulo n after
each step. This works because of the following:

Lemma. For all nonnegative integers a, b and any integer n > 1,

a-b (mod n) = (a (mod n))(b (mod n)) (mod n).

Note that this can be proven using the fact that a = z (mod n) if and only
if 0 < a < n and there is an integer k£ such that a = x + k - n.

The powers can be computed efficiently using the following algorithm:

function power(a,exp,n)
Compute a”exp (mod n) for nonnegative exp

if exp = 0 then return(1)
else if (exp is odd) then
return((a*power(a,exp-1,n)) mod n)
else
c <- (power(a,exp/2,n))
return((c * c) mod n)

The values e and d are multiplicative inverses of each other modulo (p —
1)(¢g — 1) (i.e. e-d (mod (p —1)(¢ — 1)) = 1). They can be computed by
using the Extended Euclidean Algorithm, which computes greatest common
divisors.

Def. gcd(a,b) = greatest common divisor of @ and b = largest d € Z (the
integers) such that d|a and d|b

If ged(a, b) = 1, then a and b are relatively prime.

Thm. a,b € IN (nonnegative integers). There exist s,t € Z such that
sa + tb = ged(a, b).

Claim: The integers d = ged(a,b), s and t can be found efficiently, using
the Extended Euclidean Algorithm.

For RSA, the value e is chosen so that ged(e, (p—1)(¢—1)) = 1. To find d, we
also need a value k such that e-d = 14+k(p—1)(¢—1). Thus, we can compute
d by solving for s in the equation se 4+ ¢(p —1)(¢ — 1) = 1. This can be done
using the Extended Euclidean algorithm since ged(e, (p —1)(¢ — 1)) = 1.
Note that Jacob Allerelli’s notes on modular arithmetic are available through
the course home page.

Discussion section: week 40

The first exercise involves programming. It should be done before you come
to discussion section. (You may use Java or some other language.)

Discuss the following problems from the textbook in groups of three or four.

1. Hashing: Write a program to compute the probability of at least one
collision when hashing is used with m records and n buckets. (See the
calculation on page 438 of your textbook and generalize it.) Assume
that the the hash function spreads data out essentially randomly. Use
your program to answer problem 7 on page 439 and problem 56 on page
448. How did you use your program?

2. Hashing: Questions 6 on page 439.
3. Sequential files: Question 3 on page 439 and Problem 53 on page 447.
4. Merging: Question 1 on page 438.

5. Assume sets of numbers are represented by sequential files sorted on
element value. For example, the set {4,7,13,9,2} is represented by a
sequential file containing < 2,4,7,9,13 >.

Describe algorithms for constructing AUB and (AUB)UC from A, B
and C (recall that A\ B was done in class). is given as an assignment
below). Note that (AU B) U C can be done by first computing AU B
and computing the union of this with C'. Instead of giving this solution,
process the three files simultaneously, as you do with two files.

6. Problems 9, 10, 15, 24, and 37 on pages 444-447.

7. Assume the database relations A and B each are stored as sequential
files of tuples, ordered according to attribute X (which is an attribute
of both relations).

Sketch (details not necessary) an algorithm based on merging for exe-
cuting the statement

C «— JOIN A and B where A.X = B.X

8. Assume again that the database relations A and B each are stored as
sequential files, but now no longer ordered on the X attribute.

Describe an algorithm based on nested loops for executing the state-
ment

C «— JOIN A and B where A. X =B.X

How many comparisons between tuples are performed (as a function of
|A| and |B|, the numbers of tuples in each relations)?

Describe how to speed up the algorithm by first using hashing on each
relation.

9. Explain how a poorly chosen hash function can result in a hash storage
system becoming little more than a sequential file.

10. Discuss questions 3, 6, 7, and 9 on page 448.

11. Question 2 on page 438.

Assignment due 8:15, October 10

Late assignments will not be accepted. Working together is not allowed.
(You may write this either in English or Danish, but write clearly if you do
it by hand.) Show your work where it is relevant. If you use a program to
compute something, please include the code or a good description of what it
does.

1. From problem 5 from the discussion section (above), give an algorithm
for constructing AU (BN C'). Do this formally as in Figure 9.15. As in
problem 5 above, process the three files simultaneously, as you do with
two files.

2. If a hash file is partitioned into 10 buckets, what is the probability of
at least two of three arbitrary records hashing to the same sections?
Assume that the hash function is such that a randomly chosen record
is equally likely to hash to any of the sections. How many records must
be stored in the file until it is more likely for collisions to occur than
not? Assume again that there are 10 bins.

3. Problem 9 on pages 444.

