Institut for Matematik og Datalogi October 11, 2010
Syddansk Universitet JFB

Introduction to Computer Science
E10 — Lecture 12

Lecture, October 11, 8:15-10, U37

We covered the subsection on “Software Verification” in section 5.6. Then,
we began on chapter 12 in the textbook, covering up the the definition of the
language Bare Bones, ending on page 583, but not doing any examples.

Lecture, November 8, 8:15-10, U37

We will continue with chapter 12 in the textbook, giving an example using
Bare Bones and then concentrating on security (also from sections 3.5 and
4.5) and cryptography.

Lecture, November 11, 14:15-16, U71

We will finish chapter 12.

Supplementary notes on RSA

The textbook leaves out many important details regarding the implementa-
tion of RSA. (Most of this was, however, covered in your Mathematical Tools
for Computer Science course.) For example, the textbook gives the incorrect
impression that in computing m® (mod n) that one would first compute m®
and then reduce modulo n. This is not what occurs in practice since it is
infeasible for the large numbers used. The intermediate result would have
about elog(m) bits, which would usually be more than 2°°° bits (either m®
or ¢ would be extremely long)! Thus, one computes this using intermediate
computations and reducing modulo n after each step. This works because of

the following;:

Lemma. For all nonnegative integers a, b and any integer n > 1,

a-b (mod n) = (a (mod n))(b (mod n)) (mod n).

Note that this can be proven using the fact that a = = (mod n) if and only
if 0 < a < n and there is an integer k such that a = x + k - n.

The powers can be computed efficiently using the following algorithm:

function power(a,exp,n)
Compute a"exp (mod n) for nonnegative exp

if exp = 0 then return(1l)
else if (exp is odd) then
return((a*power(a,exp-1,n)) mod n)
else
c <- (power(a,exp/2,n))
return((c * c) mod n)

The values e and d are multiplicative inverses of each other modulo (p —
1)(g—1) (ie. e-d (mod (p —1)(¢ — 1)) = 1). They can be computed by
using the Extended Euclidean Algorithm, which computes greatest common
divisors.

Def. gcd(a,b) = greatest common divisor of @ and b = largest d € Z (the
integers) such that d|a and d|b

If ged(a, b) = 1, then a and b are relatively prime.

Thm. a,b € IN (nonnegative integers). There exist s,t € Z such that
sa + tb = ged(a, b).

Claim: The integers d = ged(a,b), s and t can be found efficiently, using
the Extended Euclidean Algorithm.

For RSA, the value e is chosen so that ged(e, (p—1)(¢g—1)) = 1. To find d, we
also need a value k such that e-d = 1+ k(p—1)(¢—1). Thus, we can compute
d by solving for s in the equation se 4+ ¢(p — 1)(¢ — 1) = 1. This can be done
using the Extended Euclidean algorithm since ged(e, (p — 1)(¢ — 1)) = 1.

Note that Jacob Allerelli’s notes on modular arithmetic are available through
the course home page.

Discussion section: November 15, 14:15-16, Terminal
Room

Discuss the following problems in groups of two or three.

First, you will be using the program gpg to try encryption. Usage information
can be obtained by typing gpg -h | more (hitting the space bar will get the
rest of it; the vertical line says pipe the output through the next program,
and more shows a page at a time).

1.

Create a public and private key using gpg --gen-key. You should
choose DSA and El Gamal, and size 2048. Go to the directory .gnupg
using cd .gnupg. List what is in the directory using 1s -al. Try
the commands gpg --list-keys and gpg --fingerprint to list the
keys you have, with the fingerprints, which make it easier for you to
check that you have the correct key from someone. How would you use
fingerprints?

You can save your public key in a file in a form that can be seen on a
screen using gpg --export -a Your Name >filename. You are “ex-
porting” your key and specifying where the output should go. Then
look at it using more filename; the —a made it possible to see it rea-
sonably on your screen, since it changes it to ASCII.

Mail this file to someone else. (Either in another group or within your
own group.)

Try to figure out how to use gpg to “import” the public key you got
from someone else. Check the fingerprint.

Create a little file and encrypt it. You can use gpg -sea filename.
What does this do?

Mail your file to whoever has your public key. Read their file using the
command gpg -d inputfile >outputfile. Then look at the output
file you created.

. You can also encrypt a file for your own use using a symmetric key

system protected by a pass phrase. Try using gpg --force-mdc -ca
filename. Then try decrypting as with the file you decrypted previ-
ously. Why might you want to do this?

8. Problems 47 and 50 on page 167.
9. Question 4 on page 168.
10. Problem 48 on page 217.

11. Question 11 on page 219.

