
Institut for Matematik og Datalogi
Syddansk Universitet

October 8, 2008
JFB

Introduction to Computer Science
E08 – Week 8

Lecture, October 6

We covered sections 12.1, 12.2 and 12.4 in chapter 12.

Lecture, November 3

We will finish chapter 12.

Lecture, November 5

Rolf Fagerberg will lecture on section 9.5 in the textbook (merging and hash-
ing).

Lecture, November 10

We will cover security from the last sections on operating systems and net-
works and introduce cryptography. There are notes on cryptology below. In
addition, there are two links for information on cryptology and PGP on the
course’s homepage.

Supplementary notes on RSA

The textbook leaves out many important details regarding the implementa-
tion of RSA. For example, it gives the incorrect impression that in computing
me (mod n) that one would first compute me and then reduce modulo n. This
is not what occurs in practice since it is infeasible for the large numbers used.
The intermediate result would have about e log(m) bits, which would usually
be more than 2500 bits (either me or cd would be extremely long)! Thus, one

1

computes this using intermediate computations and reducing modulo n after
each step. This works because of the following:

Lemma. For all nonnegative integers a, b and any integer n > 1,
a · b (mod n) = (a (mod n))(b (mod n)) (mod n).

Note that this can be proven using the fact that a = x (mod n) if and only
if 0 ≤ a < n and there is an integer k such that a = x + k · n.

The powers can be computed efficiently using the following algorithm:

function power(a,exp,n)

Compute a^exp (mod n) for nonnegative exp

if exp = 0 then return(1)

else if (exp is odd) then

return((a*power(a,exp-1,n)) mod n)

else

c <- (power(a,exp/2,n))

return((c * c) mod n)

The values e and d are multiplicative inverses of each other modulo (p −
1)(q − 1) (i.e. e · d (mod (p − 1)(q − 1)) = 1). They can be computed by
using the Extended Euclidean Algorithm, which computes greatest common
divisors.

Def. gcd(a, b) = greatest common divisor of a and b = largest d ∈ ZZ (the
integers) such that d|a and d|b
If gcd(a, b) = 1, then a and b are relatively prime.

Thm. a, b ∈ IN (nonnegative integers). There exist s, t ∈ ZZ such that
sa + tb = gcd(a, b).

Claim: The integers d = gcd(a, b), s and t can be found efficiently, using
the Extended Euclidean Algorithm.

For RSA, the value e is chosen so that gcd(e, (p−1)(q−1)) = 1. To find d, we
also need a value k such that e ·d = 1+k(p−1)(q−1). Thus, we can compute
d by solving for s in the equation se + t(p− 1)(q− 1) = 1. This can be done
using the Extended Euclidean algorithm since gcd(e, (p− 1)(q − 1)) = 1.

Note that Jacob Allerelli’s notes on modular arithmetic are available through
the course home page.

2

Discussion section: week 46

The first exercise involves programming. It should be done before you come
to discussion section. (You may use Java or Maple or some other language.)

Discuss the following problems from the textbook in groups of three or four.

1. Hashing: Write a program to compute the probability of at least one
collision when hashing is used with m records and n buckets. (See the
calculation on page 468 of your textbook and generalize it.) Assume
that the the hash function spreads data out essentially randomly. Use
your program to answer problem 7 on page 469 and problem 57 on page
478. How did you use your program?

2. Hashing: Question 6 on page 469.

3. Sequential files: Question 3 on page 469 and Problem 54 on page 478.

4. Merging: Question 1 on page 469.

5. Assume sets of numbers are represented by sequential files sorted on
element value. For example, the set {4, 7, 13, 9, 2} is represented by a
sequential file containing < 2, 4, 7, 9, 13 >.

Describe algorithms for constructing A∪B and (A∪B)∪C from A, B
and C Note that (A∪B)∪C can be done by first computing A∪B and
computing the union of this with C. Instead of giving this solution,
process the three files simultaneously, as you do with two files.

6. Assume the database relations A and B each are stored as sequential
files of tuples, ordered according to attribute X (which is an attribute
of both relations).

Sketch (details not necessary) an algorithm based on merging for exe-
cuting the statement

C ← JOIN A and B where A.X = B.X

7. Assume again that the database relations A and B each are stored as
sequential files, but now no longer ordered on the X attribute.

Describe an algorithm based on nested loops for executing the state-
ment

C ← JOIN A and B where A.X = B.X

3

How many comparisons between tuples are performed (as a function of
|A| and |B|, the numbers of tuples in each relations)?

Describe how to speed up the algorithm by first using hashing on each
relation.

8. Explain how a poorly chosen hash function can result in a hash storage
system becoming little more than a sequential file.

9. Discuss questions 3, 6, 7, and 9 on page 479–480.

10. Question 2 on page 469 (it has been mentioned in a previous lecture
and is in the sorting simulator you used).

Assignment due 12:15, November 24

Late assignments will not be accepted. Working together is not allowed.
(You may write this either in English or Danish, but write clearly if you do
it by hand.) Show your work where it is relevant. If you use a program to
compute something, please include the code or a good description of what it
does.

1. Assume sets of numbers are represented by arrays sorted on element
value. For example, the set {4, 7, 13, 9, 2} is represented by an array of
length 5 containing [2, 4, 7, 9, 13]. Write a program in Java or Maple for
constructing A ∩ (B ∪ C). Use an algorithm similar to that in Figure
9.15. As in problem 5 above, process the three arrays simultaneously
(you should not first calculate B ∪C and then intersect with A). Test
your algorithm. Turn in both the program code (commented) and your
test results.

2. If a hash file is partitioned into 12 buckets, what is the probability of
at least two of three arbitrary records hashing to the same sections?
Assume that the hash function is such that a randomly chosen record
is equally likely to hash to any of the sections. How many records must
be stored in the file until it is more likely for collisions to occur than
not? Assume again that there are 12 bins.

4

