

Algorithms

Sequential Search

Algorithm: a well-ordered collection of unambiguous and effectively computable operations, that, when executed, produces a result in a finite amount of time.

Algorithms

Sequential Search

Algorithm: a well-ordered collection of unambiguous and effectively computable operations, that, when executed, produces a result in a finite amount of time.

Examples:

- computing with floating point numbers
- compressing data
- executing machine code

Algorithms

Sequential Search

Algorithm: a well-ordered collection of unambiguous and effectively computable operations, that, when executed, produces a result in a finite amount of time.

Examples:

- computing with floating point numbers
- compressing data
- executing machine code

Program: representation of an algorithm

Pseudocode: representation of an algorithm

Process: execution of an algorithm

Algorithms

Sequential Search

Art of problem solving Polya's principles applied to algorithms:

- 1. Understand the problem
- 2. Get an idea for a possible algorithmic procedure (to solve it)
- 3. Formulate the algorithm and represent it as a program
- 4. Evaluate the program for correctness and its potential as a tool for solving other problems

Algorithms

Sequential Search

Art of problem solving Polya's principles applied to algorithms:

- 1. Understand the problem
- 2. Get an idea for a possible algorithmic procedure (to solve it)
- 3. Formulate the algorithm and represent it as a program
- 4. Evaluate the program for correctness and its potential as a tool for solving other problems

Not so easy as $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$.

Algorithms

Sequential Search

Examples:

- Magic trick ideas, discover they don't work with some initial cards...
- 3 politicians (no names) A, B, C know each other
 - ◆ 1 always tells the truth
 - ♦ 1 always lies
 - ◆ 1 does some of each
 - ◆ Ask 3 true/false questions
 - choose whichever politician you like for whichever question
 - determine which politician is which

Algorithm design techniques

Algorithms

Sequential Search

Techniques:

- Brute force
- Stepwise refinement (top-down)
 - break into smaller and smaller problems
 - ◆ if modular (relatively independent) parts,
 can program in teams software engineering

Algorithm design techniques

Algorithms

Sequential Search

Cute problems in textbook.

Example: Step from pier into a boat Hat falls into water. River flows 2.5 miles/hour

Go upstream at 4.75 miles/hour

After 10 minutes discover hat missing.

Turn around to travel downstream.

How long before you get to the hat?

Algorithm design techniques

Algorithms

Sequential Search

Cute problems in textbook.

Example: Step from pier into a boat

Hat falls into water.

River flows 2.5 miles/hour

Go upstream at 4.75 miles/hour

After 10 minutes discover hat missing.

Turn around to travel downstream.

How long before you get to the hat?

Answer: 10 minutes

— It pays to think.

Algorithms

Sequential Search

Pseudocode

- easier to read than a program
- syntax less important
- constructs from many languages work the same

Algorithms

Sequential Search

Pseudocode

- easier to read than a program
- syntax less important
- constructs from many languages work the same
 - ◆ if...then...else condition is Boolean
 - while
 - ◆ repeat
 - ◆ for
 - recursion

Algorithms

Sequential Search

Types — use consistently and clearly

Incorrect example: $r \leftarrow List - c$

Algorithms

Sequential Search

Types — use consistently and clearly

Incorrect example: $r \leftarrow List - c$

Incorrect example: using n to be index and nth element of List

Must explain the general idea and what variables are used for if not obvious — not what it does, but why,

in if...then...else clause for example.

Algorithms
Sequential Search

Sequential search problem:

Input: List of elements, TargetValue

Output: success if TargetValue is in List

failure if it is not in List

A brute force algorithm.

 ${\bf Algorithms}$

Sequential Search

```
procedure Search(List, TargetValue):
{ Input: List is a list; TargetValue is a possible entry }
{ Output: success if TargetValue in List; failure otherwise }
    if (List empty)
          then Output failure
          else
               TestEntry ← 1st entry in List
               while (TargetValue \neq TestEntry
                         and there are entries not considered)
                    do (TestEntry ← next entry in List)
               if (TargetValue = TestEntry)
                    then Output success
                    else Output failure
```


Algorithms
Sequential Search

Analysis:

- time
- fundamental operation
 - ◆ takes time
 - number of occurrences proportional to everything else that happens

Algorithms

Sequential Search

Analysis:

$$| \operatorname{List} | = n$$

How many comparisons are necessary in the worst case?

- A. 1
- B. n 1
- **C**. *n*
- D. n + 1
- E. 2n

Vote at m.socrative.com. Room number 415439.

Algorithms

Sequential Search

Analysis:

$$| \operatorname{List} | = n$$

How many comparisons are necessary in the worst case?

D.
$$n + 1$$

This is $\Theta(n)$.

Algorithms
Sequential Search

Analysis:

What does $\Theta(n)$ meant?

Need to define O(n) too.

$$g \in O(f)$$
 means $\exists c, d \text{ s.t. } g(n) \leq c \cdot f(n) + d$

$$g \in \Theta(f)$$
 means $g \in O(f)$ and $f \in O(g)$.

 ${\bf Algorithms}$

Sequential Search

Analysis:

$$g \in O(f)$$
 means $\exists c, d$ s.t. $g(n) \le c \cdot f(n) + d$ $g \in \Theta(f)$ means $g \in O(f)$ and $f \in O(g)$.

Examples:

$$2n + 3 \in \Theta(n)$$

$$\blacksquare \ 3\log n \in \Theta(\log n)$$

$$2n + 7\log n \in \Theta(n)$$

■
$$4 \log n + m \in \Theta(\log n)$$
 if $m \le \log n$

■ Can write $\Theta(\log n + m)$ if unsure which term is larger.

Algorithms
Sequential Search

Analysis:

What is $n \log n - 1.4n + 15$?

- A. $O(n^2)$
- B. $O(n \log n)$
- C. $\Theta(n \log n)$
- D. all of the above
- E. none of the above

Vote at m.socrative.com. Room number 415439.

Sequential search — correctness

Algorithms

Sequential Search

```
procedure Search(List, TargetValue):
     if (List empty)
          then Output failure
          else
               TestEntry ← 1st entry in List
          { precondition: TestEntry is 1st entry in List }
               while (TargetValue \neq TestEntry
                         and there are entries not considered)
                    do (TestEntry ← next entry in List)
          { loop invariant: TargetValue \neq any entry before TestEntry }
          { postcondition: either TargetValue = TestEntry
               or all entries considered and TargetValue not in List }
               if (TargetValue = TestEntry)
                    then Output success
                    else Output failure
```


Sequential search — correctness

Algorithms
Sequential Search

Assertions

- statements which can be proven to hold (induction)
- at different points in program
- examples: precondition, postcondition, loop invariant

Proof by induction on number of times through the loop:

Proof verification: automated?

Sequential search — correctness

Algorithms

Sequential Search