Online Algorithms with Advice

Joan Boyar, U. of Southern Denmark

April/May 2019

Joan Boyar

Online Algorithms with Advice

April/May 2019 1/93

Overview

The advice model

- The bin packing problem
 - Bin packing background
 - Advice complexity results for bin packing
- 3 An advice complexity class, AOC
 - Vertex Cover
 - A complexity class for online problems
 - The class AOC
 - Asymmetric string guessing
 - Vertex Cover is AOC-Complete
 - Pandomization and list access
 - Problem statement
 - Online algorithms
 - Breaking the lower bound
 - Randomization and advice
 - Concluding remarks

Section 1

The advice model

Compare the performance of an online algorithm, $\rm ALG,$ with an optimal offline algorithm, $\rm OPT:$

• OPT knows the whole sequence in the beginning.

Competitive ratio of ALG is the maximum ratio between the cost of ALG and OPT for serving the same sequence (minimization problems).

Advice from an Oracle

Algorithms get b(n) bits of **advice** for sequences of length *n*:

Algorithms get b(n) bits of **advice** for sequences of length *n*:

The advice is generated by an offline oracle.

Algorithms get b(n) bits of **advice** for sequences of length *n*:

The advice is generated by an offline **oracle**.

The advice is written on a tape and can be accessed by the online algorithm at any time.

Algorithms get b(n) bits of **advice** for sequences of length *n*:

The advice is generated by an offline **oracle**.

The advice is written on a tape and can be accessed by the online algorithm at any time.

It can be seen as **nondeterministically** specifying one of $2^{b(n)}$ algorithms.

Algorithms get b(n) bits of **advice** for sequences of length *n*:

The advice is generated by an offline **oracle**.

The advice is written on a tape and can be accessed by the online algorithm at any time.

It can be seen as **nondeterministically** specifying one of $2^{b(n)}$ algorithms.

- There are other advice models for bin packing
 - Original: [Dobrev, Královič, Markou, 2009]
 - Advice with request: [Fraigniaud,Korman,Rosén, 2011]

• a measure of how much knowledge of the future an online algorithm needs to achieve a certain competitive ratio

- a measure of how much knowledge of the future an online algorithm needs to achieve a certain competitive ratio
- a problem-independent and quantitative approach

- a measure of how much knowledge of the future an online algorithm needs to achieve a certain competitive ratio
- a problem-independent and quantitative approach
- a means of modelling keeping parallel solutions, multi-solution model

- a measure of how much knowledge of the future an online algorithm needs to achieve a certain competitive ratio
- a problem-independent and quantitative approach
- a means of modelling keeping parallel solutions, multi-solution model
- sometimes useful in practice

• How many bits of advice are required (sufficient) to achieve an optimal solution?

- How many bits of advice are required (sufficient) to achieve an optimal solution?
- How many bits of advice are sufficient to outperform all online algorithms?

- How many bits of advice are required (sufficient) to achieve an optimal solution?
- How many bits of advice are sufficient to outperform all online algorithms?
- How good can the competitive ratio be with advice of linear/sublinear size?

- How many bits of advice are required (sufficient) to achieve an optimal solution?
- How many bits of advice are sufficient to outperform all online algorithms?
- How good can the competitive ratio be with advice of linear/sublinear size?

Is there useful advice one could reasonably get (without knowing OPT)?

Rent ski equipment for one day: cost \$ 1. Buying ski equipment: cost \$ *d*. Buying once is sufficient.

Rent ski equipment for one day: cost \$ 1. Buying ski equipment: cost \$ *d*. Buying once is sufficient.

Input: List, *L*, of dates when you go skiing.
Output: Whether you rent, buy, or do nothing.
"Do nothing" is only possible if you have previously bought.
Goal: Minimize cost

Rent ski equipment for one day: cost \$ 1. Buying ski equipment: cost \$ *d*. Buying once is sufficient.

Input: List, *L*, of dates when you go skiing.Output: Whether you rent, buy, or do nothing."Do nothing" is only possible if you have previously bought.Goal: Minimize cost

Optimal algorithm: Rent until the *d*th date, if that comes. Then buy. Competitive ratio = 2 - 1/d.

Rent ski equipment for one day: cost \$ 1. Buying ski equipment: cost \$ *d*. Buying once is sufficient.

Input: List, *L*, of dates when you go skiing.Output: Whether you rent, buy, or do nothing."Do nothing" is only possible if you have previously bought.Goal: Minimize cost

Optimal algorithm: Rent until the *d*th date, if that comes. Then buy. Competitive ratio = 2 - 1/d.

[Dobrev,Královič,Pardubská, 2009] The advice complexity for optimality is 1 bit:

$$b = \begin{cases} 0 & \text{if } |L| < d \\ 1 & \text{if } |L| \ge d \end{cases}$$

Cache: k pages Slow memory: N > k pages

3

• • • • • • • • • •

3

Cache: k pages Slow memory: N > k pages

Request sequence: Sequence of page numbers $\langle r_1, ..., r_n \rangle$ Fault: Page requested not in cache Cost: 1 per fault to bring page into cache Goal: Minimize cost

Cache: k pages Slow memory: N > k pages

Request sequence: Sequence of page numbers $\langle r_1, ..., r_n \rangle$ Fault: Page requested not in cache Cost: 1 per fault to bring page into cache Goal: Minimize cost

Fact: No deterministic algorithm is better than *k*-competitive.

Cache: k pages Slow memory: N > k pages

```
Request sequence: Sequence of page numbers \langle r_1, ..., r_n \rangle
Fault: Page requested not in cache
Cost: 1 per fault to bring page into cache
Goal: Minimize cost
```

Fact: No deterministic algorithm is better than *k*-competitive.

```
[Dobrev,Královič,Pardubská, 2009]
[Böckenhauer,Komm,Královič,Královič,Mömke, 2009]
Asymptotically, for large k, the advice complexity for optimality is 1 bit
per request:
```

 $b_i = \begin{cases} 0 & \text{if OPT would have } r_i \text{ in cache next time it is requested} \\ 1 & \text{otherwise} \end{cases}$

Simple knapsack problem:

- Knapsack of size 1
- Items of size $\in (0, 1]$ arrive online
- An item must be accepted or rejected
- Goal maximize total size accepted (total size ≤ 1)

13/93

13/93

14/93

Without advice: unbounded competitive ratio. [Marchetti-Spaccamela,Vercellis, 1995] Without advice: unbounded competitive ratio. [Marchetti-Spaccamela,Vercellis, 1995]

With advice: 2-competitive algorithm with 1 advice bit. [Böckenhauer,Komm,Královič,Rossmanith, 2014]
Without advice: unbounded competitive ratio. [Marchetti-Spaccamela,Vercellis, 1995]

With advice: 2-competitive algorithm with 1 advice bit. [Böckenhauer,Komm,Královič,Rossmanith, 2014]

Algorithm:

- If b = 0, use Greedy.
- If b = 1, wait for item of size $> \frac{1}{2}$.

Without advice: unbounded competitive ratio. [Marchetti-Spaccamela,Vercellis, 1995]

With advice: 2-competitive algorithm with 1 advice bit. [Böckenhauer,Komm,Královič,Rossmanith, 2014]

Algorithm:

- If b = 0, use Greedy.
- If b = 1, wait for item of size $> \frac{1}{2}$.

Fact: If there is no item of size $> \frac{1}{2}$, Greedy will accept at least min{OPT(I), 1/2}

(in order to reject anything, it must have already accepted $\frac{1}{2}$).

Section 2

The bin packing problem

Input: items of various sizes $\in (0, 1]$

Output: packing of all items into unit size bins

Goal: use minimum number of bins

- Input: items of various sizes $\in (0, 1]$
- Output: packing of all items into unit size bins
- Goal: use minimum number of bins

Applications: storage, cutting stock...

The problem is NP-hard: Reduce from 2-PARTITION.

First-Fit-Decreasing has an approximation ratio of $11/9 \approx 1.22$ [Johnson,Demers,Ullman,Garey,Graham, 1974]

There is an asymptotic PTAS for the problem [de la Vega,Lueker, 1981]

Request sequence is revealed in a sequential, online manner.

Examples:

- Next-Fit
- First-Fit
- Best-Fit
- Harmonic, Harmonic++
- Heydrich, van Stee

First-Fit

- Find the first open bin with enough space, and place the item there
- If such a bin does not exist, open a new bin

First-Fit

- Find the first open bin with enough space, and place the item there
- If such a bin does not exist, open a new bin

Next-Fit

- Put item in current open bit, if it fits
- Otherwise, close that bin and open a new current bin

э

э

Next-Fit has competitive ratio 2 [Johnson, 1974]

Best-Fit and First-Fit have competitive ratio 1.7 [Johnson,Demers,Ullman,Garey,Graham, 1974]

Best known online algorithm has competitive ratio 1.57829 [Balogh,Békési,Dósa,Epstein,Levin, 2018] Next-Fit has competitive ratio 2 [Johnson, 1974]

Best-Fit and First-Fit have competitive ratio 1.7 [Johnson,Demers,Ullman,Garey,Graham, 1974]

Best known online algorithm has competitive ratio 1.57829 [Balogh,Békési,Dósa,Epstein,Levin, 2018]

No online algorithm has a competitive ratio less than 1.54278 [Balogh,Békési,Dósa,Epstein,Levin, 2018] Next-Fit has competitive ratio 2 [Johnson, 1974]

Best-Fit and First-Fit have competitive ratio 1.7 [Johnson,Demers,Ullman,Garey,Graham, 1974]

Best known online algorithm has competitive ratio 1.57829 [Balogh,Békési,Dósa,Epstein,Levin, 2018]

No online algorithm has a competitive ratio less than 1.54278 [Balogh,Békési,Dósa,Epstein,Levin, 2018]

Recall that offline First-Fit-Decreasing has approximation ratio \approx 1.22.

- A big gap between quality of online and offline solutions.
- What about an "almost online" algorithm? What about advice?

For a sequence of fixed length

- How many bits of advice are required (sufficient) to achieve an optimal solution?
- How many bits of advice are sufficient to outperform all online algorithms?
- How good can the competitive ratio be with advice of linear/sublinear size?

For a sequence of fixed length

- How many bits of advice are required (sufficient) to achieve an optimal solution?
- How many bits of advice are sufficient to outperform all online algorithms?
- How good can the competitive ratio be with advice of linear/sublinear size?

Is there useful advice one could reasonably get (without knowing OPT)?

For a sequence of fixed length

- How many bits of advice are required (sufficient) to achieve an optimal solution?
- How many bits of advice are sufficient to outperform all online algorithms?
- How good can the competitive ratio be with advice of linear/sublinear size?

Is there useful advice one could reasonably get (without knowing OPT)?

Most advice results are from [B.,Kamali,Larsen,López-Ortiz, 2016]

- Advice for each item: index of target bin in OPT's packing.
- *n*[log OPT(σ)] bits of advice are sufficient

- Advice for each item: index of target bin in OPT's packing.
- *n*[log OPT(σ)] bits of advice are sufficient

- Advice for each item: index of target bin in OPT's packing.
- *n*[log OPT(σ)] bits of advice are sufficient

- Advice for each item: index of target bin in OPT's packing.
- *n*[log OPT(σ)] bits of advice are sufficient

- Advice for each item: index of target bin in OPT's packing.
- $n \lceil \log OPT(\sigma) \rceil$ bits of advice are sufficient

- Advice for each item: index of target bin in OPT's packing.
- $n \lceil \log OPT(\sigma) \rceil$ bits of advice are sufficient

- Advice for each item: index of target bin in OPT's packing.
- $n \lceil \log OPT(\sigma) \rceil$ bits of advice are sufficient

1

- Advice for each item: index of target bin in OPT's packing.
- $n \lceil \log OPT(\sigma) \rceil$ bits of advice are sufficient

In fact, $(n - 2 \operatorname{Opt}(\sigma)) \log \operatorname{Opt}(\sigma)$ bits of advice are required to achieve an optimal packing.

In fact, $(n - 2 \operatorname{Opt}(\sigma)) \log \operatorname{Opt}(\sigma)$ bits of advice are required to achieve an optimal packing.

Comparison: $n \lceil \log Opt(\sigma) \rceil$ bits of advice are sufficient for optimality. $(n - 2 Opt(\sigma)) \log Opt(\sigma)$ bits of advice are required to guarantee optimality.

Breaking the Lower Bound — Effectively

Recall: All online algorithms have a competitive ratio of at least 1.54.

Breaking the Lower Bound — Effectively

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size $\lceil \log(n+1) \rceil$ is sufficient to achieve a competitive ratio of 1.5.
Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size $\lceil \log(n+1) \rceil$ is sufficient to achieve a competitive ratio of 1.5.

Advice: The number of items in range (1/2, 2/3].

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size $\lceil \log(n+1) \rceil$ is sufficient to achieve a competitive ratio of 1.5.

Advice: The number of items in range (1/2, 2/3]. Algorithm: Reserve a space of size 2/3 for each of them Apply First-Fit for the other items.

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size $\lceil \log(n+1) \rceil$ is sufficient to achieve a competitive ratio of 1.5.

Advice: The number of items in range (1/2, 2/3]. Algorithm: Reserve a space of size 2/3 for each of them Apply First-Fit for the other items.

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size $\lceil \log(n+1) \rceil$ is sufficient to achieve a competitive ratio of 1.5.

Advice: The number of items in range (1/2, 2/3]. Algorithm: Reserve a space of size 2/3 for each of them Apply First-Fit for the other items.

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size $\lceil \log(n+1) \rceil$ is sufficient to achieve a competitive ratio of 1.5.

Advice: The number of items in range (1/2, 2/3]. Algorithm: Reserve a space of size 2/3 for each of them Apply First-Fit for the other items.

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size $\lceil \log(n+1) \rceil$ is sufficient to achieve a competitive ratio of 1.5.

Advice: The number of items in range (1/2, 2/3]. Algorithm: Reserve a space of size 2/3 for each of them Apply First-Fit for the other items.

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size $\lceil \log(n+1) \rceil$ is sufficient to achieve a competitive ratio of 1.5.

Advice: The number of items in range (1/2, 2/3]. Algorithm: Reserve a space of size 2/3 for each of them Apply First-Fit for the other items.

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size $\lceil \log(n+1) \rceil$ is sufficient to achieve a competitive ratio of 1.5.

Advice: The number of items in range (1/2, 2/3]. Algorithm: Reserve a space of size 2/3 for each of them Apply First-Fit for the other items.

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size $\lceil \log(n+1) \rceil$ is sufficient to achieve a competitive ratio of 1.5.

Advice: The number of items in range (1/2, 2/3]. Algorithm: Reserve a space of size 2/3 for each of them Apply First-Fit for the other items.

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size $\lceil \log(n+1) \rceil$ is sufficient to achieve a competitive ratio of 1.5.

Advice: The number of items in range (1/2, 2/3]. Algorithm: Reserve a space of size 2/3 for each of them Apply First-Fit for the other items.

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size $\lceil \log(n+1) \rceil$ is sufficient to achieve a competitive ratio of 1.5.

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size $\lceil \log(n+1) \rceil$ is sufficient to achieve a competitive ratio of 1.5.

Newer result: [Angelopoulos, Dürr, Kamali, Renault, Rosén, 2018]

With constant advice, one can get a competitive ratio arbitrarily close to 1.47012.

Unfortunately, the advice depends on OPT.

An online algorithm which receives 2 bits of advice per request (plus an additive lower order term).

- An online algorithm which receives 2 bits of advice per request (plus an additive lower order term).
- Achieves a competitive ratio of $4/3 + \varepsilon$, for any positive value of ε .

- An online algorithm which receives 2 bits of advice per request (plus an additive lower order term).
- Achieves a competitive ratio of $4/3 + \varepsilon$, for any positive value of ε .
- A variety of bin packing techniques are used in the proof.

- An online algorithm which receives 2 bits of advice per request (plus an additive lower order term).
- Achieves a competitive ratio of $4/3 + \varepsilon$, for any positive value of ε .
- A variety of bin packing techniques are used in the proof.
- Advice depends on **OPT**'s packing.

One can obtain results similar to PTAS results:

[Renault, Rósen, van Stee, 2015]

Theorem

There is an online bin packing algorithm which is $(1 + 3\delta)$ -competitive (or asymptotically $(1 + 2\delta)$ -competitive), using $s = \frac{1}{\delta} \log \frac{2}{\delta^2} + \log \frac{2}{\delta^2} + 3$ bits of advice per request.

A linear amount of advice is required to achieve a competitive ratio better than 9/8.

Get a trade-off — better ratio requires more advice

A linear amount of advice is required to achieve a competitive ratio better than 9/8.

Get a trade-off — better ratio requires more advice

Reduction order:

Binary string guessing problem \longrightarrow Binary separation problem Binary separation problem \longrightarrow Bin packing problem

Binary string guessing problem (with known history): 2-SGKH [Emek,Fraigniaud,Korman,Rosén, 2011] [Böckenhauer,Hromkovic,Komm,Krug,Smula,Sprock, 2014]

Binary string guessing problem (with known history): 2-SGKH [Emek,Fraigniaud,Korman,Rosén, 2011] [Böckenhauer,Hromkovic,Komm,Krug,Smula,Sprock, 2014]

• Guess the next bit in a bit string revealed in an online manner

Binary string guessing problem (with known history): 2-SGKH [Emek,Fraigniaud,Korman,Rosén, 2011] [Böckenhauer,Hromkovic,Komm,Krug,Smula,Sprock, 2014]

- Guess the next bit in a bit string revealed in an online manner
- $\langle 0, 1, 0, ? \rangle$

Binary string guessing problem (with known history): 2-SGKH [Emek,Fraigniaud,Korman,Rosén, 2011] [Böckenhauer,Hromkovic,Komm,Krug,Smula,Sprock, 2014]

- Guess the next bit in a bit string revealed in an online manner
- $\langle 0, 1, 0, ? \rangle$
- A linear amount advice is required to correctly guess more than half of the bits.

Binary string guessing problem (with known history): 2-SGKH [Emek,Fraigniaud,Korman,Rosén, 2011] [Böckenhauer,Hromkovic,Komm,Krug,Smula,Sprock, 2014]

- Guess the next bit in a bit string revealed in an online manner
- $\langle 0, 1, 0, ? \rangle$
- A linear amount advice is required to correctly guess more than half of the bits.

Theorem

On inputs of length n, any deterministic algorithm for 2-SGKH that is guaranteed to guess correctly on more than α n bits, for $1/2 \le \alpha < 1$, needs to read at least $(1 + (1 - \alpha) \log(1 - \alpha) + \alpha \log(\alpha))$ n bits of advice.

Note: If we assume the number, n_0 , of 0s is given, we need at least $(1 + (1 - \alpha) \log(1 - \alpha) + \alpha \log(\alpha))n - e(n_0)$ bits of advice, where $e(n_0) = \lceil \log(n_0 + 1) \rceil + 2\lceil \log(\lceil \log(n_0 + 1) \rceil + 1) \rceil$ (self-delimiting code).

• For a sequence of $n_1 + n_2$ items decide whether an item belongs to the n_1 smaller items or n_2 larger items.

- For a sequence of $n_1 + n_2$ items decide whether an item belongs to the n_1 smaller items or n_2 larger items.
- $\langle \frac{1}{2} (s), \frac{3}{4} (l), \frac{5}{8} (s), \frac{11}{16} (?) \rangle$

- For a sequence of $n_1 + n_2$ items decide whether an item belongs to the n_1 smaller items or n_2 larger items.
- $\langle \frac{1}{2} (s), \frac{3}{4} (l), \frac{5}{8} (s), \frac{11}{16} (?) \rangle$
- Don't have to choose in [0, 1].

- For a sequence of $n_1 + n_2$ items decide whether an item belongs to the n_1 smaller items or n_2 larger items.
- $\langle \frac{1}{2} (s), \frac{3}{4} (l), \frac{5}{8} (s), \frac{11}{16} (?) \rangle$
- Don't have to choose in [0, 1].
- Don't have to choose the exact middle value.

Reduction from 2-SGKH to Binary separation

1: small = 0; large = 1 2: repeat mid = (large + small) / 23: $class_guess = SeparationAlgorithm.ClassifyThis(mid)$ 4 if class_guess = "large" then 5: $bit_guess = 0$ 6: 7: else $bit_guess = 1$ 8. actual_bit = Guess(bit_guess) 9: {The actual value is received after guessing (2-SGKH).} if $actual_bit = 0$ then 10: 11: large = mid {We let "large" be the correct decision.} else 12: $small = mid \{We let "small" be the correct decision.\}$ 13: 14: until end of sequence

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

Reduction from Binary separation to Bin packing

Idea: Create small and large items, so ALG has to decide which is which.

Give n_2 items of size $\frac{1}{2} + \epsilon$ — begin items, *B*.

Give n_2 items of size $\frac{1}{2} + \epsilon$ — begin items, *B*. ALG (and OPT) must put them in separate bins.

Give n_2 items of size $\frac{1}{2} + \epsilon$ — begin items, *B*. ALG (and OPT) must put them in separate bins. Give large items, *L* and small items, *S*:

- OPT places large items with begin items.
- OPT places small items, one per bin.
- ALG much choose.

Give n_2 items of size $\frac{1}{2} + \epsilon$ — begin items, *B*. ALG (and OPT) must put them in separate bins. Give large items, *L* and small items, *S*:

- OPT places large items with begin items.
- OPT places small items, one per bin.
- ALG much choose.

For each small item of size $\frac{1}{2} - \epsilon_i$, give an item of size $\frac{1}{2} + \epsilon_i$ — matching items, M.

Give n_2 items of size $\frac{1}{2} + \epsilon$ — begin items, *B*. ALG (and OPT) must put them in separate bins. Give large items, *L* and small items, *S*:

- OPT places large items with begin items.
- OPT places small items, one per bin.
- ALG much choose.

For each small item of size $\frac{1}{2} - \epsilon_i$, give an item of size $\frac{1}{2} + \epsilon_i$ — matching items, M. OPT packs matching items with small items, using $n_1 + n_2$ bins.

Reduction from Binary separation to Bin packing

< A I
Reduction from Binary separation to Bin packing

Reduction from Binary separation to Bin packing

Large item + matching item > 1.

Reduction from Binary separation to Bin packing

Large item + matching item > 1.

Suppose large item is not with a begin item. Why?

- bad guess for that item
- bad guess for small item no space

Suppose large item is not with a begin item. Why?

- bad guess for that item
- bad guess for small item no space

Let

 $x = \max\{\text{number bad guesses for small}, \text{number bad guesses for large}\}$

Suppose large item is not with a begin item. Why?

- bad guess for that item
- bad guess for small item no space

Let

 $x = \max\{$ number bad guesses for small, number bad guesses for large $\}$ x large items not paired with begin items.

Suppose large item is not with a begin item. Why?

- bad guess for that item
- bad guess for small item no space

Let

 $x = \max\{\text{number bad guesses for small, number bad guesses for large}\}$ x large items not paired with begin items. At most 2 fit in a bin together.

Suppose large item is not with a begin item. Why?

- bad guess for that item
- bad guess for small item no space

Let

 $x = \max\{\text{number bad guesses for small, number bad guesses for large}\}$ x large items not paired with begin items. At most 2 fit in a bin together.

4 errors in binary separation $\Rightarrow \ \geq \ 1$ more bin

Theorem

On inputs of length n, to achieve a competitive ratio of c (1 < c < 9/8), an online algorithm must get at least $(1 + (4c - 4) \log(4c - 4) + (5 - 4c) \log(5 - 4c))n - e(n)$ bits of advice.

Recall that $e(n) = \lceil \log(n+1) \rceil + 2 \lceil \log(\lceil \log(n+1) \rceil + 1) \rceil$.

Theorem

On inputs of length n, to achieve a competitive ratio of c (1 < c < 9/8), an online algorithm must get at least $(1 + (4c - 4) \log(4c - 4) + (5 - 4c) \log(5 - 4c))n - e(n)$ bits of advice.

Recall that $e(n) = \lceil \log(n+1) \rceil + 2 \lceil \log(\lceil \log(n+1) \rceil + 1) \rceil$.

Newer result: [Angelopoulos,Dürr,Kamali,Renault,Rosén, 2016] Can improve analysis from 4 mistakes causing at least 1 extra bin to 3 mistakes causing at least 1 extra bin.

Theorem

On inputs of length n, to achieve a competitive ratio of c (1 < c < 7/6), an online algorithm must get at least $(1 + (3c - 3) \log(3c - 3) + (4 - 3c) \log(4 - 3c))n - e(n)$ bits of advice.

Recall that $e(n) = \lceil \log(n+1) \rceil + 2 \lceil \log(\lceil \log(n+1) \rceil + 1) \rceil$.

Even newer result: [Mikkelsen, 2016]

Can improve analysis using above result and using weighted binary string guessing.

Theorem

On inputs of length n, to achieve a competitive ratio of c $(1 < c < 4 - 2\sqrt{2})$, a randomized c-competitive bin packing algorithm must read at least $\Omega(n)$ bits of advice.

9/8 = 1.125, $7/6 \approx 1.1667$, $4 - 2\sqrt{2} \approx 1.1716$

[Mikkelsen, 2016]

Theorem

On inputs of length n, to achieve a competitive ratio of c $(1 < c < 4 - 2\sqrt{2})$, a randomized c-competitive bin packing algorithm must read at least $\Omega(n)$ bits of advice.

[Mikkelsen, 2016]

Theorem

On inputs of length n, to achieve a competitive ratio of c $(1 < c < 4 - 2\sqrt{2})$, a randomized c-competitive bin packing algorithm must read at least $\Omega(n)$ bits of advice.

What does this say?

- One cannot get a competitive ratio better than 1.17 by giving information such as the number of bins that OPT uses.
- One cannot beat 1.17 by keeping 2^{o(n)} solutions in the multi-solution model.

[Mikkelsen, 2016]

Theorem

On inputs of length n, to achieve a competitive ratio of c $(1 < c < 4 - 2\sqrt{2})$, a randomized c-competitive bin packing algorithm must read at least $\Omega(n)$ bits of advice.

[Renault, Rosén, van Stee, 2015] For a fixed competitive ratio, there exists an online algorithm which only needs linear advice:

They present an algorithm for online bin packing which is $(1+3\delta)$ -competitive (or asymptotically $(1+2\delta)$ -competitive), using $s = \frac{1}{\delta} \log \frac{2}{\delta^2} + \log \frac{2}{\delta^2} + 3$ bits of advice per request.

- Linear advice is needed to be *c*-competitive, *c* < 1.17.
 Linear advice is sufficient for any fixed *c*. There is a huge gap, though.
- (2 + o(1))n advice is sufficient to be (4/3 + ε)-competitive.
 Can one get a better ratio with so few bits?
- Counting the number of items of size in (1/2, 2/3] (O(log n) bits of advice) is sufficient to be 3/2-competitive. Are there other algorithms (based on advice) which could be practical?

Section 3

An advice complexity class, AOC

- Introduce an advice complexity class, Asymmetric Online Covering (AOC).
- Prove upper bound on advice complexity for all problems in AOC; advice complexity for competitive ratio *c*:

$$\frac{0.53n}{c} \leq \log_2\left(1 + \frac{(c-1)^{c-1}}{c^c}\right)n \leq \frac{n}{c}$$

• Many problems, including Vertex Cover, Independent Set, Set Cover, and Dominating Set are AOC-Complete.

Vertex Cover problem:

- Vertices of graph G = (V, E) arrive online, with edges to previous vertices.
- Vertices must be accepted or rejected.
- Accepted vertices, C ⊆ V, must be a vertex cover,
 i.e. ∀(u, v) ∈ E, either u or v ∈ C.
- Goal: Minimize |C|.

Vertex Cover problem:

- Vertices of graph G = (V, E) arrive online, with edges to previous vertices.
- Vertices must be accepted or rejected.
- Accepted vertices, C ⊆ V, must be a vertex cover,
 i.e. ∀(u, v) ∈ E, either u or v ∈ C.
- Goal: Minimize |C|.

Note: Due to the vertex-arrival model, the 2-approximation algorithm which takes both endpoints of an uncovered edge, cannot be used.

• Opt

ALG must reject vertex; otherwise it will be the last.

- (日)

э

Can achieve optimality with n advice bits.

- The competitive ratio for Vertex Cover is unbounded.
- Can achieve optimality with n advice bits.
- Can we achieve constant competitive ratio with small advice?

Can achieve optimality with n advice bits.

Can we achieve constant competitive ratio with small advice? No.

Can achieve optimality with n advice bits.

Can we achieve constant competitive ratio with small advice? No.

How many bits do we need to be *c*-competitive?

Let V_{OPT} be an optimal vertex cover. Let $k = |V_{\text{OPT}}|$. Let V_{OPT} be an optimal vertex cover. Let $k = |V_{\text{OPT}}|$.

 ALG selects vertices V_{ALG} s.t.

- $|V_{\mathrm{ALG}}| \leq ck$
- $V_{\mathrm{OPT}} \subseteq V_{\mathrm{Alg}}$

Let V_{OPT} be an optimal vertex cover. Let $k = |V_{\text{OPT}}|$.

 ALG selects vertices V_{ALG} s.t.

- $|V_{\mathrm{ALG}}| \leq ck$
- $V_{\mathrm{OPT}} \subseteq V_{\mathrm{Alg}}$

Oracle will specify which vertices to accept. How many *ck*-subsets are needed to cover all *k*-subsets?

Suppose
$$n = |V| = 6$$
, $c = 2$, and $|V_{\text{OPT}}| = 2$.
There are $\binom{6}{2} = 15$ possibilities for V_{OPT} .

Image: A mathematical states and a mathem

æ

Suppose
$$n = |V| = 6$$
, $c = 2$, and $|V_{\text{OPT}}| = 2$.
There are $\binom{6}{2} = 15$ possibilities for V_{OPT} .

These 3 subsets of size ck = 4 cover all 2-subsets of $\{1, 2, 3, 4, 5, 6\}$.

Suppose
$$n = |V| = 6$$
, $c = 2$, and $|V_{\text{OPT}}| = 2$.
There are $\binom{6}{2} = 15$ possibilities for V_{OPT} .

These 3 subsets of size ck = 4 cover all 2-subsets of $\{1, 2, 3, 4, 5, 6\}$.

2 advice bits are sufficient to specify one which covers $V_{\rm OPT}$.

Given a universe of size n, a collection of ck-subsets covering all k-subsets is an (n, ck, k)-covering design.

By the Pigeonhole Principle,

$$\frac{\binom{n}{k}}{\binom{ck}{k}} \leq C(n, ck, k)$$

[Erdös,Spencer, 1974]

$$\frac{\binom{n}{k}}{\binom{ck}{k}} \leq C(n, ck, k) \leq \frac{\binom{n}{k}}{\binom{ck}{k}} \left(1 + \ln \binom{ck}{k}\right)$$
Algorithm with advice for Vertex Cover

Oracle writes:

- values of n and $k O(\log n)$ bits
- index of a *ck*-subset, *C*, in an (n, ck, k)-covering design, s.t. $V_{\text{OPT}} \subseteq C$.

Algorithm with advice for Vertex Cover

Oracle writes:

- values of n and $k O(\log n)$ bits
- index of a *ck*-subset, *C*, in an (n, ck, k)-covering design, s.t. $V_{\text{OPT}} \subseteq C$.

ALG uses $C = \langle b_1, b_2, ..., b_n \rangle$:

• if $b_i = 1$, accept v_i

• if $b_i = 0$, reject v_i

Algorithm with advice for Vertex Cover

Oracle writes:

- values of n and $k O(\log n)$ bits
- index of a *ck*-subset, *C*, in an (n, ck, k)-covering design, s.t. $V_{\text{OPT}} \subseteq C$.

ALG uses
$$C = \langle b_1, b_2, ..., b_n \rangle$$
:

- if $b_i = 1$, accept v_i
- if $b_i = 0$, reject v_i

ALG is *c*-competitive. It reads at most $B = \log \max_{k:ck < n} C(n, ck, k) + O(\log n)$ advice bits.

$$B \leq \log\left(1+rac{(c-1)^{c-1}}{c^c}
ight)n+O(\log n)\leq rac{n}{c}+O(\log n)$$

It applies to accept/reject online problems: The online algorithm only accepts or rejects each request. Let the set of accepted requests be Y.

It applies to accept/reject online problems: The online algorithm only accepts or rejects each request. Let the set of accepted requests be Y.

Definition

An accept/reject minimization problem is in *Asymmetric Online Covering* (AOC) if

- **1** If Y is feasible, cost(Y) = |Y|. Otherwise $cost(Y) = \infty$.
- **2** A superset of a feasible solution is feasible.

Example problems in AOC:

Vertex Cover, Dominating Set, Set Cover, Cycle Finding.

It applies to accept/reject online problems: The online algorithm only accepts or rejects each request. Let the set of accepted requests be Y.

Definition

An accept/reject maximization problem is in *Asymmetric Online Covering* (AOC), if

1 If Y is feasible, cost(Y) = |Y|. Otherwise $cost(Y) = -\infty$.

A subset of a feasible solution is feasible.

Example problems in AOC:

Independent Set, Disjoint Path Allocation.

Definition

A problem in AOC is AOC-Complete if $\log \left(1 + \frac{(c-1)^{c-1}}{c^c}\right) n - O(\log n)$ advice bits are necessary to achieve a competitive ratio of c.

Example AOC-Complete problems: Vertex Cover, Dominating Set, Cycle Finding.

Joan Boyar

Online Algorithms with Advice

April/May 2019 56 / 93

Joan Boyar

Online Algorithms with Advice

April/May 2019 57 / 93

April/May 2019 58 / 93

Similar to string guessing.

< 47 ▶

э

Similar to string guessing.

Definition

The online problem, MINASG, is as follows:

- The input is a (secret) string $x \in \{0,1\}^n$.
- In round *i*, the algorithm answers $a_i \in \{0, 1\}$.
- The correct answer, x_i is then revealed (known history).
- If $x_i = 1$ and $a_i = 0$, the algorithm loses (cost ∞).
- The cost of a feasible solution is $\sum_{i=1}^{n} a_i$.
- The goal is to minimize this cost.

Results:

- MINASG is in AOC.
- MINASG is AOC-Complete:

$$\log\left(1+\frac{(c-1)^{c-1}}{c^c}\right)n-O(\log n)$$

advice bits are necessary to achieve a competitive ratio of c.

- $\bullet~\mathrm{Min}\mathsf{ASG}$ can be reduced to other problems.
 - Vertex Cover
 - Dominating Set
 - Set Cover
 - Cycle Finding

Recall:

Definition

An accept/reject minimization problem is in (AOC), Asymmetric Online Covering, if, for an online solution, Y:

1 If Y is feasible, cost(Y) = |Y|. Otherwise $cost(Y) = \infty$.

A superset of a feasible solution is feasible.

Recall:

Definition

An accept/reject minimization problem is in (AOC), Asymmetric Online Covering, if, for an online solution, Y:

1 If Y is feasible, cost(Y) = |Y|. Otherwise $cost(Y) = \infty$.

2 A superset of a feasible solution is feasible.

Interpret guessing $a_i = 1$ as accept and $a_i = 0$ as reject. A solution is the set of indices where $a_i = 1$.

Recall:

Definition

An accept/reject minimization problem is in (AOC), Asymmetric Online Covering, if, for an online solution, Y:

1 If Y is feasible, cost(Y) = |Y|. Otherwise $cost(Y) = \infty$.

2 A superset of a feasible solution is feasible.

Interpret guessing $a_i = 1$ as accept and $a_i = 0$ as reject. A solution is the set of indices where $a_i = 1$.

If a set is feasible, $(x_i = 1) \Rightarrow (a_i = 1)$, so any superset is feasible. Clearly, ASG is in AOC.

Theorem

A c-competitive algorithm, ALG, for MINASG must read at least b bits advice, where

$$b \geq \log_2\left(\max_{t:\lfloor ct \rfloor < n} \frac{\binom{n}{t}}{\binom{\lfloor ct \rfloor}{t}}\right) - O(\log_2 n) = \log\left(1 + \frac{(c-1)^{c-1}}{c^c}\right) n - O(\log n)$$

Pf sketch (by contradiction) Let $b = \max$ number of advice bits read, given n, c. Suppose $\exists t$, s.t. $\lfloor ct \rfloor < n, b < \log_2\left(\frac{\binom{n}{t}}{\binom{\lfloor ct \rfloor}{\binom{\lfloor ct \rfloor}{t}}}\right)$.

Theorem

A c-competitive algorithm, ${\rm ALG},$ for ${\rm MIN}ASG$ must read at least b bits advice, where

$$b \geq \log_2\left(\max_{t:\lfloor ct \rfloor < n} \frac{\binom{n}{t}}{\binom{\lfloor ct \rfloor}{t}}\right) - O(\log_2 n) = \log\left(1 + \frac{(c-1)^{c-1}}{c^c}\right) n - O(\log n)$$

Pf sketch (by contradiction) Let $b = \max$ number of advice bits read, given n, c. Suppose $\exists t, \text{ s.t. } \lfloor ct \rfloor < n, b < \log_2\left(\frac{\binom{n}{t}}{\binom{\lfloor ct \rfloor}{t}}\right)$. $I_{n,t} = \{\bar{x} \in \{0,1\}^n \mid t = \sum_{i=1}^n x_i\}$ $|I_{n,t}| = \binom{n}{t}$ Let the set of strings where the Oracle gives advice ϕ be $I_{n,t}^{\phi} \subseteq I_{n,t}$. Since $b < \log_2\left(\frac{\binom{n}{t}}{\binom{\lfloor ct \rfloor}{t}}\right)$, number of different advice strings $< \frac{\binom{n}{t}}{\binom{\lfloor ct \rfloor}{t}}$. By Pigeonhole Principle and $|I_{n,t}| = \binom{n}{t}$,

$$\exists \phi \text{ s.t. } |I_{n,t}^{\phi}| > \binom{\lfloor ct \rfloor}{t}$$

Since $b < \log_2\left(\frac{\binom{n}{t}}{\binom{\lfloor ct \rfloor}{t}}\right)$, number of different advice strings $< \frac{\binom{n}{t}}{\binom{\lfloor ct \rfloor}{t}}$. By Pigeonhole Principle and $|I_{n,t}| = \binom{n}{t}$,

$$\exists \phi \text{ s.t. } |I_{n,t}^{\phi}| > \binom{\lfloor ct \rfloor}{t}$$

Claim $\exists \bar{x} \in I_{n,t}^{\phi}$ where **ALG** answers 1 at least $\lfloor ct \rfloor + 1$ times.

Since $b < \log_2\left(\frac{\binom{n}{t}}{\binom{\lfloor ct \rfloor}{t}}\right)$, number of different advice strings $< \frac{\binom{n}{t}}{\binom{\lfloor ct \rfloor}{t}}$. By Pigeonhole Principle and $|I_{n,t}| = \binom{n}{t}$,

$$\exists \phi \text{ s.t. } |I_{n,t}^{\phi}| > \binom{\lfloor ct \rfloor}{t}$$

Claim $\exists \bar{x} \in I_{n,t}^{\phi}$ where ALG answers 1 at least $\lfloor ct \rfloor + 1$ times.

Given ALG and $I_{n,t}^{\phi}$, create an Adversary which forces this.

Consider strings in $I_{n,t}^{\phi}$ which are possible after Adversary has revealed some bits.

$$I_{\phi} = egin{array}{cccc} 001 & 001110 \ 001 & 001101 \ 001011 \ 0010111 \ 001 & 000111 \ 0010111 \ 010011 \end{array}$$

Image: A matrix and a matrix

э

$$I_{\phi} = egin{array}{ccc} 001 & 001110 \ 001 & 001101 \ 001011 \ 001 & 000111 \ 001 & 010011 \ 001011 \ 010011 \end{array}$$

ALG is guessing x_4 . It can answer $a_4 = 0$.

$$I_{\phi} = egin{array}{ccc} 001 & 001110 \ 001 & 001101 \ 001011 \ 001 & 000111 \ 001 & 010011 \ 001011 \ 010011 \end{array}$$

ALG is guessing x_4 . It can answer $a_4 = 0$.

Adversary has to reveal $x_4 = 0$.

$$I_{\phi} = egin{array}{cccc} 0010 & 01110 \ 0010 & 01101 \ 01010 & 01011 \ 0010 & 00111 \ 0010 & 10011 \end{array}$$

$$egin{array}{c|c} 0010&01110\0010&01101\0010&01011\0010&00111\00010&00111\00010&10011 \end{array}$$

ALG is guessing x_5 . It has to answer $a_5 = 1$. Otherwise Adversary chooses last string 001010011, and ALG has lost.

$$egin{array}{c|c} 0010&01110\0010&01101\0010&01011\0010&00111\00010&00111\00010&10011 \end{array}$$

ALG is guessing x_5 . It has to answer $a_5 = 1$. Otherwise Adversary chooses last string 001010011, and ALG has lost.

Suppose Adversary reveals $x_5 = 1$.

$$egin{array}{c|c} 0010&01110\0010&01101\01101\0010&01011\00010&00111\00010&00111\00010&10011 \end{array}$$

ALG is guessing x_5 . It has to answer $a_5 = 1$. Otherwise Adversary chooses last string 001010011, and ALG has lost.

Suppose Adversary reveals $x_5 = 1$. Then the new $I_{\phi} = \{001010011\}$. ALG makes no more errors.

$$egin{array}{c|c} 0010&01110\0010&01101\0010&01011\0010&00111\00010&00111\00010&10011 \end{array}$$

ALG is guessing x_5 . It has to answer $a_5 = 1$. Otherwise Adversary chooses last string 001010011, and ALG has lost.

$$egin{array}{c|c} 0010&01110\0010&01101\0010&01011\0010&00111\00010&00111\00010&10011 \end{array}$$

ALG is guessing x_5 . It has to answer $a_5 = 1$. Otherwise Adversary chooses last string 001010011, and ALG has lost.

Suppose Adversary reveals $x_5 = 0$.

$$egin{array}{c|c} 0010&01110\0010&01101\0010&01011\0010&00111\00010&00111\00010&10011 \end{array}$$

ALG is guessing x_5 . It has to answer $a_5 = 1$. Otherwise Adversary chooses last string 001010011, and ALG has lost.

Suppose Adversary reveals $x_5 = 0$. Then the new I_{ϕ} contains 4 strings. ALG must answer 1 for remaining bits. Round *i*:

Let $m = |I_{\phi}|$, h = number of 1's remaining in each string. Let $m_0 =$ number of strings in I_{ϕ} where $x_i = 0$. $m_1 = m - m_0$. Round *i*:

Let $m = |I_{\phi}|$, h = number of 1's remaining in each string. Let $m_0 =$ number of strings in I_{ϕ} where $x_i = 0$. $m_1 = m - m_0$.

If $m_0 = m$, Adversary answers $x_i = 0$. If $m_0 < m$, look at minimum number of columns with ones:

• Let
$$d_1 = \min\{d' \mid m_1 \le \binom{d'}{h-1}\}$$

• Let
$$d = \min\{d' \mid m \leq \binom{d'}{h}\}$$

• If $d_1 + 1 \ge d$ then

Adversary answers $x_i = 1$.

Otherwise

Adversary answers $x_i = 0$.

ASG is AOC-Complete, cont.

$$egin{array}{c|c} 0010 & 01110 \ 0010 & 01101 \ 0010 & 01011 \ 0010 & 00111 \ 0010 & 10011 \end{array}$$

Note: n = 9, t = 4. $\langle x_1, x_2, x_3, x_4 \rangle = \langle 0, 0, 1, 0 \rangle$ already known.

ALG is guessing x_5 . It has to answer $a_5 = 1$.

$$egin{array}{c|c} 0010&01110\0010&01101\0010&01011\0010&00111\00010&00111\00010&10011 \end{array}$$

ALG is guessing x_5 . It has to answer $a_5 = 1$.

Note:
$$m = 5, h = 3, m_0 = 4, m_1 = 1.$$

 $d_1 = \min\{d' \mid m_1 \le {d' \choose h-1}\} = \min\{d' \mid 1 \le {d' \choose 2}\} = 2$
Let $d = \min\{d' \mid m \le {d' \choose h}\} = \min\{d' \mid 5 \le {d' \choose 3}\} = 5$

These are the number of remaining columns where ALG is forced to answer $a_j = 1$ (for d_1 , not counting the current column).
Using this adversary, the total number of columns (indices) where ALG needs to answer 1 does not decrease.

Using this adversary, the total number of columns (indices) where ALG needs to answer 1 does not decrease.

Let L(m, h) denote the minimum cost Adversary can force. $L(m, h) \ge \min\{d \mid m \le {d \choose h}\}.$ Initially, $m > {\lfloor ct \rfloor \choose t}$ and h = t, so the minimum cost is at least $\lfloor ct \rfloor + 1$. Contradiction

Advice bits needed to obtain competitive ratio c

Recall that Vertex Cover is in AOC.

To show completeness, we reduce from Asymmetric String Guessing:

$$\begin{aligned} x = \langle x_1, x_2, ..., x_n \rangle & \longrightarrow \quad \begin{array}{l} V & = \quad \{v_1, v_2, ..., v_n\}, \\ E & = \quad \{(v_i, v_j) \mid x_i = 1 \text{ and } i < j\}. \end{aligned}$$

Recall that Vertex Cover is in AOC.

To show completeness, we reduce from Asymmetric String Guessing:

$$\begin{aligned} x = \langle x_1, x_2, ..., x_n \rangle & \longrightarrow \quad V &= \{v_1, v_2, ..., v_n\}, \\ E &= \{(v_i, v_j) \mid x_i = 1 \text{ and } i < j\}. \end{aligned}$$

- Suppose we have a *c*-competitive algorithm, ALG, and an oracle, *O*, for Vertex Cover.
- Construct a *c*-competitive algorithm, ALG', and an oracle, *O*', for ASG.

$$\begin{aligned} x = \langle x_1, x_2, ..., x_n \rangle & \longrightarrow \quad \begin{array}{l} V & = \quad \{v_1, v_2, ..., v_n\}, \\ E & = \quad \{(v_i, v_j) \mid x_i = 1 \text{ and } i < j\}. \end{aligned}$$

If ALG accepts all 1-vertices, ALG' answers 1 iff ALG accepts.

Since ALG is *c*-competitive, ALG' is too.

$$\begin{aligned} x = \langle x_1, x_2, ..., x_n \rangle & \longrightarrow \quad V &= \{v_1, v_2, ..., v_n\}, \\ E &= \{(v_i, v_j) \mid x_i = 1 \text{ and } i < j\}. \end{aligned}$$

ALG' answers $\langle a_1, a_2, a_3, a_4, a_5, a_6 \rangle = \langle 0, 1, 1, 0, 1, 1 \rangle$.

If ALG rejects some 1-vertex, let v_i be the first it rejects.

If ALG rejects some 1-vertex, let v_i be the first it rejects.

Oracle, O', specifies index *i* and index *j* of some 0-vertex accepted.

If ALG rejects some 1-vertex, let v_i be the first it rejects.

Oracle, O', specifies index *i* and index *j* of some 0-vertex accepted.

For index *i*, ALG' answers 1. For index *j*, ALG' answers 0. For all other indices, ALG' answers 1 iff ALG accepts.

ALG' answers 1 as many times as ALG accepts. Since ALG is c-competitive, ALG' is too.

• Examples of AOC-Complete problems:

- Vertex Cover
- Dominating Set
- Independent Set
- Disjoint Path Allocation
- Set Cover
- There are problems in AOC, which are not complete:
 - Unit-Weight Knapsack
 - Maximum Matching

- Independent Set [Halldórsson,Iwama,Miyazaki,Taketomi, 2009]
 - Upper bound n/c
 - Lower bound n/2c
- Disjoint Path Allocation [Böckenhauer,Komm,Královič,Královič,Mömke, 2009]
 - Upper bound of $O\left(\frac{n\log_2 c}{c}\right)$
 - Lower bound of n/2c
- All other problems: No previous results
- All ASG and AOC results [B.,Favrholdt,Kudahl,Mikkelsen, 2017]

Section 4

Randomization and list access

- Requests: for items in a list.
- Cost of accessing an item in index *i* is *i*.

- Requests: for items in a list.
- Cost of accessing an item in index *i* is *i*.

< d b b d c a c >
cost: 4

- Requests: for items in a list.
- Cost of accessing an item in index *i* is *i*.

< d b b d c a c > cost: 4+2

- Requests: for items in a list.
- Cost of accessing an item in index *i* is *i*.

< d b b d c a c >cost: 4+2+2

- Requests: for items in a list.
- Cost of accessing an item in index *i* is *i*.

- Requests: for items in a list.
- Cost of accessing an item in index *i* is *i*.

< d b b d c a c >cost: 4+2+2+4+3

- Requests: for items in a list.
- Cost of accessing an item in index *i* is *i*.

- Requests: for items in a list.
- Cost of accessing an item in index *i* is *i*.

• Update the list to adjust it to the patterns in the list.

- Update the list to adjust it to the patterns in the list.
 - Free exchanges: Move a requested item closer to the front. No cost.

- Update the list to adjust it to the patterns in the list.
 - Free exchanges: Move a requested item closer to the front. No cost.
 - Paid exchanges: Swap positions of two consecutive items. Cost 1.

- After each access, move the requested item to the front.
 - It only uses free exchanges.

cost: 4

- After each access, move the requested item to the front.
 - It only uses free exchanges.

```
< d b b d c a c >
cost: 4
```


- After each access, move the requested item to the front.
 - It only uses free exchanges.

$$<$$
 d b d c a c $>$

cost: 4+3

- After each access, move the requested item to the front.
 - It only uses free exchanges.

```
< d b b d c a c >
cost: 4+3
```


- After each access, move the requested item to the front.
 - It only uses free exchanges.

```
< d b b d c a c >
cost: 4+3+1
```


- After each access, move the requested item to the front.
 - It only uses free exchanges.

cost: 4+3+1+2

- After each access, move the requested item to the front.
 - It only uses free exchanges.

cost: 4+3+1+2+4

- After each access, move the requested item to the front.
 - It only uses free exchanges.

cost: 4+3+1+2+4+4

- After each access, move the requested item to the front.
 - It only uses free exchanges.

cost: 4+3+1+2+4+4+2

- After each access, move the requested item to the front.
 - It only uses free exchanges.

• Total cost: 20.

TIMESTAMP (TS)

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
 - Do nothing if such an item y does not exist.
 - It only uses free exchanges.

cost: 4

TIMESTAMP (TS)

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
 - Do nothing if such an item y does not exist.
 - It only uses free exchanges.

< d b d c a c >

cost: 4+2

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
 - Do nothing if such an item y does not exist.
 - It only uses free exchanges.

cost: 4+2+2

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
 - Do nothing if such an item y does not exist.
 - It only uses free exchanges.

< d b b d c a c >

cost: 4+2+2

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
 - Do nothing if such an item y does not exist.
 - It only uses free exchanges.

$$<$$
 d b b d c a c $>$

cost: 4+2+2+4

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
 - Do nothing if such an item y does not exist.
 - It only uses free exchanges.

$$< d b b d c a c >$$

cost: $4+2+2+4$

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
 - Do nothing if such an item y does not exist.
 - It only uses free exchanges.

$$< d b b d c a c >$$

cost: $4+2+2+4+4$

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
 - Do nothing if such an item y does not exist.
 - It only uses free exchanges.

. (

$$< d b b d c a c >$$

cost: $4+2+2+4+4+3$

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
 - Do nothing if such an item y does not exist.
 - It only uses free exchanges.

< d b b d c a c >

cost: 4+2+2+4+4+3+4

- After an access to x, move x to the front of the first item y which has been requested at most once since the last access to x.
 - Do nothing if such an item y does not exist.
 - It only uses free exchanges.

< d b b d c a c >cost: 4+2+2+4+4+3+4

• Total cost: 23.

- Competitive ratio of MTF for a list of length / is $2 \frac{2}{l+1}$ [Sleator, Tarjan, 1985; Irani, 1991].
- Competitive ratio of TS is $2 \frac{1}{7}$ [Albers, 1994].
- No deterministic online algorithm can have a competitive ratio better than $2 \frac{2}{l+1}$ [Irani, 1991].

[B.,Kamali,Larsen,López-Ortiz, 2016]

- How many bits of advice are sufficient to perform strictly better than any online algorithm?
 - We show 2 bits of advice are sufficient.

[B.,Kamali,Larsen,López-Ortiz, 2016]

- How many bits of advice are sufficient to perform strictly better than any online algorithm?
 - We show 2 bits of advice are sufficient.
- We consider three classical algorithms and show that for any sequence, at least one of them has a performance ratio of at most 1.6:
 - TS (TIMESTAMP)
 - MTFE (Move-To-Front on Even accesses)
 - MTFO (Move-To-Front on Odd accesses)

MTF-every-other-access

MTFE and MTFO are the MTF-every-other-access (MTF2) algorithms.

MTFE and MTFO are the MTF-every-other-access (MTF2) algorithms.

What is the competitive ratio of $M_{TF}2?$

MTFE and MTFO are the MTF-every-other-access (MTF2) algorithms.

What is the competitive ratio of MTF2?

Theorem

MTF2 algorithms are 2.5-competitive.

In an unpublished manuscript, 2003, Ansgar Grüne proves a lower bound of $\frac{7}{3}$ and claims an upper bound of 2.5. We confirm that claim and raise the lower bound.

Joan Boyar

MTFE and MTFO are the MTF-every-other-access (MTF2) algorithms.

What is the competitive ratio of $M_{TF}2?$

Theorem

MTF2 algorithms are 2.5-competitive.

In an unpublished manuscript, 2003, Ansgar Grüne proves a lower bound of $\frac{7}{3}$ and claims an upper bound of 2.5. We confirm that claim and raise the lower bound.

Consider a list of ℓ items, initially ordered as $[a_1, a_2, \ldots, a_\ell]$. Consider the following sequence of requests:

$$\sigma_{m} = \left\langle (a_{1}, a_{2}, ..., a_{\ell}, a_{1}^{3}, a_{2}^{3}, ..., a_{\ell}^{3}, a_{\ell}, a_{\ell-1}, ..., a_{1}, a_{\ell}^{3}, a_{\ell-1}^{3}, ..., a_{1}^{3})^{m} \right\rangle$$

We show that asymptotically, $\lim_{m\to\infty} MTFO(\sigma_m) = 2.5OPT(\sigma_m)$.

• A variety of techniques are used.

- ∢ /⊐ >

- A variety of techniques are used.
- Partial cost model:
 - The cost of accessing position i is i 1.
 - The upper bounds hold in the full cost model.

- A variety of techniques are used.
- Partial cost model:
 - The cost of accessing position i is i 1.
 - The upper bounds hold in the full cost model.
- These algorithms have pair-wise property:
 - The relative order of two items in the lists maintained by the algorithms only depends on the requests to those items.
 - To prove an upper-bound for competitive ratio, it is sufficient to study the algorithms for lists of length 2.

- A variety of techniques are used.
- Partial cost model:
 - The cost of accessing position i is i 1.
 - The upper bounds hold in the full cost model.
- These algorithms have pair-wise property:
 - The relative order of two items in the lists maintained by the algorithms only depends on the requests to those items.
 - To prove an upper-bound for competitive ratio, it is sufficient to study the algorithms for lists of length 2.
- Phase-partitioning technique:
 - Compare the costs of the algorithms with OPT for each projected sequence in *phases*.
 - Each phase ends with two consecutive requests to the same item.
 - We need to have the same phases for all algorithms.

Phase-partitioning technique:

- Compare the costs of the algorithms with OPT for each projected sequence in *phases*.
- Each phase ends with two consecutive requests to the same item.

Phase-partitioning technique:

- Compare the costs of the algorithms with OPT for each projected sequence in *phases*.
- Each phase ends with two consecutive requests to the same item.

Type 1 phase: At start:
$$L = [x, y]$$
.
ALGMIN $(\sigma) = \min{\{MTFO(\sigma), MTFE\}(\sigma)\}}$
ALGMAX $(\sigma) = \max{\{MTFO(\sigma), MTFE\}(\sigma)\}}$

The costs are in the partial cost model.

Phase	AlgMin	AlgMax	TS	Sum (ALGMIN + ALGMAX + TS)	Opt'	$\frac{Sum}{OPT'}$
x ^j yy	1	2	2	5	1	5
$x^{j}(yx)^{2i}yy$	$\leq 3i+1$	$\leq 3i + 2$	$2 \times 2i = 4i$	$\leq 10i + 3$	2i + 1	< 5
$x^{j}(yx)^{2i-2}yxyy$	\leq 3(i – 1) + 1	\leq 3(i – 1) + 1	$2 \times (2i - 1)$	\leq 6(<i>i</i> -1)+2+4	2 <i>i</i>	< 5
	$+ ALGMIN(\langle xyy \rangle)$	$+ \operatorname{AlgMax}(\langle xyy \rangle)$	= 4i - 2	+(4i-2)=10i-2		
$x^{j}(yx)^{2i}x$	$\leq 3i$	$\leq 3i + 1$	$2 \times 2i - 1$	$\leq (6i+1)+(4i-1)$	2 <i>i</i>	≤ 5
			= 4i - 1	= 10i		
$x^{j}(yx)^{2i-2}yxx$	$\leq 3(i-1)$	$\leq 3(i-1)$	$2 \times (2i - 1) - 1$	\leq 6(<i>i</i> - 1) + 4	2i - 1	≤ 5
	$+ \operatorname{AlgMin}(\langle yxx \rangle)$	$+ ALGMAX(\langle yxx \rangle)$	= 4i - 3	+(4i-3) = 10i-5	_	

For any sequence σ we have $TS(\sigma) + MTFO(\sigma) + MTFE(\sigma) \le 5 OPT(\sigma)$

< 47 ▶

э

For any sequence σ we have $TS(\sigma) + MTFO(\sigma) + MTFE(\sigma) \le 5 OPT(\sigma)$

Since at least one must do as well as the average:

For any sequence σ we have $TS(\sigma) + MTFO(\sigma) + MTFE(\sigma) \le 5 OPT(\sigma)$

Since at least one must do as well as the average:

Theorem

There is an algorithm that receives two bits of advice and achieves a competitive ratio of $1.\overline{6}$.

For any sequence σ we have $TS(\sigma) + MTFO(\sigma) + MTFE(\sigma) \le 5 OPT(\sigma)$

Since at least one must do as well as the average:

Theorem

There is an algorithm that receives two bits of advice and achieves a competitive ratio of $1.\overline{6}$.

- This can be regarded as the best existing (deterministic) approximation algorithm for the offline problem.
- If list access is used for file compression, adding two bits at the beginning of the file can guarantee better compression.

- The randomized algorithm which chooses each of TS, MTFE, and MTFO with probability 1/3 is $1.\overline{6}$ -competitive.
- If the number of algorithms was 2^k for some k, there would be a randomized algorithm using only k bits of randomness.
- A *c*-competitive randomized algorithm using *b*(*n*) bits of randomness implies a *c*-competitive algorithm using at most *b*(*n*) bits of advice.
- If there is provably no algorithm which is *c*-competitive using only b(n) bits of advice, then there is no *c*-competitive randomized algorithm using only b(n) bits of randomness.

Randomization and advice

- A *c*-competitive randomized algorithm using *b*(*n*) bits of randomness implies a *c*-competitive algorithm using at most *b*(*n*) bits of advice.
- [Böckenhauer,Komm,Královic,Královic, 2011]
 A *c*-competitive randomized algorithm implies a (*c* + *ϵ*)-competitive algorithm using at most

$$b(n) = \lceil \log n \rceil + 2 \lceil \log \lceil \log n \rceil \rceil + \log \left(\left\lfloor \frac{\log(m(n))}{\log(1 + \epsilon)} \right\rfloor + 1 \right)$$

bits of advice.

- A *c*-competitive randomized algorithm using *b*(*n*) bits of randomness implies a *c*-competitive algorithm using at most *b*(*n*) bits of advice.
- [Böckenhauer,Komm,Královic,Královic, 2011]
 A *c*-competitive randomized algorithm implies a (*c* + *ϵ*)-competitive algorithm using at most

$$b(n) = \lceil \log n \rceil + 2 \lceil \log \lceil \log n \rceil \rceil + \log \left(\left\lfloor \frac{\log(m(n))}{\log(1 + \epsilon)} \right\rfloor + 1 \right)$$

bits of advice. The number of different inputs of length n is m(n). Holds for any $\epsilon > 0$.

- A *c*-competitive randomized algorithm using *b*(*n*) bits of randomness implies a *c*-competitive algorithm using at most *b*(*n*) bits of advice.
- [Böckenhauer,Komm,Královic,Královic, 2011]
 A *c*-competitive randomized algorithm implies a (*c* + *ϵ*)-competitive algorithm using at most

$$b(n) = \lceil \log n \rceil + 2 \lceil \log \lceil \log n \rceil \rceil + \log \left(\left\lfloor \frac{\log(m(n))}{\log(1 + \epsilon)} \right\rfloor + 1 \right)$$

bits of advice.

The number of different inputs of length *n* is m(n). Holds for any $\epsilon > 0$.

• Now proving that any algorithm which is *c*-competitive requires enough advice, shows there is no *c*'-competitive randomized algorithm.

The randomized k-server conjecture claims there is a randomized algorithm for the k-server problem which is $\Theta(\log k)$ -competitive.

The randomized *k*-server conjecture claims there is a randomized algorithm for the *k*-server problem which is $\Theta(\log k)$ -competitive.

[Böckenhauer,Komm,Královic,Královic, 2011] If every online algorithm with advice for the *k*-server problem needs to use at least $\omega(\log n)$ advice bits to be $O(\log k)$ -competitive, the randomized *k*-server conjecture does not hold.

Section 5

Concluding remarks

- (日)

э

- Lower bounds on advice complexity can:
 - Rule out possibilities for certain semi-online approaches.
 - Rule out possibilities for randomized approaches.

- Lower bounds on advice complexity can:
 - Rule out possibilities for certain semi-online approaches.
 - Rule out possibilities for randomized approaches.
- Upper bounds can be either practical or purely theoretical.

- Lower bounds on advice complexity can:
 - Rule out possibilities for certain semi-online approaches.
 - Rule out possibilities for randomized approaches.
- Upper bounds can be either practical or purely theoretical.
- There is a start of a complexity theory, based on string guessing problems.

Thank you for your attention.

Image: A matrix

æ