
Online Algorithms with Advice

Joan Boyar, U. of Southern Denmark

April/May 2019

Joan Boyar Online Algorithms with Advice April/May 2019 1 / 93

Overview

1 The advice model

2 The bin packing problem
Bin packing background
Advice complexity results for bin packing

3 An advice complexity class, AOC
Vertex Cover
A complexity class for online problems
The class AOC
Asymmetric string guessing
Vertex Cover is AOC-Complete

4 Randomization and list access
Problem statement
Online algorithms
Breaking the lower bound
Randomization and advice

5 Concluding remarks

Joan Boyar Online Algorithms with Advice April/May 2019 2 / 93

Section 1

The advice model

Joan Boyar Online Algorithms with Advice April/May 2019 3 / 93

Standard online algorithm model

Adversary

Online
algorithmInput I = 〈x1, ..., xn〉

��
��*

- Output O = 〈y1, ..., yn〉

Joan Boyar Online Algorithms with Advice April/May 2019 4 / 93

Competitive Analysis

Compare the performance of an online algorithm, Alg, with an optimal
offline algorithm, Opt:

Opt knows the whole sequence in the beginning.

Competitive ratio of Alg is the maximum ratio between the cost of Alg
and Opt for serving the same sequence (minimization problems).

Joan Boyar Online Algorithms with Advice April/May 2019 5 / 93

Advice from an Oracle

Adversary

Oracle

Online
algorithmInput I = 〈x1, ..., xn〉

��
��*

-

?

Binary advice tape φ

b1 b2 b3 b4 b5 · · ·
6

- Output O = 〈y1, ..., yn〉

Joan Boyar Online Algorithms with Advice April/May 2019 6 / 93

Advice from an Oracle

[Böckenhauer,Komm,Královič,Královič,Mömke, 2009]

Algorithms get b(n) bits of advice for sequences of length n:

The advice is generated by an offline oracle.

The advice is written on a tape and can be accessed by the online
algorithm at any time.

It can be seen as nondeterministically specifying one of 2b(n) algorithms.

There are other advice models for bin packing

Original: [Dobrev, Královič, Markou, 2009]
Advice with request: [Fraigniaud,Korman,Rosén, 2011]

Joan Boyar Online Algorithms with Advice April/May 2019 7 / 93

Advice from an Oracle

[Böckenhauer,Komm,Královič,Královič,Mömke, 2009]

Algorithms get b(n) bits of advice for sequences of length n:

The advice is generated by an offline oracle.

The advice is written on a tape and can be accessed by the online
algorithm at any time.

It can be seen as nondeterministically specifying one of 2b(n) algorithms.

There are other advice models for bin packing

Original: [Dobrev, Královič, Markou, 2009]
Advice with request: [Fraigniaud,Korman,Rosén, 2011]

Joan Boyar Online Algorithms with Advice April/May 2019 7 / 93

Advice from an Oracle

[Böckenhauer,Komm,Královič,Královič,Mömke, 2009]

Algorithms get b(n) bits of advice for sequences of length n:

The advice is generated by an offline oracle.

The advice is written on a tape and can be accessed by the online
algorithm at any time.

It can be seen as nondeterministically specifying one of 2b(n) algorithms.

There are other advice models for bin packing

Original: [Dobrev, Královič, Markou, 2009]
Advice with request: [Fraigniaud,Korman,Rosén, 2011]

Joan Boyar Online Algorithms with Advice April/May 2019 7 / 93

Advice from an Oracle

[Böckenhauer,Komm,Královič,Královič,Mömke, 2009]

Algorithms get b(n) bits of advice for sequences of length n:

The advice is generated by an offline oracle.

The advice is written on a tape and can be accessed by the online
algorithm at any time.

It can be seen as nondeterministically specifying one of 2b(n) algorithms.

There are other advice models for bin packing

Original: [Dobrev, Královič, Markou, 2009]
Advice with request: [Fraigniaud,Korman,Rosén, 2011]

Joan Boyar Online Algorithms with Advice April/May 2019 7 / 93

Advice from an Oracle

[Böckenhauer,Komm,Královič,Královič,Mömke, 2009]

Algorithms get b(n) bits of advice for sequences of length n:

The advice is generated by an offline oracle.

The advice is written on a tape and can be accessed by the online
algorithm at any time.

It can be seen as nondeterministically specifying one of 2b(n) algorithms.

There are other advice models for bin packing

Original: [Dobrev, Královič, Markou, 2009]
Advice with request: [Fraigniaud,Korman,Rosén, 2011]

Joan Boyar Online Algorithms with Advice April/May 2019 7 / 93

What is advice complexity?

Advice complexity is:

a measure of how much knowledge of the future an online algorithm
needs to achieve a certain competitive ratio

a problem-independent and quantitative approach

a means of modelling keeping parallel solutions, multi-solution model

sometimes useful in practice

Joan Boyar Online Algorithms with Advice April/May 2019 8 / 93

What is advice complexity?

Advice complexity is:

a measure of how much knowledge of the future an online algorithm
needs to achieve a certain competitive ratio

a problem-independent and quantitative approach

a means of modelling keeping parallel solutions, multi-solution model

sometimes useful in practice

Joan Boyar Online Algorithms with Advice April/May 2019 8 / 93

What is advice complexity?

Advice complexity is:

a measure of how much knowledge of the future an online algorithm
needs to achieve a certain competitive ratio

a problem-independent and quantitative approach

a means of modelling keeping parallel solutions, multi-solution model

sometimes useful in practice

Joan Boyar Online Algorithms with Advice April/May 2019 8 / 93

What is advice complexity?

Advice complexity is:

a measure of how much knowledge of the future an online algorithm
needs to achieve a certain competitive ratio

a problem-independent and quantitative approach

a means of modelling keeping parallel solutions, multi-solution model

sometimes useful in practice

Joan Boyar Online Algorithms with Advice April/May 2019 8 / 93

Relevant Questions

For a sequence of fixed length,

How many bits of advice are required (sufficient) to achieve an
optimal solution?

How many bits of advice are sufficient to outperform all online
algorithms?

How good can the competitive ratio be with advice of linear/sublinear
size?

Is there useful advice one could reasonably get (without knowing Opt)?

Joan Boyar Online Algorithms with Advice April/May 2019 9 / 93

Relevant Questions

For a sequence of fixed length,

How many bits of advice are required (sufficient) to achieve an
optimal solution?

How many bits of advice are sufficient to outperform all online
algorithms?

How good can the competitive ratio be with advice of linear/sublinear
size?

Is there useful advice one could reasonably get (without knowing Opt)?

Joan Boyar Online Algorithms with Advice April/May 2019 9 / 93

Relevant Questions

For a sequence of fixed length,

How many bits of advice are required (sufficient) to achieve an
optimal solution?

How many bits of advice are sufficient to outperform all online
algorithms?

How good can the competitive ratio be with advice of linear/sublinear
size?

Is there useful advice one could reasonably get (without knowing Opt)?

Joan Boyar Online Algorithms with Advice April/May 2019 9 / 93

Relevant Questions

For a sequence of fixed length,

How many bits of advice are required (sufficient) to achieve an
optimal solution?

How many bits of advice are sufficient to outperform all online
algorithms?

How good can the competitive ratio be with advice of linear/sublinear
size?

Is there useful advice one could reasonably get (without knowing Opt)?

Joan Boyar Online Algorithms with Advice April/May 2019 9 / 93

Optimality example: Ski rental

Rent ski equipment for one day: cost $ 1.
Buying ski equipment: cost $ d .
Buying once is sufficient.

Input: List, L, of dates when you go skiing.
Output: Whether you rent, buy, or do nothing.
“Do nothing” is only possible if you have previously bought.
Goal: Minimize cost

Optimal algorithm: Rent until the dth date, if that comes. Then buy.
Competitive ratio = 2− 1/d .

[Dobrev,Královič,Pardubská, 2009]
The advice complexity for optimality is 1 bit:

b =

{
0 if |L| < d
1 if |L| ≥ d

Joan Boyar Online Algorithms with Advice April/May 2019 10 / 93

Optimality example: Ski rental

Rent ski equipment for one day: cost $ 1.
Buying ski equipment: cost $ d .
Buying once is sufficient.

Input: List, L, of dates when you go skiing.
Output: Whether you rent, buy, or do nothing.
“Do nothing” is only possible if you have previously bought.
Goal: Minimize cost

Optimal algorithm: Rent until the dth date, if that comes. Then buy.
Competitive ratio = 2− 1/d .

[Dobrev,Královič,Pardubská, 2009]
The advice complexity for optimality is 1 bit:

b =

{
0 if |L| < d
1 if |L| ≥ d

Joan Boyar Online Algorithms with Advice April/May 2019 10 / 93

Optimality example: Ski rental

Rent ski equipment for one day: cost $ 1.
Buying ski equipment: cost $ d .
Buying once is sufficient.

Input: List, L, of dates when you go skiing.
Output: Whether you rent, buy, or do nothing.
“Do nothing” is only possible if you have previously bought.
Goal: Minimize cost

Optimal algorithm: Rent until the dth date, if that comes. Then buy.
Competitive ratio = 2− 1/d .

[Dobrev,Královič,Pardubská, 2009]
The advice complexity for optimality is 1 bit:

b =

{
0 if |L| < d
1 if |L| ≥ d

Joan Boyar Online Algorithms with Advice April/May 2019 10 / 93

Optimality example: Ski rental

Rent ski equipment for one day: cost $ 1.
Buying ski equipment: cost $ d .
Buying once is sufficient.

Input: List, L, of dates when you go skiing.
Output: Whether you rent, buy, or do nothing.
“Do nothing” is only possible if you have previously bought.
Goal: Minimize cost

Optimal algorithm: Rent until the dth date, if that comes. Then buy.
Competitive ratio = 2− 1/d .

[Dobrev,Královič,Pardubská, 2009]
The advice complexity for optimality is 1 bit:

b =

{
0 if |L| < d
1 if |L| ≥ d

Joan Boyar Online Algorithms with Advice April/May 2019 10 / 93

Optimality example: Paging

Cache: k pages
Slow memory: N > k pages

Request sequence: Sequence of page numbers 〈r1, ..., rn〉
Fault: Page requested not in cache
Cost: 1 per fault to bring page into cache
Goal: Minimize cost

Fact: No deterministic algorithm is better than k-competitive.

[Dobrev,Královič,Pardubská, 2009]
[Böckenhauer,Komm,Královič,Královič,Mömke, 2009]
Asymptotically, for large k , the advice complexity for optimality is 1 bit
per request:

bi =

{
0 if Opt would have ri in cache next time it is requested
1 otherwise

Joan Boyar Online Algorithms with Advice April/May 2019 11 / 93

Optimality example: Paging

Cache: k pages
Slow memory: N > k pages

Request sequence: Sequence of page numbers 〈r1, ..., rn〉
Fault: Page requested not in cache
Cost: 1 per fault to bring page into cache
Goal: Minimize cost

Fact: No deterministic algorithm is better than k-competitive.

[Dobrev,Královič,Pardubská, 2009]
[Böckenhauer,Komm,Královič,Královič,Mömke, 2009]
Asymptotically, for large k , the advice complexity for optimality is 1 bit
per request:

bi =

{
0 if Opt would have ri in cache next time it is requested
1 otherwise

Joan Boyar Online Algorithms with Advice April/May 2019 11 / 93

Optimality example: Paging

Cache: k pages
Slow memory: N > k pages

Request sequence: Sequence of page numbers 〈r1, ..., rn〉
Fault: Page requested not in cache
Cost: 1 per fault to bring page into cache
Goal: Minimize cost

Fact: No deterministic algorithm is better than k-competitive.

[Dobrev,Královič,Pardubská, 2009]
[Böckenhauer,Komm,Královič,Královič,Mömke, 2009]
Asymptotically, for large k , the advice complexity for optimality is 1 bit
per request:

bi =

{
0 if Opt would have ri in cache next time it is requested
1 otherwise

Joan Boyar Online Algorithms with Advice April/May 2019 11 / 93

Optimality example: Paging

Cache: k pages
Slow memory: N > k pages

Request sequence: Sequence of page numbers 〈r1, ..., rn〉
Fault: Page requested not in cache
Cost: 1 per fault to bring page into cache
Goal: Minimize cost

Fact: No deterministic algorithm is better than k-competitive.

[Dobrev,Královič,Pardubská, 2009]
[Böckenhauer,Komm,Královič,Královič,Mömke, 2009]
Asymptotically, for large k , the advice complexity for optimality is 1 bit
per request:

bi =

{
0 if Opt would have ri in cache next time it is requested
1 otherwise

Joan Boyar Online Algorithms with Advice April/May 2019 11 / 93

Competitive ratio example: Simple knapsack problem

Simple knapsack problem:

Knapsack of size 1

Items of size ∈ (0, 1] arrive online

An item must be accepted or rejected

Goal maximize total size accepted (total size ≤ 1)

Joan Boyar Online Algorithms with Advice April/May 2019 12 / 93

Competitive ratio example: Simple knapsack problem

1

Online ALG Opt

ε

Item

1

Item

Opt(I)
Alg(I) unbounded

Joan Boyar Online Algorithms with Advice April/May 2019 13 / 93

Competitive ratio example: Simple knapsack problem

1

Online ALG Opt

ε

Item

1

Item

Opt(I)
Alg(I) unbounded

Joan Boyar Online Algorithms with Advice April/May 2019 13 / 93

Competitive ratio example: Simple knapsack problem

1

Online ALG Opt

ε

Item

1

Item

Opt(I)
Alg(I) unbounded

Joan Boyar Online Algorithms with Advice April/May 2019 13 / 93

Competitive ratio example: Simple knapsack problem

1

Online ALG Opt

ε

Item

No more items
Opt(I)
Alg(I) unbounded

Joan Boyar Online Algorithms with Advice April/May 2019 14 / 93

Competitive ratio example: Simple knapsack problem

1

Online ALG Opt

ε

Item

No more items

Opt(I)
Alg(I) unbounded

Joan Boyar Online Algorithms with Advice April/May 2019 14 / 93

Competitive ratio example: Simple knapsack problem

1

Online ALG Opt

ε

Item

No more items

Opt(I)
Alg(I) unbounded

Joan Boyar Online Algorithms with Advice April/May 2019 14 / 93

Competitive ratio example: Simple knapsack problem

Without advice: unbounded competitive ratio.
[Marchetti-Spaccamela,Vercellis, 1995]

With advice: 2-competitive algorithm with 1 advice bit.
[Böckenhauer,Komm,Královič,Rossmanith, 2014]

Algorithm:

If b = 0, use Greedy.

If b = 1, wait for item of size > 1
2 .

Fact: If there is no item of size > 1
2 , Greedy will accept at least

min{Opt(I), 1/2}

(in order to reject anything, it must have already accepted 1
2).

Joan Boyar Online Algorithms with Advice April/May 2019 15 / 93

Competitive ratio example: Simple knapsack problem

Without advice: unbounded competitive ratio.
[Marchetti-Spaccamela,Vercellis, 1995]

With advice: 2-competitive algorithm with 1 advice bit.
[Böckenhauer,Komm,Královič,Rossmanith, 2014]

Algorithm:

If b = 0, use Greedy.

If b = 1, wait for item of size > 1
2 .

Fact: If there is no item of size > 1
2 , Greedy will accept at least

min{Opt(I), 1/2}

(in order to reject anything, it must have already accepted 1
2).

Joan Boyar Online Algorithms with Advice April/May 2019 15 / 93

Competitive ratio example: Simple knapsack problem

Without advice: unbounded competitive ratio.
[Marchetti-Spaccamela,Vercellis, 1995]

With advice: 2-competitive algorithm with 1 advice bit.
[Böckenhauer,Komm,Královič,Rossmanith, 2014]

Algorithm:

If b = 0, use Greedy.

If b = 1, wait for item of size > 1
2 .

Fact: If there is no item of size > 1
2 , Greedy will accept at least

min{Opt(I), 1/2}

(in order to reject anything, it must have already accepted 1
2).

Joan Boyar Online Algorithms with Advice April/May 2019 15 / 93

Competitive ratio example: Simple knapsack problem

Without advice: unbounded competitive ratio.
[Marchetti-Spaccamela,Vercellis, 1995]

With advice: 2-competitive algorithm with 1 advice bit.
[Böckenhauer,Komm,Královič,Rossmanith, 2014]

Algorithm:

If b = 0, use Greedy.

If b = 1, wait for item of size > 1
2 .

Fact: If there is no item of size > 1
2 , Greedy will accept at least

min{Opt(I), 1/2}

(in order to reject anything, it must have already accepted 1
2).

Joan Boyar Online Algorithms with Advice April/May 2019 15 / 93

Section 2

The bin packing problem

Joan Boyar Online Algorithms with Advice April/May 2019 16 / 93

Bin Packing Problem

Input: items of various sizes ∈ (0, 1]

Output: packing of all items into unit size bins

Goal: use minimum number of bins

Applications: storage, cutting stock...

Joan Boyar Online Algorithms with Advice April/May 2019 17 / 93

Bin Packing Problem

Input: items of various sizes ∈ (0, 1]

Output: packing of all items into unit size bins

Goal: use minimum number of bins

Applications: storage, cutting stock...

Joan Boyar Online Algorithms with Advice April/May 2019 17 / 93

Offline Bin Packing Problem

The problem is NP-hard: Reduce from 2-PARTITION.

First-Fit-Decreasing has an approximation ratio of 11/9 ≈ 1.22
[Johnson,Demers,Ullman,Garey,Graham, 1974]

There is an asymptotic PTAS for the problem [de la Vega,Lueker, 1981]

Joan Boyar Online Algorithms with Advice April/May 2019 18 / 93

Online Bin Packing Problem

Request sequence is revealed in a sequential, online manner.

Examples:

Next-Fit

First-Fit

Best-Fit

Harmonic, Harmonic++

Heydrich, van Stee

Joan Boyar Online Algorithms with Advice April/May 2019 19 / 93

First-Fit vs. Next-Fit — Online

First-Fit

Find the first open bin with enough space, and place the item there

If such a bin does not exist, open a new bin

Next-Fit

Put item in current open bit, if it fits

Otherwise, close that bin and open a new current bin

Joan Boyar Online Algorithms with Advice April/May 2019 20 / 93

First-Fit vs. Next-Fit — Online

First-Fit

Find the first open bin with enough space, and place the item there

If such a bin does not exist, open a new bin

Next-Fit

Put item in current open bit, if it fits

Otherwise, close that bin and open a new current bin

Joan Boyar Online Algorithms with Advice April/May 2019 20 / 93

First-Fit vs. Next-Fit — Online

First-Fit

Next-Fit

Result: 4

Result: 6

Joan Boyar Online Algorithms with Advice April/May 2019 21 / 93

First-Fit vs. Next-Fit — Online

First-Fit

Next-Fit

Result: 4

Result: 6

Joan Boyar Online Algorithms with Advice April/May 2019 21 / 93

First-Fit vs. Next-Fit — Online

First-Fit

Next-Fit

Result: 4

Result: 6

Joan Boyar Online Algorithms with Advice April/May 2019 21 / 93

First-Fit vs. Next-Fit — Online

First-Fit

Next-Fit

Result: 4

Result: 6

Joan Boyar Online Algorithms with Advice April/May 2019 21 / 93

First-Fit vs. Next-Fit — Online

First-Fit

Next-Fit

Result: 4

Result: 6

Joan Boyar Online Algorithms with Advice April/May 2019 21 / 93

First-Fit vs. Next-Fit — Online

First-Fit

Next-Fit

Result: 4

Result: 6

Joan Boyar Online Algorithms with Advice April/May 2019 21 / 93

First-Fit vs. Next-Fit — Online

First-Fit

Next-Fit

Result: 4

Result: 6

Joan Boyar Online Algorithms with Advice April/May 2019 21 / 93

First-Fit vs. Next-Fit — Online

First-Fit

Next-Fit

Result: 4

Result: 6

Joan Boyar Online Algorithms with Advice April/May 2019 21 / 93

First-Fit vs. Next-Fit — Online

First-Fit

Next-Fit

Result: 4

Result: 6

Joan Boyar Online Algorithms with Advice April/May 2019 21 / 93

Competitive Analysis

Next-Fit has competitive ratio 2
[Johnson, 1974]

Best-Fit and First-Fit have competitive ratio 1.7
[Johnson,Demers,Ullman,Garey,Graham, 1974]

Best known online algorithm has competitive ratio 1.57829
[Balogh,Békési,Dósa,Epstein,Levin, 2018]

No online algorithm has a competitive ratio less than 1.54278
[Balogh,Békési,Dósa,Epstein,Levin, 2018]

Recall that offline First-Fit-Decreasing has approximation ratio ≈ 1.22.

A big gap between quality of online and offline solutions.

What about an “almost online” algorithm? What about advice?

Joan Boyar Online Algorithms with Advice April/May 2019 22 / 93

Competitive Analysis

Next-Fit has competitive ratio 2
[Johnson, 1974]

Best-Fit and First-Fit have competitive ratio 1.7
[Johnson,Demers,Ullman,Garey,Graham, 1974]

Best known online algorithm has competitive ratio 1.57829
[Balogh,Békési,Dósa,Epstein,Levin, 2018]

No online algorithm has a competitive ratio less than 1.54278
[Balogh,Békési,Dósa,Epstein,Levin, 2018]

Recall that offline First-Fit-Decreasing has approximation ratio ≈ 1.22.

A big gap between quality of online and offline solutions.

What about an “almost online” algorithm? What about advice?

Joan Boyar Online Algorithms with Advice April/May 2019 22 / 93

Competitive Analysis

Next-Fit has competitive ratio 2
[Johnson, 1974]

Best-Fit and First-Fit have competitive ratio 1.7
[Johnson,Demers,Ullman,Garey,Graham, 1974]

Best known online algorithm has competitive ratio 1.57829
[Balogh,Békési,Dósa,Epstein,Levin, 2018]

No online algorithm has a competitive ratio less than 1.54278
[Balogh,Békési,Dósa,Epstein,Levin, 2018]

Recall that offline First-Fit-Decreasing has approximation ratio ≈ 1.22.

A big gap between quality of online and offline solutions.

What about an “almost online” algorithm? What about advice?

Joan Boyar Online Algorithms with Advice April/May 2019 22 / 93

Relevant Questions

For a sequence of fixed length

How many bits of advice are required (sufficient) to achieve an
optimal solution?

How many bits of advice are sufficient to outperform all online
algorithms?

How good can the competitive ratio be with advice of linear/sublinear
size?

Is there useful advice one could reasonably get (without knowing Opt)?

Most advice results are from [B.,Kamali,Larsen,López-Ortiz, 2016]

Joan Boyar Online Algorithms with Advice April/May 2019 23 / 93

Relevant Questions

For a sequence of fixed length

How many bits of advice are required (sufficient) to achieve an
optimal solution?

How many bits of advice are sufficient to outperform all online
algorithms?

How good can the competitive ratio be with advice of linear/sublinear
size?

Is there useful advice one could reasonably get (without knowing Opt)?

Most advice results are from [B.,Kamali,Larsen,López-Ortiz, 2016]

Joan Boyar Online Algorithms with Advice April/May 2019 23 / 93

Relevant Questions

For a sequence of fixed length

How many bits of advice are required (sufficient) to achieve an
optimal solution?

How many bits of advice are sufficient to outperform all online
algorithms?

How good can the competitive ratio be with advice of linear/sublinear
size?

Is there useful advice one could reasonably get (without knowing Opt)?

Most advice results are from [B.,Kamali,Larsen,López-Ortiz, 2016]

Joan Boyar Online Algorithms with Advice April/May 2019 23 / 93

Optimal Solution with Advice

How many bits of advice are sufficient to achieve an optimal solution?

Advice for each item: index of target bin in Opt’s packing.

ndlogOpt(σ)e bits of advice are sufficient

0 0 1 2 0 3 1

Joan Boyar Online Algorithms with Advice April/May 2019 24 / 93

Optimal Solution with Advice

How many bits of advice are sufficient to achieve an optimal solution?

Advice for each item: index of target bin in Opt’s packing.

ndlogOpt(σ)e bits of advice are sufficient

0

0 1 2 0 3 1

Joan Boyar Online Algorithms with Advice April/May 2019 24 / 93

Optimal Solution with Advice

How many bits of advice are sufficient to achieve an optimal solution?

Advice for each item: index of target bin in Opt’s packing.

ndlogOpt(σ)e bits of advice are sufficient

0 0

1 2 0 3 1

Joan Boyar Online Algorithms with Advice April/May 2019 24 / 93

Optimal Solution with Advice

How many bits of advice are sufficient to achieve an optimal solution?

Advice for each item: index of target bin in Opt’s packing.

ndlogOpt(σ)e bits of advice are sufficient

0 0 1

2 0 3 1

Joan Boyar Online Algorithms with Advice April/May 2019 24 / 93

Optimal Solution with Advice

How many bits of advice are sufficient to achieve an optimal solution?

Advice for each item: index of target bin in Opt’s packing.

ndlogOpt(σ)e bits of advice are sufficient

0 0 1 2

0 3 1

Joan Boyar Online Algorithms with Advice April/May 2019 24 / 93

Optimal Solution with Advice

How many bits of advice are sufficient to achieve an optimal solution?

Advice for each item: index of target bin in Opt’s packing.

ndlogOpt(σ)e bits of advice are sufficient

0 0 1 2 0

3 1

Joan Boyar Online Algorithms with Advice April/May 2019 24 / 93

Optimal Solution with Advice

How many bits of advice are sufficient to achieve an optimal solution?

Advice for each item: index of target bin in Opt’s packing.

ndlogOpt(σ)e bits of advice are sufficient

0 0 1 2 0 3

1

Joan Boyar Online Algorithms with Advice April/May 2019 24 / 93

Optimal Solution with Advice

How many bits of advice are sufficient to achieve an optimal solution?

Advice for each item: index of target bin in Opt’s packing.

ndlogOpt(σ)e bits of advice are sufficient

0 0 1 2 0 3 1

Joan Boyar Online Algorithms with Advice April/May 2019 24 / 93

Optimal Solution with Advice

In fact, (n− 2 Opt(σ)) log Opt(σ) bits of advice are required to achieve an
optimal packing.

Comparison:
ndlog Opt(σ)e bits of advice are sufficient for optimality.
(n − 2 Opt(σ)) log Opt(σ) bits of advice are required to guarantee
optimality.

Joan Boyar Online Algorithms with Advice April/May 2019 25 / 93

Optimal Solution with Advice

In fact, (n− 2 Opt(σ)) log Opt(σ) bits of advice are required to achieve an
optimal packing.

Comparison:
ndlog Opt(σ)e bits of advice are sufficient for optimality.
(n − 2 Opt(σ)) log Opt(σ) bits of advice are required to guarantee
optimality.

Joan Boyar Online Algorithms with Advice April/May 2019 25 / 93

Breaking the Lower Bound — Effectively

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size dlog(n + 1)e is sufficient to achieve a competitive ratio of
1.5.

Advice: The number of items in range (1/2, 2/3].
Algorithm: Reserve a space of size 2/3 for each of them
Apply First-Fit for the other items.

Advice: 1

Joan Boyar Online Algorithms with Advice April/May 2019 26 / 93

Breaking the Lower Bound — Effectively

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size dlog(n + 1)e is sufficient to achieve a competitive ratio of
1.5.

Advice: The number of items in range (1/2, 2/3].
Algorithm: Reserve a space of size 2/3 for each of them
Apply First-Fit for the other items.

Advice: 1

Joan Boyar Online Algorithms with Advice April/May 2019 26 / 93

Breaking the Lower Bound — Effectively

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size dlog(n + 1)e is sufficient to achieve a competitive ratio of
1.5.

Advice: The number of items in range (1/2, 2/3].

Algorithm: Reserve a space of size 2/3 for each of them
Apply First-Fit for the other items.

Advice: 1

Joan Boyar Online Algorithms with Advice April/May 2019 26 / 93

Breaking the Lower Bound — Effectively

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size dlog(n + 1)e is sufficient to achieve a competitive ratio of
1.5.

Advice: The number of items in range (1/2, 2/3].
Algorithm: Reserve a space of size 2/3 for each of them
Apply First-Fit for the other items.

Advice: 1

Joan Boyar Online Algorithms with Advice April/May 2019 26 / 93

Breaking the Lower Bound — Effectively

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size dlog(n + 1)e is sufficient to achieve a competitive ratio of
1.5.

Advice: The number of items in range (1/2, 2/3].
Algorithm: Reserve a space of size 2/3 for each of them
Apply First-Fit for the other items.

Advice: 1

Joan Boyar Online Algorithms with Advice April/May 2019 26 / 93

Breaking the Lower Bound — Effectively

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size dlog(n + 1)e is sufficient to achieve a competitive ratio of
1.5.

Advice: The number of items in range (1/2, 2/3].
Algorithm: Reserve a space of size 2/3 for each of them
Apply First-Fit for the other items.

Advice: 1

Joan Boyar Online Algorithms with Advice April/May 2019 26 / 93

Breaking the Lower Bound — Effectively

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size dlog(n + 1)e is sufficient to achieve a competitive ratio of
1.5.

Advice: The number of items in range (1/2, 2/3].
Algorithm: Reserve a space of size 2/3 for each of them
Apply First-Fit for the other items.

Advice: 1

Joan Boyar Online Algorithms with Advice April/May 2019 26 / 93

Breaking the Lower Bound — Effectively

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size dlog(n + 1)e is sufficient to achieve a competitive ratio of
1.5.

Advice: The number of items in range (1/2, 2/3].
Algorithm: Reserve a space of size 2/3 for each of them
Apply First-Fit for the other items.

Advice: 1

Joan Boyar Online Algorithms with Advice April/May 2019 26 / 93

Breaking the Lower Bound — Effectively

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size dlog(n + 1)e is sufficient to achieve a competitive ratio of
1.5.

Advice: The number of items in range (1/2, 2/3].
Algorithm: Reserve a space of size 2/3 for each of them
Apply First-Fit for the other items.

Advice: 1

Joan Boyar Online Algorithms with Advice April/May 2019 26 / 93

Breaking the Lower Bound — Effectively

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size dlog(n + 1)e is sufficient to achieve a competitive ratio of
1.5.

Advice: The number of items in range (1/2, 2/3].
Algorithm: Reserve a space of size 2/3 for each of them
Apply First-Fit for the other items.

Advice: 1

Joan Boyar Online Algorithms with Advice April/May 2019 26 / 93

Breaking the Lower Bound — Effectively

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size dlog(n + 1)e is sufficient to achieve a competitive ratio of
1.5.

Advice: The number of items in range (1/2, 2/3].
Algorithm: Reserve a space of size 2/3 for each of them
Apply First-Fit for the other items.

Advice: 1

Joan Boyar Online Algorithms with Advice April/May 2019 26 / 93

Breaking the Lower Bound — Effectively

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size dlog(n + 1)e is sufficient to achieve a competitive ratio of
1.5.

Advice: The number of items in range (1/2, 2/3].
Algorithm: Reserve a space of size 2/3 for each of them
Apply First-Fit for the other items.

Advice: 1

Joan Boyar Online Algorithms with Advice April/May 2019 26 / 93

Breaking the Lower Bound — With Less Advice

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size dlog(n + 1)e is sufficient to achieve a competitive ratio of
1.5.

Newer result: [Angelopoulos,Dürr,Kamali,Renault,Rosén, 2018]

With constant advice, one can get a competitive ratio arbitrarily close to
1.47012.

Unfortunately, the advice depends on Opt.

Joan Boyar Online Algorithms with Advice April/May 2019 27 / 93

Breaking the Lower Bound — With Less Advice

Recall: All online algorithms have a competitive ratio of at least 1.54.

Advice of size dlog(n + 1)e is sufficient to achieve a competitive ratio of
1.5.

Newer result: [Angelopoulos,Dürr,Kamali,Renault,Rosén, 2018]

With constant advice, one can get a competitive ratio arbitrarily close to
1.47012.

Unfortunately, the advice depends on Opt.

Joan Boyar Online Algorithms with Advice April/May 2019 27 / 93

Advice of Linear Size

An online algorithm which receives 2 bits of advice per request (plus an
additive lower order term).

Achieves a competitive ratio of 4/3 + ε, for any positive value of ε.

A variety of bin packing techniques are used in the proof.

Advice depends on Opt’s packing.

Joan Boyar Online Algorithms with Advice April/May 2019 28 / 93

Advice of Linear Size

An online algorithm which receives 2 bits of advice per request (plus an
additive lower order term).

Achieves a competitive ratio of 4/3 + ε, for any positive value of ε.

A variety of bin packing techniques are used in the proof.

Advice depends on Opt’s packing.

Joan Boyar Online Algorithms with Advice April/May 2019 28 / 93

Advice of Linear Size

An online algorithm which receives 2 bits of advice per request (plus an
additive lower order term).

Achieves a competitive ratio of 4/3 + ε, for any positive value of ε.

A variety of bin packing techniques are used in the proof.

Advice depends on Opt’s packing.

Joan Boyar Online Algorithms with Advice April/May 2019 28 / 93

Advice of Linear Size

An online algorithm which receives 2 bits of advice per request (plus an
additive lower order term).

Achieves a competitive ratio of 4/3 + ε, for any positive value of ε.

A variety of bin packing techniques are used in the proof.

Advice depends on Opt’s packing.

Joan Boyar Online Algorithms with Advice April/May 2019 28 / 93

Advice of Linear Size

One can obtain results similar to PTAS results:

[Renault,Rósen,van Stee, 2015]

Theorem

There is an online bin packing algorithm which is (1 + 3δ)-competitive (or
asymptotically (1 + 2δ)-competitive), using s = 1

δ log 2
δ2

+ log 2
δ2

+ 3 bits
of advice per request.

Joan Boyar Online Algorithms with Advice April/May 2019 29 / 93

A Lower Bound

A linear amount of advice is required to achieve a competitive ratio better
than 9/8.

Get a trade-off — better ratio requires more advice

Reduction order:
Binary string guessing problem −→ Binary separation problem
Binary separation problem −→ Bin packing problem

Joan Boyar Online Algorithms with Advice April/May 2019 30 / 93

A Lower Bound

A linear amount of advice is required to achieve a competitive ratio better
than 9/8.

Get a trade-off — better ratio requires more advice

Reduction order:
Binary string guessing problem −→ Binary separation problem
Binary separation problem −→ Bin packing problem

Joan Boyar Online Algorithms with Advice April/May 2019 30 / 93

Binary String Guessing Problem

Binary string guessing problem (with known history): 2-SGKH
[Emek,Fraigniaud,Korman,Rosén, 2011]
[Böckenhauer,Hromkovic,Komm,Krug,Smula,Sprock, 2014]

Guess the next bit in a bit string revealed in an online manner

〈0, 1, 0, ?〉

A linear amount advice is required to correctly guess more than half
of the bits.

Theorem

On inputs of length n, any deterministic algorithm for 2-SGKH that is
guaranteed to guess correctly on more than αn bits, for 1/2 ≤ α < 1,
needs to read at least (1 + (1− α) log(1− α) + α log(α))n bits of advice.

Note: If we assume the number, n0, of 0s is given, we need at least
(1 + (1− α) log(1− α) + α log(α))n − e(n0) bits of advice, where
e(n0) = dlog(n0 + 1)e+ 2dlog(dlog(n0 + 1)e+ 1)e
(self-delimiting code).

Joan Boyar Online Algorithms with Advice April/May 2019 31 / 93

Binary String Guessing Problem

Binary string guessing problem (with known history): 2-SGKH
[Emek,Fraigniaud,Korman,Rosén, 2011]
[Böckenhauer,Hromkovic,Komm,Krug,Smula,Sprock, 2014]

Guess the next bit in a bit string revealed in an online manner

〈0, 1, 0, ?〉

A linear amount advice is required to correctly guess more than half
of the bits.

Theorem

On inputs of length n, any deterministic algorithm for 2-SGKH that is
guaranteed to guess correctly on more than αn bits, for 1/2 ≤ α < 1,
needs to read at least (1 + (1− α) log(1− α) + α log(α))n bits of advice.

Note: If we assume the number, n0, of 0s is given, we need at least
(1 + (1− α) log(1− α) + α log(α))n − e(n0) bits of advice, where
e(n0) = dlog(n0 + 1)e+ 2dlog(dlog(n0 + 1)e+ 1)e
(self-delimiting code).

Joan Boyar Online Algorithms with Advice April/May 2019 31 / 93

Binary String Guessing Problem

Binary string guessing problem (with known history): 2-SGKH
[Emek,Fraigniaud,Korman,Rosén, 2011]
[Böckenhauer,Hromkovic,Komm,Krug,Smula,Sprock, 2014]

Guess the next bit in a bit string revealed in an online manner

〈0, 1, 0, ?〉

A linear amount advice is required to correctly guess more than half
of the bits.

Theorem

On inputs of length n, any deterministic algorithm for 2-SGKH that is
guaranteed to guess correctly on more than αn bits, for 1/2 ≤ α < 1,
needs to read at least (1 + (1− α) log(1− α) + α log(α))n bits of advice.

Note: If we assume the number, n0, of 0s is given, we need at least
(1 + (1− α) log(1− α) + α log(α))n − e(n0) bits of advice, where
e(n0) = dlog(n0 + 1)e+ 2dlog(dlog(n0 + 1)e+ 1)e
(self-delimiting code).

Joan Boyar Online Algorithms with Advice April/May 2019 31 / 93

Binary String Guessing Problem

Binary string guessing problem (with known history): 2-SGKH
[Emek,Fraigniaud,Korman,Rosén, 2011]
[Böckenhauer,Hromkovic,Komm,Krug,Smula,Sprock, 2014]

Guess the next bit in a bit string revealed in an online manner

〈0, 1, 0, ?〉
A linear amount advice is required to correctly guess more than half
of the bits.

Theorem

On inputs of length n, any deterministic algorithm for 2-SGKH that is
guaranteed to guess correctly on more than αn bits, for 1/2 ≤ α < 1,
needs to read at least (1 + (1− α) log(1− α) + α log(α))n bits of advice.

Note: If we assume the number, n0, of 0s is given, we need at least
(1 + (1− α) log(1− α) + α log(α))n − e(n0) bits of advice, where
e(n0) = dlog(n0 + 1)e+ 2dlog(dlog(n0 + 1)e+ 1)e
(self-delimiting code).

Joan Boyar Online Algorithms with Advice April/May 2019 31 / 93

Binary String Guessing Problem

Binary string guessing problem (with known history): 2-SGKH
[Emek,Fraigniaud,Korman,Rosén, 2011]
[Böckenhauer,Hromkovic,Komm,Krug,Smula,Sprock, 2014]

Guess the next bit in a bit string revealed in an online manner

〈0, 1, 0, ?〉
A linear amount advice is required to correctly guess more than half
of the bits.

Theorem

On inputs of length n, any deterministic algorithm for 2-SGKH that is
guaranteed to guess correctly on more than αn bits, for 1/2 ≤ α < 1,
needs to read at least (1 + (1− α) log(1− α) + α log(α))n bits of advice.

Note: If we assume the number, n0, of 0s is given, we need at least
(1 + (1− α) log(1− α) + α log(α))n − e(n0) bits of advice, where
e(n0) = dlog(n0 + 1)e+ 2dlog(dlog(n0 + 1)e+ 1)e
(self-delimiting code).

Joan Boyar Online Algorithms with Advice April/May 2019 31 / 93

Binary Separation Problem

Binary separation problem:

For a sequence of n1 + n2 items decide whether an item belongs to
the n1 smaller items or n2 larger items.

〈
1
2 (s), 3

4 (l), 5
8 (s), 11

16 (?)
〉

Don’t have to choose in [0, 1].

Don’t have to choose the exact middle value.

Joan Boyar Online Algorithms with Advice April/May 2019 32 / 93

Binary Separation Problem

Binary separation problem:

For a sequence of n1 + n2 items decide whether an item belongs to
the n1 smaller items or n2 larger items.〈
1
2 (s), 3

4 (l), 5
8 (s), 11

16 (?)
〉

Don’t have to choose in [0, 1].

Don’t have to choose the exact middle value.

Joan Boyar Online Algorithms with Advice April/May 2019 32 / 93

Binary Separation Problem

Binary separation problem:

For a sequence of n1 + n2 items decide whether an item belongs to
the n1 smaller items or n2 larger items.〈
1
2 (s), 3

4 (l), 5
8 (s), 11

16 (?)
〉

Don’t have to choose in [0, 1].

Don’t have to choose the exact middle value.

Joan Boyar Online Algorithms with Advice April/May 2019 32 / 93

Binary Separation Problem

Binary separation problem:

For a sequence of n1 + n2 items decide whether an item belongs to
the n1 smaller items or n2 larger items.〈
1
2 (s), 3

4 (l), 5
8 (s), 11

16 (?)
〉

Don’t have to choose in [0, 1].

Don’t have to choose the exact middle value.

Joan Boyar Online Algorithms with Advice April/May 2019 32 / 93

Reduction from 2-SGKH to Binary separation

1: small = 0; large = 1
2: repeat
3: mid = (large + small) / 2
4: class guess = SeparationAlgorithm.ClassifyThis(mid)
5: if class guess = “large” then
6: bit guess = 0
7: else
8: bit guess = 1
9: actual bit = Guess(bit guess)

{The actual value is received after guessing (2-SGKH).}
10: if actual bit = 0 then
11: large = mid {We let “large” be the correct decision.}
12: else
13: small = mid {We let “small” be the correct decision.}
14: until end of sequence

Joan Boyar Online Algorithms with Advice April/May 2019 33 / 93

Reduction from Binary separation to Bin packing

Idea: Create small and large items, so Alg has to decide which is which.

Give n2 items of size 1
2 + ε — begin items, B.

Alg (and Opt) must put them in separate bins.
Give large items, L and small items, S :

Opt places large items with begin items.

Opt places small items, one per bin.

Alg much choose.

For each small item of size 1
2 − εi ,

give an item of size 1
2 + εi — matching items, M.

Opt packs matching items with small items, using n1 + n2 bins.

Joan Boyar Online Algorithms with Advice April/May 2019 34 / 93

Reduction from Binary separation to Bin packing

Idea: Create small and large items, so Alg has to decide which is which.

Give n2 items of size 1
2 + ε — begin items, B.

Alg (and Opt) must put them in separate bins.
Give large items, L and small items, S :

Opt places large items with begin items.

Opt places small items, one per bin.

Alg much choose.

For each small item of size 1
2 − εi ,

give an item of size 1
2 + εi — matching items, M.

Opt packs matching items with small items, using n1 + n2 bins.

Joan Boyar Online Algorithms with Advice April/May 2019 34 / 93

Reduction from Binary separation to Bin packing

Idea: Create small and large items, so Alg has to decide which is which.

Give n2 items of size 1
2 + ε — begin items, B.

Alg (and Opt) must put them in separate bins.

Give large items, L and small items, S :

Opt places large items with begin items.

Opt places small items, one per bin.

Alg much choose.

For each small item of size 1
2 − εi ,

give an item of size 1
2 + εi — matching items, M.

Opt packs matching items with small items, using n1 + n2 bins.

Joan Boyar Online Algorithms with Advice April/May 2019 34 / 93

Reduction from Binary separation to Bin packing

Idea: Create small and large items, so Alg has to decide which is which.

Give n2 items of size 1
2 + ε — begin items, B.

Alg (and Opt) must put them in separate bins.
Give large items, L and small items, S :

Opt places large items with begin items.

Opt places small items, one per bin.

Alg much choose.

For each small item of size 1
2 − εi ,

give an item of size 1
2 + εi — matching items, M.

Opt packs matching items with small items, using n1 + n2 bins.

Joan Boyar Online Algorithms with Advice April/May 2019 34 / 93

Reduction from Binary separation to Bin packing

Idea: Create small and large items, so Alg has to decide which is which.

Give n2 items of size 1
2 + ε — begin items, B.

Alg (and Opt) must put them in separate bins.
Give large items, L and small items, S :

Opt places large items with begin items.

Opt places small items, one per bin.

Alg much choose.

For each small item of size 1
2 − εi ,

give an item of size 1
2 + εi — matching items, M.

Opt packs matching items with small items, using n1 + n2 bins.

Joan Boyar Online Algorithms with Advice April/May 2019 34 / 93

Reduction from Binary separation to Bin packing

Idea: Create small and large items, so Alg has to decide which is which.

Give n2 items of size 1
2 + ε — begin items, B.

Alg (and Opt) must put them in separate bins.
Give large items, L and small items, S :

Opt places large items with begin items.

Opt places small items, one per bin.

Alg much choose.

For each small item of size 1
2 − εi ,

give an item of size 1
2 + εi — matching items, M.

Opt packs matching items with small items, using n1 + n2 bins.

Joan Boyar Online Algorithms with Advice April/May 2019 34 / 93

Reduction from Binary separation to Bin packing

B B B B S S S S

L L L L M M M M

B B B B L S S M M

L S L S L M M

Opt

Alg

Result: 8

Result: 9

Joan Boyar Online Algorithms with Advice April/May 2019 35 / 93

Reduction from Binary separation to Bin packing

B B B B S S S S

L L L L M M M M

B B B B L S S M M

L S L S L M M

Opt

Alg

Result: 8

Result: 9

Joan Boyar Online Algorithms with Advice April/May 2019 35 / 93

Reduction from Binary separation to Bin packing

Large item + matching item > 1.

Suppose large item is not with a begin item. Why?

bad guess for that item

bad guess for small item — no space

Let
x = max{number bad guesses for small,number bad guesses for large}
x large items not paired with begin items.
At most 2 fit in a bin together.

4 errors in binary separation ⇒ ≥ 1 more bin

Joan Boyar Online Algorithms with Advice April/May 2019 36 / 93

Reduction from Binary separation to Bin packing

Large item + matching item > 1.

Suppose large item is not with a begin item. Why?

bad guess for that item

bad guess for small item — no space

Let
x = max{number bad guesses for small,number bad guesses for large}
x large items not paired with begin items.
At most 2 fit in a bin together.

4 errors in binary separation ⇒ ≥ 1 more bin

Joan Boyar Online Algorithms with Advice April/May 2019 36 / 93

Reduction from Binary separation to Bin packing

Large item + matching item > 1.

Suppose large item is not with a begin item. Why?

bad guess for that item

bad guess for small item — no space

Let
x = max{number bad guesses for small, number bad guesses for large}

x large items not paired with begin items.
At most 2 fit in a bin together.

4 errors in binary separation ⇒ ≥ 1 more bin

Joan Boyar Online Algorithms with Advice April/May 2019 36 / 93

Reduction from Binary separation to Bin packing

Large item + matching item > 1.

Suppose large item is not with a begin item. Why?

bad guess for that item

bad guess for small item — no space

Let
x = max{number bad guesses for small, number bad guesses for large}
x large items not paired with begin items.

At most 2 fit in a bin together.

4 errors in binary separation ⇒ ≥ 1 more bin

Joan Boyar Online Algorithms with Advice April/May 2019 36 / 93

Reduction from Binary separation to Bin packing

Large item + matching item > 1.

Suppose large item is not with a begin item. Why?

bad guess for that item

bad guess for small item — no space

Let
x = max{number bad guesses for small, number bad guesses for large}
x large items not paired with begin items.
At most 2 fit in a bin together.

4 errors in binary separation ⇒ ≥ 1 more bin

Joan Boyar Online Algorithms with Advice April/May 2019 36 / 93

Reduction from Binary separation to Bin packing

Large item + matching item > 1.

Suppose large item is not with a begin item. Why?

bad guess for that item

bad guess for small item — no space

Let
x = max{number bad guesses for small, number bad guesses for large}
x large items not paired with begin items.
At most 2 fit in a bin together.

4 errors in binary separation ⇒ ≥ 1 more bin

Joan Boyar Online Algorithms with Advice April/May 2019 36 / 93

Lower bound result for bin packing

Theorem

On inputs of length n, to achieve a competitive ratio of c (1 < c < 9/8),
an online algorithm must get at least
(1 + (4c − 4) log(4c − 4) + (5− 4c) log(5− 4c))n − e(n) bits of advice.

Recall that e(n) = dlog(n + 1)e+ 2dlog(dlog(n + 1)e+ 1)e.

Newer result: [Angelopoulos,Dürr,Kamali,Renault,Rosén, 2016]
Can improve analysis from 4 mistakes causing at least 1 extra bin to 3
mistakes causing at least 1 extra bin.

Theorem

On inputs of length n, to achieve a competitive ratio of c (1 < c < 7/6),
an online algorithm must get at least
(1 + (3c − 3) log(3c − 3) + (4− 3c) log(4− 3c))n − e(n) bits of advice.

Recall that e(n) = dlog(n + 1)e+ 2dlog(dlog(n + 1)e+ 1)e.

Joan Boyar Online Algorithms with Advice April/May 2019 37 / 93

Lower bound result for bin packing

Theorem

On inputs of length n, to achieve a competitive ratio of c (1 < c < 9/8),
an online algorithm must get at least
(1 + (4c − 4) log(4c − 4) + (5− 4c) log(5− 4c))n − e(n) bits of advice.

Recall that e(n) = dlog(n + 1)e+ 2dlog(dlog(n + 1)e+ 1)e.

Newer result: [Angelopoulos,Dürr,Kamali,Renault,Rosén, 2016]
Can improve analysis from 4 mistakes causing at least 1 extra bin to 3
mistakes causing at least 1 extra bin.

Theorem

On inputs of length n, to achieve a competitive ratio of c (1 < c < 7/6),
an online algorithm must get at least
(1 + (3c − 3) log(3c − 3) + (4− 3c) log(4− 3c))n − e(n) bits of advice.

Recall that e(n) = dlog(n + 1)e+ 2dlog(dlog(n + 1)e+ 1)e.
Joan Boyar Online Algorithms with Advice April/May 2019 37 / 93

Lower bound result for bin packing

Even newer result: [Mikkelsen, 2016]
Can improve analysis using above result and using weighted binary string
guessing.

Theorem

On inputs of length n, to achieve a competitive ratio of c
(1 < c < 4− 2

√
2), a randomized c-competitive bin packing algorithm

must read at least Ω(n) bits of advice.

9/8 = 1.125, 7/6 ≈ 1.1667, 4− 2
√

2 ≈ 1.1716

Joan Boyar Online Algorithms with Advice April/May 2019 38 / 93

Lower bound result for bin packing

[Mikkelsen, 2016]

Theorem

On inputs of length n, to achieve a competitive ratio of c
(1 < c < 4− 2

√
2), a randomized c-competitive bin packing algorithm

must read at least Ω(n) bits of advice.

What does this say?

One cannot get a competitive ratio better than 1.17 by giving
information such as the number of bins that Opt uses.

One cannot beat 1.17 by keeping 2o(n) solutions in the multi-solution
model.

Joan Boyar Online Algorithms with Advice April/May 2019 39 / 93

Lower bound result for bin packing

[Mikkelsen, 2016]

Theorem

On inputs of length n, to achieve a competitive ratio of c
(1 < c < 4− 2

√
2), a randomized c-competitive bin packing algorithm

must read at least Ω(n) bits of advice.

What does this say?

One cannot get a competitive ratio better than 1.17 by giving
information such as the number of bins that Opt uses.

One cannot beat 1.17 by keeping 2o(n) solutions in the multi-solution
model.

Joan Boyar Online Algorithms with Advice April/May 2019 39 / 93

Lower bound result for bin packing

[Mikkelsen, 2016]

Theorem

On inputs of length n, to achieve a competitive ratio of c
(1 < c < 4− 2

√
2), a randomized c-competitive bin packing algorithm

must read at least Ω(n) bits of advice.

[Renault, Rosén, van Stee, 2015] For a fixed competitive ratio, there exists
an online algorithm which only needs linear advice:
They present an algorithm for online bin packing which is
(1 + 3δ)-competitive (or asymptotically (1 + 2δ)-competitive), using
s = 1

δ log 2
δ2

+ log 2
δ2

+ 3 bits of advice per request.

Joan Boyar Online Algorithms with Advice April/May 2019 40 / 93

Open Problems

Linear advice is needed to be c-competitive, c < 1.17.
Linear advice is sufficient for any fixed c . There is a huge gap, though.

(2 + o(1))n advice is sufficient to be (4/3 + ε)-competitive.
Can one get a better ratio with so few bits?

Counting the number of items of size in (1/2, 2/3]
(O(log n) bits of advice) is sufficient to be 3/2-competitive.
Are there other algorithms (based on advice) which could be
practical?

Joan Boyar Online Algorithms with Advice April/May 2019 41 / 93

Section 3

An advice complexity class, AOC

Joan Boyar Online Algorithms with Advice April/May 2019 42 / 93

B.,Favrholdt,Kudahl,Mikkelsen, 2017

Introduce an advice complexity class, Asymmetric Online Covering
(AOC).

Prove upper bound on advice complexity for all problems in AOC;
advice complexity for competitive ratio c :

0.53n

c
≤ log2

(
1 +

(c − 1)c−1

cc

)
n ≤ n

c

Many problems, including Vertex Cover, Independent Set, Set Cover,
and Dominating Set are AOC-Complete.

Joan Boyar Online Algorithms with Advice April/May 2019 43 / 93

Vertex Cover

Vertex Cover problem:

Vertices of graph G = (V ,E) arrive online,
with edges to previous vertices.

Vertices must be accepted or rejected.

Accepted vertices, C ⊆ V , must be a vertex cover,
i.e. ∀(u, v) ∈ E , either u or v ∈ C .

Goal: Minimize |C |.

Note: Due to the vertex-arrival model, the 2-approximation algorithm
which takes both endpoints of an uncovered edge, cannot be used.

Joan Boyar Online Algorithms with Advice April/May 2019 44 / 93

Vertex Cover

Vertex Cover problem:

Vertices of graph G = (V ,E) arrive online,
with edges to previous vertices.

Vertices must be accepted or rejected.

Accepted vertices, C ⊆ V , must be a vertex cover,
i.e. ∀(u, v) ∈ E , either u or v ∈ C .

Goal: Minimize |C |.

Note: Due to the vertex-arrival model, the 2-approximation algorithm
which takes both endpoints of an uncovered edge, cannot be used.

Joan Boyar Online Algorithms with Advice April/May 2019 44 / 93

Vertex Cover

Alg

Opt

Alg must reject vertex; otherwise it will be the last.

Joan Boyar Online Algorithms with Advice April/May 2019 45 / 93

Vertex Cover

Alg |C | = n − 1

Opt |C | = 1

Joan Boyar Online Algorithms with Advice April/May 2019 46 / 93

Vertex Cover

The competitive ratio for Vertex Cover is unbounded.

Can achieve optimality with n advice bits.

Can we achieve constant competitive ratio with small advice?

No.

How many bits do we need to be c-competitive?

Joan Boyar Online Algorithms with Advice April/May 2019 47 / 93

Vertex Cover

The competitive ratio for Vertex Cover is unbounded.

Can achieve optimality with n advice bits.

Can we achieve constant competitive ratio with small advice?

No.

How many bits do we need to be c-competitive?

Joan Boyar Online Algorithms with Advice April/May 2019 47 / 93

Vertex Cover

The competitive ratio for Vertex Cover is unbounded.

Can achieve optimality with n advice bits.

Can we achieve constant competitive ratio with small advice?

No.

How many bits do we need to be c-competitive?

Joan Boyar Online Algorithms with Advice April/May 2019 47 / 93

Vertex Cover

The competitive ratio for Vertex Cover is unbounded.

Can achieve optimality with n advice bits.

Can we achieve constant competitive ratio with small advice?

No.

How many bits do we need to be c-competitive?

Joan Boyar Online Algorithms with Advice April/May 2019 47 / 93

Vertex Cover

The competitive ratio for Vertex Cover is unbounded.

Can achieve optimality with n advice bits.

Can we achieve constant competitive ratio with small advice?

No.

How many bits do we need to be c-competitive?

Joan Boyar Online Algorithms with Advice April/May 2019 47 / 93

Advice complexity of Vertex Cover

Let VOpt be an optimal vertex cover.
Let k = |VOpt|.

Alg selects vertices VAlg s.t.

|VAlg| ≤ ck

VOpt ⊆ VAlg

Oracle will specify which vertices to accept.
How many ck-subsets are needed to cover all k-subsets?

Joan Boyar Online Algorithms with Advice April/May 2019 48 / 93

Advice complexity of Vertex Cover

Let VOpt be an optimal vertex cover.
Let k = |VOpt|.

Alg selects vertices VAlg s.t.

|VAlg| ≤ ck

VOpt ⊆ VAlg

Oracle will specify which vertices to accept.
How many ck-subsets are needed to cover all k-subsets?

Joan Boyar Online Algorithms with Advice April/May 2019 48 / 93

Advice complexity of Vertex Cover

Let VOpt be an optimal vertex cover.
Let k = |VOpt|.

Alg selects vertices VAlg s.t.

|VAlg| ≤ ck

VOpt ⊆ VAlg

Oracle will specify which vertices to accept.
How many ck-subsets are needed to cover all k-subsets?

Joan Boyar Online Algorithms with Advice April/May 2019 48 / 93

Advice complexity of Vertex Cover

Suppose n = |V | = 6, c = 2, and |VOpt| = 2.
There are

(6
2

)
= 15 possibilities for VOpt.

1 2 3 4

1 2 5 6

3 4 5 6

These 3 subsets of size ck = 4 cover all 2-subsets of {1, 2, 3, 4, 5, 6}.

2 advice bits are sufficient to specify one which covers VOpt.

Joan Boyar Online Algorithms with Advice April/May 2019 49 / 93

Advice complexity of Vertex Cover

Suppose n = |V | = 6, c = 2, and |VOpt| = 2.
There are

(6
2

)
= 15 possibilities for VOpt.

1 2 3 4

1 2 5 6

3 4 5 6

These 3 subsets of size ck = 4 cover all 2-subsets of {1, 2, 3, 4, 5, 6}.

2 advice bits are sufficient to specify one which covers VOpt.

Joan Boyar Online Algorithms with Advice April/May 2019 49 / 93

Advice complexity of Vertex Cover

Suppose n = |V | = 6, c = 2, and |VOpt| = 2.
There are

(6
2

)
= 15 possibilities for VOpt.

1 2 3 4

1 2 5 6

3 4 5 6

These 3 subsets of size ck = 4 cover all 2-subsets of {1, 2, 3, 4, 5, 6}.

2 advice bits are sufficient to specify one which covers VOpt.

Joan Boyar Online Algorithms with Advice April/May 2019 49 / 93

Covering designs

Given a universe of size n, a collection of ck-subsets covering all k-subsets
is an (n, ck , k)-covering design.

The minimum size of an (n, ck , k)-covering design is the covering number,
C (n, ck , k).

By the Pigeonhole Principle,(n
k

)(ck
k

) ≤ C (n, ck , k)

Joan Boyar Online Algorithms with Advice April/May 2019 50 / 93

Covering designs

Given a universe of size n, a collection of ck-subsets covering all k-subsets
is an (n, ck , k)-covering design.
The minimum size of an (n, ck , k)-covering design is the covering number,
C (n, ck , k).

By the Pigeonhole Principle,(n
k

)(ck
k

) ≤ C (n, ck , k)

Joan Boyar Online Algorithms with Advice April/May 2019 50 / 93

Covering designs

Given a universe of size n, a collection of ck-subsets covering all k-subsets
is an (n, ck , k)-covering design.
The minimum size of an (n, ck , k)-covering design is the covering number,
C (n, ck , k).

By the Pigeonhole Principle,(n
k

)(ck
k

) ≤ C (n, ck , k)

Joan Boyar Online Algorithms with Advice April/May 2019 50 / 93

Covering designs

Given a universe of size n, a collection of ck-subsets covering all k-subsets
is an (n, ck , k)-covering design.
The minimum size of an (n, ck , k)-covering design is the covering number,
C (n, ck , k).

[Erdös,Spencer, 1974](n
k

)(ck
k

) ≤ C (n, ck , k) ≤
(n
k

)(ck
k

) (1 + ln

(
ck

k

))

Joan Boyar Online Algorithms with Advice April/May 2019 51 / 93

Covering designs

Given a universe of size n, a collection of ck-subsets covering all k-subsets
is an (n, ck , k)-covering design.
The minimum size of an (n, ck , k)-covering design is the covering number,
C (n, ck , k).

[Erdös,Spencer, 1974](n
k

)(ck
k

) ≤ C (n, ck , k) ≤
(n
k

)(ck
k

) (1 + ln

(
ck

k

))

Joan Boyar Online Algorithms with Advice April/May 2019 51 / 93

Algorithm with advice for Vertex Cover

Oracle writes:

values of n and k — O(log n) bits

index of a ck-subset, C , in an (n, ck , k)-covering design, s.t.
VOpt ⊆ C .

Alg uses C = 〈b1, b2, ..., bn〉:
if bi = 1, accept vi

if bi = 0, reject vi

Alg is c-competitive. It reads at most
B = log maxk:ck<n C (n, ck , k) + O(log n) advice bits.

B ≤ log

(
1 +

(c − 1)c−1

cc

)
n + O(log n) ≤ n

c
+ O(log n)

Joan Boyar Online Algorithms with Advice April/May 2019 52 / 93

Algorithm with advice for Vertex Cover

Oracle writes:

values of n and k — O(log n) bits

index of a ck-subset, C , in an (n, ck , k)-covering design, s.t.
VOpt ⊆ C .

Alg uses C = 〈b1, b2, ..., bn〉:
if bi = 1, accept vi

if bi = 0, reject vi

Alg is c-competitive. It reads at most
B = log maxk:ck<n C (n, ck , k) + O(log n) advice bits.

B ≤ log

(
1 +

(c − 1)c−1

cc

)
n + O(log n) ≤ n

c
+ O(log n)

Joan Boyar Online Algorithms with Advice April/May 2019 52 / 93

Algorithm with advice for Vertex Cover

Oracle writes:

values of n and k — O(log n) bits

index of a ck-subset, C , in an (n, ck , k)-covering design, s.t.
VOpt ⊆ C .

Alg uses C = 〈b1, b2, ..., bn〉:
if bi = 1, accept vi

if bi = 0, reject vi

Alg is c-competitive. It reads at most
B = log maxk:ck<n C (n, ck , k) + O(log n) advice bits.

B ≤ log

(
1 +

(c − 1)c−1

cc

)
n + O(log n) ≤ n

c
+ O(log n)

Joan Boyar Online Algorithms with Advice April/May 2019 52 / 93

A class of online problems

Generalizing from the properties used for Vertex Cover, we define a class
of online problems.

It applies to accept/reject online problems: The online algorithm only
accepts or rejects each request. Let the set of accepted requests be Y .

Definition

An accept/reject minimization problem is in Asymmetric Online Covering
(AOC) if

1 If Y is feasible, cost(Y) = |Y |. Otherwise cost(Y) =∞.

2 A superset of a feasible solution is feasible.

Example problems in AOC:
Vertex Cover, Dominating Set, Set Cover, Cycle Finding.

Joan Boyar Online Algorithms with Advice April/May 2019 53 / 93

A class of online problems

Generalizing from the properties used for Vertex Cover, we define a class
of online problems.

It applies to accept/reject online problems: The online algorithm only
accepts or rejects each request. Let the set of accepted requests be Y .

Definition

An accept/reject minimization problem is in Asymmetric Online Covering
(AOC) if

1 If Y is feasible, cost(Y) = |Y |. Otherwise cost(Y) =∞.

2 A superset of a feasible solution is feasible.

Example problems in AOC:
Vertex Cover, Dominating Set, Set Cover, Cycle Finding.

Joan Boyar Online Algorithms with Advice April/May 2019 53 / 93

A class of online problems

Generalizing from the properties used for Vertex Cover, we define a class
of online problems.

It applies to accept/reject online problems: The online algorithm only
accepts or rejects each request. Let the set of accepted requests be Y .

Definition

An accept/reject minimization problem is in Asymmetric Online Covering
(AOC) if

1 If Y is feasible, cost(Y) = |Y |. Otherwise cost(Y) =∞.

2 A superset of a feasible solution is feasible.

Example problems in AOC:
Vertex Cover, Dominating Set, Set Cover, Cycle Finding.

Joan Boyar Online Algorithms with Advice April/May 2019 53 / 93

A class of online problems

Generalizing from the properties used for Vertex Cover, we define a class
of online problems.

It applies to accept/reject online problems: The online algorithm only
accepts or rejects each request. Let the set of accepted requests be Y .

Definition

An accept/reject maximization problem is in Asymmetric Online Covering
(AOC), if

1 If Y is feasible, cost(Y) = |Y |. Otherwise cost(Y) = −∞.

2 A subset of a feasible solution is feasible.

Example problems in AOC:
Independent Set, Disjoint Path Allocation.

Joan Boyar Online Algorithms with Advice April/May 2019 54 / 93

AOC-Complete

Definition

A problem in AOC is AOC-Complete if log
(

1 + (c−1)c−1

cc

)
n − O(log n)

advice bits are necessary to achieve a competitive ratio of c .

Example AOC-Complete problems:
Vertex Cover, Dominating Set, Cycle Finding.

Joan Boyar Online Algorithms with Advice April/May 2019 55 / 93

AOC
Vertex Cover

Independent Set

Dominating Set Cycle Finding

Unit-Weight Knapsack
Maximum Matching

Simple Knapsack

Joan Boyar Online Algorithms with Advice April/May 2019 56 / 93

AOC

AOC-Complete

Vertex Cover

Independent Set

Dominating Set Cycle Finding

Unit-Weight Knapsack
Maximum Matching

Simple Knapsack

Joan Boyar Online Algorithms with Advice April/May 2019 57 / 93

AOC

AOC-Complete

Vertex Cover

Independent Set

Dominating Set Cycle Finding

Asymmetric String Guessing

Unit-Weight Knapsack
Maximum Matching

Simple Knapsack

Joan Boyar Online Algorithms with Advice April/May 2019 58 / 93

Asymmetric string guessing

Similar to string guessing.

Definition

The online problem, MinASG, is as follows:

The input is a (secret) string x ∈ {0, 1}n.

In round i , the algorithm answers ai ∈ {0, 1}.
The correct answer, xi is then revealed (known history).

If xi = 1 and ai = 0, the algorithm loses (cost ∞).

The cost of a feasible solution is
∑n

i=1 ai .

The goal is to minimize this cost.

Joan Boyar Online Algorithms with Advice April/May 2019 59 / 93

Asymmetric string guessing

Similar to string guessing.

Definition

The online problem, MinASG, is as follows:

The input is a (secret) string x ∈ {0, 1}n.

In round i , the algorithm answers ai ∈ {0, 1}.
The correct answer, xi is then revealed (known history).

If xi = 1 and ai = 0, the algorithm loses (cost ∞).

The cost of a feasible solution is
∑n

i=1 ai .

The goal is to minimize this cost.

Joan Boyar Online Algorithms with Advice April/May 2019 59 / 93

Asymmetric string guessing

Results:

MinASG is in AOC.

MinASG is AOC-Complete:

log

(
1 +

(c − 1)c−1

cc

)
n − O(log n)

advice bits are necessary to achieve a competitive ratio of c .

MinASG can be reduced to other problems.

Vertex Cover
Dominating Set
Set Cover
Cycle Finding

Joan Boyar Online Algorithms with Advice April/May 2019 60 / 93

Asymmetric string guessing is in AOC

Recall:

Definition

An accept/reject minimization problem is in (AOC),
Asymmetric Online Covering, if, for an online solution, Y :

1 If Y is feasible, cost(Y) = |Y |. Otherwise cost(Y) =∞.

2 A superset of a feasible solution is feasible.

Interpret guessing ai = 1 as accept and ai = 0 as reject.
A solution is the set of indices where ai = 1.

If a set is feasible, (xi = 1)⇒ (ai = 1), so any superset is feasible.
Clearly, ASG is in AOC.

Joan Boyar Online Algorithms with Advice April/May 2019 61 / 93

Asymmetric string guessing is in AOC

Recall:

Definition

An accept/reject minimization problem is in (AOC),
Asymmetric Online Covering, if, for an online solution, Y :

1 If Y is feasible, cost(Y) = |Y |. Otherwise cost(Y) =∞.

2 A superset of a feasible solution is feasible.

Interpret guessing ai = 1 as accept and ai = 0 as reject.
A solution is the set of indices where ai = 1.

If a set is feasible, (xi = 1)⇒ (ai = 1), so any superset is feasible.
Clearly, ASG is in AOC.

Joan Boyar Online Algorithms with Advice April/May 2019 61 / 93

Asymmetric string guessing is in AOC

Recall:

Definition

An accept/reject minimization problem is in (AOC),
Asymmetric Online Covering, if, for an online solution, Y :

1 If Y is feasible, cost(Y) = |Y |. Otherwise cost(Y) =∞.

2 A superset of a feasible solution is feasible.

Interpret guessing ai = 1 as accept and ai = 0 as reject.
A solution is the set of indices where ai = 1.

If a set is feasible, (xi = 1)⇒ (ai = 1), so any superset is feasible.
Clearly, ASG is in AOC.

Joan Boyar Online Algorithms with Advice April/May 2019 61 / 93

Asymmetric string guessing is AOC-Complete

Theorem

A c-competitive algorithm, Alg, for MinASG must read at least b bits
advice, where

b ≥ log2

(
max

t:bctc<n

(n
t

)(bctc
t

))−O(log2 n) = log

(
1 +

(c − 1)c−1

cc

)
n−O(log n)

Pf sketch (by contradiction)
Let b = max number of advice bits read, given n, c .

Suppose ∃t, s.t. bctc < n, b < log2

(
(nt)

(bctct)

)
.

In,t = {x̄ ∈ {0, 1}n | t =
∑n

i=1 xi}
|In,t | =

(n
t

)
Let the set of strings where the Oracle gives advice φ be Iφn,t ⊆ In,t .

Joan Boyar Online Algorithms with Advice April/May 2019 62 / 93

Asymmetric string guessing is AOC-Complete

Theorem

A c-competitive algorithm, Alg, for MinASG must read at least b bits
advice, where

b ≥ log2

(
max

t:bctc<n

(n
t

)(bctc
t

))−O(log2 n) = log

(
1 +

(c − 1)c−1

cc

)
n−O(log n)

Pf sketch (by contradiction)
Let b = max number of advice bits read, given n, c .

Suppose ∃t, s.t. bctc < n, b < log2

(
(nt)

(bctct)

)
.

In,t = {x̄ ∈ {0, 1}n | t =
∑n

i=1 xi}
|In,t | =

(n
t

)
Let the set of strings where the Oracle gives advice φ be Iφn,t ⊆ In,t .

Joan Boyar Online Algorithms with Advice April/May 2019 62 / 93

ASG is AOC-Complete, cont.

Since b < log2

(
(nt)

(bctct)

)
, number of different advice strings <

(nt)
(bctct)

.

By Pigeonhole Principle and |In,t | =
(n
t

)
,

∃φ s.t. |Iφn,t | >
(
bctc
t

)

Claim ∃x̄ ∈ Iφn,t where Alg answers 1 at least bctc+ 1 times.

Given Alg and Iφn,t , create an Adversary which forces this.

Consider strings in Iφn,t which are possible after Adversary has revealed
some bits.

Joan Boyar Online Algorithms with Advice April/May 2019 63 / 93

ASG is AOC-Complete, cont.

Since b < log2

(
(nt)

(bctct)

)
, number of different advice strings <

(nt)
(bctct)

.

By Pigeonhole Principle and |In,t | =
(n
t

)
,

∃φ s.t. |Iφn,t | >
(
bctc
t

)

Claim ∃x̄ ∈ Iφn,t where Alg answers 1 at least bctc+ 1 times.

Given Alg and Iφn,t , create an Adversary which forces this.

Consider strings in Iφn,t which are possible after Adversary has revealed
some bits.

Joan Boyar Online Algorithms with Advice April/May 2019 63 / 93

ASG is AOC-Complete, cont.

Since b < log2

(
(nt)

(bctct)

)
, number of different advice strings <

(nt)
(bctct)

.

By Pigeonhole Principle and |In,t | =
(n
t

)
,

∃φ s.t. |Iφn,t | >
(
bctc
t

)

Claim ∃x̄ ∈ Iφn,t where Alg answers 1 at least bctc+ 1 times.

Given Alg and Iφn,t , create an Adversary which forces this.

Consider strings in Iφn,t which are possible after Adversary has revealed
some bits.

Joan Boyar Online Algorithms with Advice April/May 2019 63 / 93

ASG is AOC-Complete, cont.

Iφ =

001 001110
001 001101
001 001011
001 000111
001 010011

Note: n = 9, t = 4. 〈x1, x2, x3〉 = 〈0, 0, 1〉 already known.

Alg is guessing x4. It can answer a4 = 0.

Adversary has to reveal x4 = 0.

Joan Boyar Online Algorithms with Advice April/May 2019 64 / 93

ASG is AOC-Complete, cont.

Iφ =

001 001110
001 001101
001 001011
001 000111
001 010011

Note: n = 9, t = 4. 〈x1, x2, x3〉 = 〈0, 0, 1〉 already known.

Alg is guessing x4. It can answer a4 = 0.

Adversary has to reveal x4 = 0.

Joan Boyar Online Algorithms with Advice April/May 2019 64 / 93

ASG is AOC-Complete, cont.

Iφ =

001 001110
001 001101
001 001011
001 000111
001 010011

Note: n = 9, t = 4. 〈x1, x2, x3〉 = 〈0, 0, 1〉 already known.

Alg is guessing x4. It can answer a4 = 0.

Adversary has to reveal x4 = 0.

Joan Boyar Online Algorithms with Advice April/May 2019 64 / 93

ASG is AOC-Complete, cont.

Iφ =

0010 01110
0010 01101
0010 01011
0010 00111
0010 10011

Note: n = 9, t = 4. 〈x1, x2, x3, x4〉 = 〈0, 0, 1, 0〉 already known.

Alg is guessing x5. It has to answer a5 = 1.
Otherwise Adversary chooses last string 001010011, and Alg has lost.

Suppose Adversary reveals x5 = 1.
Then the new Iφ = {001010011}. Alg makes no more errors.

Joan Boyar Online Algorithms with Advice April/May 2019 65 / 93

ASG is AOC-Complete, cont.

Iφ =

0010 01110
0010 01101
0010 01011
0010 00111
0010 10011

Note: n = 9, t = 4. 〈x1, x2, x3, x4〉 = 〈0, 0, 1, 0〉 already known.

Alg is guessing x5. It has to answer a5 = 1.
Otherwise Adversary chooses last string 001010011, and Alg has lost.

Suppose Adversary reveals x5 = 1.
Then the new Iφ = {001010011}. Alg makes no more errors.

Joan Boyar Online Algorithms with Advice April/May 2019 65 / 93

ASG is AOC-Complete, cont.

Iφ =

0010 01110
0010 01101
0010 01011
0010 00111
0010 10011

Note: n = 9, t = 4. 〈x1, x2, x3, x4〉 = 〈0, 0, 1, 0〉 already known.

Alg is guessing x5. It has to answer a5 = 1.
Otherwise Adversary chooses last string 001010011, and Alg has lost.

Suppose Adversary reveals x5 = 1.

Then the new Iφ = {001010011}. Alg makes no more errors.

Joan Boyar Online Algorithms with Advice April/May 2019 65 / 93

ASG is AOC-Complete, cont.

Iφ =

0010 01110
0010 01101
0010 01011
0010 00111
0010 10011

Note: n = 9, t = 4. 〈x1, x2, x3, x4〉 = 〈0, 0, 1, 0〉 already known.

Alg is guessing x5. It has to answer a5 = 1.
Otherwise Adversary chooses last string 001010011, and Alg has lost.

Suppose Adversary reveals x5 = 1.
Then the new Iφ = {001010011}. Alg makes no more errors.

Joan Boyar Online Algorithms with Advice April/May 2019 65 / 93

ASG is AOC-Complete, cont.

Iφ =

0010 01110
0010 01101
0010 01011
0010 00111
0010 10011

Note: n = 9, t = 4. 〈x1, x2, x3, x4〉 = 〈0, 0, 1, 0〉 already known.

Alg is guessing x5. It has to answer a5 = 1.
Otherwise Adversary chooses last string 001010011, and Alg has lost.

Suppose Adversary reveals x5 = 0.
Then the new Iφ contains 4 strings. Alg must answer 1 for remaining bits.

Joan Boyar Online Algorithms with Advice April/May 2019 66 / 93

ASG is AOC-Complete, cont.

Iφ =

0010 01110
0010 01101
0010 01011
0010 00111
0010 10011

Note: n = 9, t = 4. 〈x1, x2, x3, x4〉 = 〈0, 0, 1, 0〉 already known.

Alg is guessing x5. It has to answer a5 = 1.
Otherwise Adversary chooses last string 001010011, and Alg has lost.

Suppose Adversary reveals x5 = 0.

Then the new Iφ contains 4 strings. Alg must answer 1 for remaining bits.

Joan Boyar Online Algorithms with Advice April/May 2019 66 / 93

ASG is AOC-Complete, cont.

Iφ =

0010 01110
0010 01101
0010 01011
0010 00111
0010 10011

Note: n = 9, t = 4. 〈x1, x2, x3, x4〉 = 〈0, 0, 1, 0〉 already known.

Alg is guessing x5. It has to answer a5 = 1.
Otherwise Adversary chooses last string 001010011, and Alg has lost.

Suppose Adversary reveals x5 = 0.
Then the new Iφ contains 4 strings. Alg must answer 1 for remaining bits.

Joan Boyar Online Algorithms with Advice April/May 2019 66 / 93

ASG is AOC-Complete, cont.

Round i :

Let m = |Iφ|, h = number of 1’s remaining in each string.
Let m0 = number of strings in Iφ where xi = 0. m1 = m −m0.

If m0 = m, Adversary answers xi = 0.
If m0 < m, look at minimum number of columns with ones:

Let d1 = min{d ′ | m1 ≤
(d ′

h−1
)
}

Let d = min{d ′ | m ≤
(d ′
h

)
}

If d1 + 1 ≥ d then
Adversary answers xi = 1.

Otherwise
Adversary answers xi = 0.

Joan Boyar Online Algorithms with Advice April/May 2019 67 / 93

ASG is AOC-Complete, cont.

Round i :

Let m = |Iφ|, h = number of 1’s remaining in each string.
Let m0 = number of strings in Iφ where xi = 0. m1 = m −m0.

If m0 = m, Adversary answers xi = 0.
If m0 < m, look at minimum number of columns with ones:

Let d1 = min{d ′ | m1 ≤
(d ′

h−1
)
}

Let d = min{d ′ | m ≤
(d ′
h

)
}

If d1 + 1 ≥ d then
Adversary answers xi = 1.

Otherwise
Adversary answers xi = 0.

Joan Boyar Online Algorithms with Advice April/May 2019 67 / 93

ASG is AOC-Complete, cont.

Iφ =

0010 01110
0010 01101
0010 01011
0010 00111
0010 10011

Note: n = 9, t = 4. 〈x1, x2, x3, x4〉 = 〈0, 0, 1, 0〉 already known.

Alg is guessing x5. It has to answer a5 = 1.

Note: m = 5, h = 3, m0 = 4, m1 = 1.
d1 = min{d ′ | m1 ≤

(d ′

h−1
)
} = min{d ′ | 1 ≤

(d ′
2

)
} = 2

Let d = min{d ′ | m ≤
(d ′
h

)
} = min{d ′ | 5 ≤

(d ′
3

)
} = 5

These are the number of remaining columns where Alg is forced to
answer aj = 1 (for d1, not counting the current column).

Joan Boyar Online Algorithms with Advice April/May 2019 68 / 93

ASG is AOC-Complete, cont.

Iφ =

0010 01110
0010 01101
0010 01011
0010 00111
0010 10011

Note: n = 9, t = 4. 〈x1, x2, x3, x4〉 = 〈0, 0, 1, 0〉 already known.

Alg is guessing x5. It has to answer a5 = 1.

Note: m = 5, h = 3, m0 = 4, m1 = 1.
d1 = min{d ′ | m1 ≤

(d ′

h−1
)
} = min{d ′ | 1 ≤

(d ′
2

)
} = 2

Let d = min{d ′ | m ≤
(d ′
h

)
} = min{d ′ | 5 ≤

(d ′
3

)
} = 5

These are the number of remaining columns where Alg is forced to
answer aj = 1 (for d1, not counting the current column).

Joan Boyar Online Algorithms with Advice April/May 2019 68 / 93

ASG is AOC-Complete, cont.

Using this adversary, the total number of columns (indices) where Alg
needs to answer 1 does not decrease.

Let L(m, h) denote the minimum cost Adversary can force.
L(m, h) ≥ min{d | m ≤

(d
h

)
}.

Initially, m >
(bctc

t

)
and h = t, so the minimum cost is at least bctc+ 1.

Contradiction

Joan Boyar Online Algorithms with Advice April/May 2019 69 / 93

ASG is AOC-Complete, cont.

Using this adversary, the total number of columns (indices) where Alg
needs to answer 1 does not decrease.

Let L(m, h) denote the minimum cost Adversary can force.
L(m, h) ≥ min{d | m ≤

(d
h

)
}.

Initially, m >
(bctc

t

)
and h = t, so the minimum cost is at least bctc+ 1.

Contradiction

Joan Boyar Online Algorithms with Advice April/May 2019 69 / 93

Advice bits needed to obtain competitive ratio c

0.0

0.2

0.4

0.6

0.8

1.0

A
d
v
ic
e
b
it
s
p
er

re
q
u
es
t

1 2 3 4 5
Competitive ratio c

ASG SG
1

c

1

e ln(2)c

Joan Boyar Online Algorithms with Advice April/May 2019 70 / 93

Vertex Cover is AOC-Complete

Recall that Vertex Cover is in AOC.
To show completeness, we reduce from Asymmetric String Guessing:

x = 〈x1, x2, ..., xn〉
V = {v1, v2, ..., vn},
E = {(vi , vj) | xi = 1 and i < j}.

0 1 1 0 1 0

Joan Boyar Online Algorithms with Advice April/May 2019 71 / 93

Vertex Cover is AOC-Complete

Recall that Vertex Cover is in AOC.
To show completeness, we reduce from Asymmetric String Guessing:

x = 〈x1, x2, ..., xn〉
V = {v1, v2, ..., vn},
E = {(vi , vj) | xi = 1 and i < j}.

0 1 1 0 1 0

Joan Boyar Online Algorithms with Advice April/May 2019 71 / 93

Vertex Cover is AOC-Complete, cont.

Suppose we have a c-competitive algorithm, Alg, and an oracle, O,
for Vertex Cover.

Construct a c-competitive algorithm, Alg’, and an oracle, O ′, for
ASG.

x = 〈x1, x2, ..., xn〉
V = {v1, v2, ..., vn},
E = {(vi , vj) | xi = 1 and i < j}.

0 1 1 0 1 0

Joan Boyar Online Algorithms with Advice April/May 2019 72 / 93

Vertex Cover is AOC-Complete, cont.

If Alg accepts all 1-vertices, Alg’ answers 1 iff Alg accepts.

Since Alg is c-competitive, Alg’ is too.

x = 〈x1, x2, ..., xn〉
V = {v1, v2, ..., vn},
E = {(vi , vj) | xi = 1 and i < j}.

0 1 1 0 1 0

Alg’ answers 〈a1, a2, a3, a4, a5, a6〉 = 〈0, 1, 1, 0, 1, 1〉.

Joan Boyar Online Algorithms with Advice April/May 2019 73 / 93

Vertex Cover is AOC-Complete, cont.

If Alg rejects some 1-vertex, let vi be the first it rejects.

Oracle, O ′, specifies index i and index j of some 0-vertex accepted.

For index i , Alg’ answers 1.
For index j , Alg’ answers 0.
For all other indices, Alg’ answers 1 iff Alg accepts.

Alg’ answers 1 as many times as Alg accepts.
Since Alg is c-competitive, Alg’ is too.

0 1 1 0 1 0

Joan Boyar Online Algorithms with Advice April/May 2019 74 / 93

Vertex Cover is AOC-Complete, cont.

If Alg rejects some 1-vertex, let vi be the first it rejects.

Oracle, O ′, specifies index i and index j of some 0-vertex accepted.

For index i , Alg’ answers 1.
For index j , Alg’ answers 0.
For all other indices, Alg’ answers 1 iff Alg accepts.

Alg’ answers 1 as many times as Alg accepts.
Since Alg is c-competitive, Alg’ is too.

0 1 1 0 1 0

Joan Boyar Online Algorithms with Advice April/May 2019 74 / 93

Vertex Cover is AOC-Complete, cont.

If Alg rejects some 1-vertex, let vi be the first it rejects.

Oracle, O ′, specifies index i and index j of some 0-vertex accepted.

For index i , Alg’ answers 1.
For index j , Alg’ answers 0.
For all other indices, Alg’ answers 1 iff Alg accepts.

Alg’ answers 1 as many times as Alg accepts.
Since Alg is c-competitive, Alg’ is too.

0 1 1 0 1 0

Joan Boyar Online Algorithms with Advice April/May 2019 74 / 93

AOC-Complete problems

Examples of AOC-Complete problems:

Vertex Cover
Dominating Set
Independent Set
Disjoint Path Allocation
Set Cover

There are problems in AOC, which are not complete:

Unit-Weight Knapsack
Maximum Matching

Joan Boyar Online Algorithms with Advice April/May 2019 75 / 93

Comparison with previous results

Independent Set
[Halldórsson,Iwama,Miyazaki,Taketomi, 2009]

Upper bound n/c
Lower bound n/2c

Disjoint Path Allocation
[Böckenhauer,Komm,Královič,Královič,Mömke, 2009]

Upper bound of O
(

n log2 c
c

)
Lower bound of n/2c

All other problems: No previous results

All ASG and AOC results
[B.,Favrholdt,Kudahl,Mikkelsen, 2017]

Joan Boyar Online Algorithms with Advice April/May 2019 76 / 93

Section 4

Randomization and list access

Joan Boyar Online Algorithms with Advice April/May 2019 77 / 93

List Accessing Problem

Requests: for items in a list.

Cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

Joan Boyar Online Algorithms with Advice April/May 2019 78 / 93

List Accessing Problem

Requests: for items in a list.

Cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

cost: 4

Joan Boyar Online Algorithms with Advice April/May 2019 78 / 93

List Accessing Problem

Requests: for items in a list.

Cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

cost: 4+2

Joan Boyar Online Algorithms with Advice April/May 2019 78 / 93

List Accessing Problem

Requests: for items in a list.

Cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

cost: 4+2+2

Joan Boyar Online Algorithms with Advice April/May 2019 78 / 93

List Accessing Problem

Requests: for items in a list.

Cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

cost: 4+2+2+4

Joan Boyar Online Algorithms with Advice April/May 2019 78 / 93

List Accessing Problem

Requests: for items in a list.

Cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

cost: 4+2+2+4+3

Joan Boyar Online Algorithms with Advice April/May 2019 78 / 93

List Accessing Problem

Requests: for items in a list.

Cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

cost: 4+2+2+4+3+1

Joan Boyar Online Algorithms with Advice April/May 2019 78 / 93

List Accessing Problem

Requests: for items in a list.

Cost of accessing an item in index i is i .

< d b b d c a c >

a b c d e

cost: 4+2+2+4+3+1+3 = 19

Joan Boyar Online Algorithms with Advice April/May 2019 78 / 93

Self-Adjusting Lists

Update the list to adjust it to the patterns in the list.

Free exchanges: Move a requested item closer to the front. No cost.
Paid exchanges: Swap positions of two consecutive items. Cost 1.

Joan Boyar Online Algorithms with Advice April/May 2019 79 / 93

Self-Adjusting Lists

Update the list to adjust it to the patterns in the list.

Free exchanges: Move a requested item closer to the front. No cost.

Paid exchanges: Swap positions of two consecutive items. Cost 1.

Joan Boyar Online Algorithms with Advice April/May 2019 79 / 93

Self-Adjusting Lists

Update the list to adjust it to the patterns in the list.

Free exchanges: Move a requested item closer to the front. No cost.
Paid exchanges: Swap positions of two consecutive items. Cost 1.

Joan Boyar Online Algorithms with Advice April/May 2019 79 / 93

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

a b c d e

cost: 4

Total cost: 20.

Joan Boyar Online Algorithms with Advice April/May 2019 80 / 93

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

d a b c e

cost: 4

Total cost: 20.

Joan Boyar Online Algorithms with Advice April/May 2019 80 / 93

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

d a b c e

cost: 4+3

Total cost: 20.

Joan Boyar Online Algorithms with Advice April/May 2019 80 / 93

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

b d a c e

cost: 4+3

Total cost: 20.

Joan Boyar Online Algorithms with Advice April/May 2019 80 / 93

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

b d a c e

cost: 4+3+1

Total cost: 20.

Joan Boyar Online Algorithms with Advice April/May 2019 80 / 93

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

b d a c e

cost: 4+3+1+2

Total cost: 20.

Joan Boyar Online Algorithms with Advice April/May 2019 80 / 93

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

d b a c e

cost: 4+3+1+2+4

Total cost: 20.

Joan Boyar Online Algorithms with Advice April/May 2019 80 / 93

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

c d b a e

cost: 4+3+1+2+4+4

Total cost: 20.

Joan Boyar Online Algorithms with Advice April/May 2019 80 / 93

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

a c d b e

cost: 4+3+1+2+4+4+2

Total cost: 20.

Joan Boyar Online Algorithms with Advice April/May 2019 80 / 93

Move-To-Front (MTF)

After each access, move the requested item to the front.

It only uses free exchanges.

< d b b d c a c >

c a d b e

cost: 4+3+1+2+4+4+2

Total cost: 20.

Joan Boyar Online Algorithms with Advice April/May 2019 80 / 93

TIMESTAMP (TS)

After an access to x ,
move x to the front of the first item y
which has been requested at most once since the last access to x .

Do nothing if such an item y does not exist.
It only uses free exchanges.

< d b b d c a c >

a b c d e

cost: 4

Total cost: 23.

Joan Boyar Online Algorithms with Advice April/May 2019 81 / 93

TIMESTAMP (TS)

After an access to x ,
move x to the front of the first item y
which has been requested at most once since the last access to x .

Do nothing if such an item y does not exist.
It only uses free exchanges.

< d b b d c a c >

a b c d e

cost: 4+2

Total cost: 23.

Joan Boyar Online Algorithms with Advice April/May 2019 81 / 93

TIMESTAMP (TS)

After an access to x ,
move x to the front of the first item y
which has been requested at most once since the last access to x .

Do nothing if such an item y does not exist.
It only uses free exchanges.

< d b b d c a c >

a b c d e

cost: 4+2+2

Total cost: 23.

Joan Boyar Online Algorithms with Advice April/May 2019 81 / 93

TIMESTAMP (TS)

After an access to x ,
move x to the front of the first item y
which has been requested at most once since the last access to x .

Do nothing if such an item y does not exist.
It only uses free exchanges.

< d b b d c a c >

b a c d e

cost: 4+2+2

Total cost: 23.

Joan Boyar Online Algorithms with Advice April/May 2019 81 / 93

TIMESTAMP (TS)

After an access to x ,
move x to the front of the first item y
which has been requested at most once since the last access to x .

Do nothing if such an item y does not exist.
It only uses free exchanges.

< d b b d c a c >

b a c d e

cost: 4+2+2+4

Total cost: 23.

Joan Boyar Online Algorithms with Advice April/May 2019 81 / 93

TIMESTAMP (TS)

After an access to x ,
move x to the front of the first item y
which has been requested at most once since the last access to x .

Do nothing if such an item y does not exist.
It only uses free exchanges.

< d b b d c a c >

b d a c e

cost: 4+2+2+4

Total cost: 23.

Joan Boyar Online Algorithms with Advice April/May 2019 81 / 93

TIMESTAMP (TS)

After an access to x ,
move x to the front of the first item y
which has been requested at most once since the last access to x .

Do nothing if such an item y does not exist.
It only uses free exchanges.

< d b b d c a c >

b d a c e

cost: 4+2+2+4+4

Total cost: 23.

Joan Boyar Online Algorithms with Advice April/May 2019 81 / 93

TIMESTAMP (TS)

After an access to x ,
move x to the front of the first item y
which has been requested at most once since the last access to x .

Do nothing if such an item y does not exist.
It only uses free exchanges.

< d b b d c a c >

b d a c e

cost: 4+2+2+4+4+3

Total cost: 23.

Joan Boyar Online Algorithms with Advice April/May 2019 81 / 93

TIMESTAMP (TS)

After an access to x ,
move x to the front of the first item y
which has been requested at most once since the last access to x .

Do nothing if such an item y does not exist.
It only uses free exchanges.

< d b b d c a c >

b d a c e

cost: 4+2+2+4+4+3+4

Total cost: 23.

Joan Boyar Online Algorithms with Advice April/May 2019 81 / 93

TIMESTAMP (TS)

After an access to x ,
move x to the front of the first item y
which has been requested at most once since the last access to x .

Do nothing if such an item y does not exist.
It only uses free exchanges.

< d b b d c a c >

c b d a e

cost: 4+2+2+4+4+3+4

Total cost: 23.

Joan Boyar Online Algorithms with Advice April/May 2019 81 / 93

Competitive Analysis

Competitive ratio of Mtf for a list of length l is 2− 2
l+1

[Sleator,Tarjan, 1985; Irani, 1991].

Competitive ratio of TS is 2− 1
l [Albers, 1994].

No deterministic online algorithm can have a competitive ratio better
than 2− 2

l+1 [Irani, 1991].

Joan Boyar Online Algorithms with Advice April/May 2019 82 / 93

Breaking the lower bound

[B.,Kamali,Larsen,López-Ortiz, 2016]

How many bits of advice are sufficient to perform strictly better than
any online algorithm?

We show 2 bits of advice are sufficient.

We consider three classical algorithms and show that for any
sequence, at least one of them has a performance ratio of at most
1.6̄:

TS (TIMESTAMP)
Mtfe (Move-To-Front on Even accesses)
Mtfo (Move-To-Front on Odd accesses)

Joan Boyar Online Algorithms with Advice April/May 2019 83 / 93

Breaking the lower bound

[B.,Kamali,Larsen,López-Ortiz, 2016]

How many bits of advice are sufficient to perform strictly better than
any online algorithm?

We show 2 bits of advice are sufficient.

We consider three classical algorithms and show that for any
sequence, at least one of them has a performance ratio of at most
1.6̄:

TS (TIMESTAMP)
Mtfe (Move-To-Front on Even accesses)
Mtfo (Move-To-Front on Odd accesses)

Joan Boyar Online Algorithms with Advice April/May 2019 83 / 93

MTF-every-other-access

Mtfe and Mtfo are the MTF-every-other-access (Mtf2) algorithms.

What is the competitive ratio of Mtf2?

Theorem

Mtf2 algorithms are 2.5-competitive.

In an unpublished manuscript, 2003, Ansgar Grüne proves a lower bound
of 7

3 and claims an upper bound of 2.5.
We confirm that claim and raise the lower bound.

Consider a list of ` items, initially ordered as [a1, a2, . . . , a`].
Consider the following sequence of requests:

σm =
〈
(a1, a2, ..., a`, a

3
1, a

3
2, ..., a

3
` , a`, a`−1, ..., a1, a

3
` , a

3
`−1, ..., a

3
1)m
〉
.

We show that asymptotically, limm→∞Mtfo(σm) = 2.5Opt(σm).

Joan Boyar Online Algorithms with Advice April/May 2019 84 / 93

MTF-every-other-access

Mtfe and Mtfo are the MTF-every-other-access (Mtf2) algorithms.

What is the competitive ratio of Mtf2?

Theorem

Mtf2 algorithms are 2.5-competitive.

In an unpublished manuscript, 2003, Ansgar Grüne proves a lower bound
of 7

3 and claims an upper bound of 2.5.
We confirm that claim and raise the lower bound.

Consider a list of ` items, initially ordered as [a1, a2, . . . , a`].
Consider the following sequence of requests:

σm =
〈
(a1, a2, ..., a`, a

3
1, a

3
2, ..., a

3
` , a`, a`−1, ..., a1, a

3
` , a

3
`−1, ..., a

3
1)m
〉
.

We show that asymptotically, limm→∞Mtfo(σm) = 2.5Opt(σm).

Joan Boyar Online Algorithms with Advice April/May 2019 84 / 93

MTF-every-other-access

Mtfe and Mtfo are the MTF-every-other-access (Mtf2) algorithms.

What is the competitive ratio of Mtf2?

Theorem

Mtf2 algorithms are 2.5-competitive.

In an unpublished manuscript, 2003, Ansgar Grüne proves a lower bound
of 7

3 and claims an upper bound of 2.5.
We confirm that claim and raise the lower bound.

Consider a list of ` items, initially ordered as [a1, a2, . . . , a`].
Consider the following sequence of requests:

σm =
〈
(a1, a2, ..., a`, a

3
1, a

3
2, ..., a

3
` , a`, a`−1, ..., a1, a

3
` , a

3
`−1, ..., a

3
1)m
〉
.

We show that asymptotically, limm→∞Mtfo(σm) = 2.5Opt(σm).

Joan Boyar Online Algorithms with Advice April/May 2019 84 / 93

MTF-every-other-access

Mtfe and Mtfo are the MTF-every-other-access (Mtf2) algorithms.

What is the competitive ratio of Mtf2?

Theorem

Mtf2 algorithms are 2.5-competitive.

In an unpublished manuscript, 2003, Ansgar Grüne proves a lower bound
of 7

3 and claims an upper bound of 2.5.
We confirm that claim and raise the lower bound.

Consider a list of ` items, initially ordered as [a1, a2, . . . , a`].
Consider the following sequence of requests:

σm =
〈
(a1, a2, ..., a`, a

3
1, a

3
2, ..., a

3
` , a`, a`−1, ..., a1, a

3
` , a

3
`−1, ..., a

3
1)m
〉
.

We show that asymptotically, limm→∞Mtfo(σm) = 2.5Opt(σm).

Joan Boyar Online Algorithms with Advice April/May 2019 84 / 93

Breaking the lower bound

A variety of techniques are used.

Partial cost model:

The cost of accessing position i is i − 1.
The upper bounds hold in the full cost model.

These algorithms have pair-wise property:

The relative order of two items in the lists maintained by the
algorithms only depends on the requests to those items.
To prove an upper-bound for competitive ratio, it is sufficient to study
the algorithms for lists of length 2.

Phase-partitioning technique:

Compare the costs of the algorithms with Opt for each projected
sequence in phases.
Each phase ends with two consecutive requests to the same item.
We need to have the same phases for all algorithms.

Joan Boyar Online Algorithms with Advice April/May 2019 85 / 93

Breaking the lower bound

A variety of techniques are used.

Partial cost model:

The cost of accessing position i is i − 1.
The upper bounds hold in the full cost model.

These algorithms have pair-wise property:

The relative order of two items in the lists maintained by the
algorithms only depends on the requests to those items.
To prove an upper-bound for competitive ratio, it is sufficient to study
the algorithms for lists of length 2.

Phase-partitioning technique:

Compare the costs of the algorithms with Opt for each projected
sequence in phases.
Each phase ends with two consecutive requests to the same item.
We need to have the same phases for all algorithms.

Joan Boyar Online Algorithms with Advice April/May 2019 85 / 93

Breaking the lower bound

A variety of techniques are used.

Partial cost model:

The cost of accessing position i is i − 1.
The upper bounds hold in the full cost model.

These algorithms have pair-wise property:

The relative order of two items in the lists maintained by the
algorithms only depends on the requests to those items.
To prove an upper-bound for competitive ratio, it is sufficient to study
the algorithms for lists of length 2.

Phase-partitioning technique:

Compare the costs of the algorithms with Opt for each projected
sequence in phases.
Each phase ends with two consecutive requests to the same item.
We need to have the same phases for all algorithms.

Joan Boyar Online Algorithms with Advice April/May 2019 85 / 93

Breaking the lower bound

A variety of techniques are used.

Partial cost model:

The cost of accessing position i is i − 1.
The upper bounds hold in the full cost model.

These algorithms have pair-wise property:

The relative order of two items in the lists maintained by the
algorithms only depends on the requests to those items.
To prove an upper-bound for competitive ratio, it is sufficient to study
the algorithms for lists of length 2.

Phase-partitioning technique:

Compare the costs of the algorithms with Opt for each projected
sequence in phases.
Each phase ends with two consecutive requests to the same item.
We need to have the same phases for all algorithms.

Joan Boyar Online Algorithms with Advice April/May 2019 85 / 93

Breaking the lower bound

Phase-partitioning technique:

Compare the costs of the algorithms with Opt for each projected
sequence in phases.
Each phase ends with two consecutive requests to the same item.

Type 1 phase: At start: L = [x , y].
AlgMin(σ) = min{Mtfo(σ),Mtfe)(σ)}
AlgMax(σ) = max{Mtfo(σ),Mtfe)(σ)}
The costs are in the partial cost model.

Phase AlgMin AlgMax TS
Sum (AlgMin +

Opt’ Sum
Opt′AlgMax + TS)

x jyy 1 2 2 5 1 5

x j(yx)2iyy ≤ 3i + 1 ≤ 3i + 2 2× 2i = 4i ≤ 10i + 3 2i + 1 < 5

x j(yx)2i−2yxyy ≤ 3(i − 1) + 1 ≤ 3(i − 1) + 1 2× (2i − 1) ≤ 6(i − 1) + 2 + 4 2i < 5
+AlgMin(〈xyy〉) +AlgMax(〈xyy〉) = 4i − 2 +(4i − 2) = 10i − 2

x j(yx)2ix ≤ 3i ≤ 3i + 1 2× 2i − 1 ≤ (6i + 1) + (4i − 1) 2i ≤ 5
= 4i − 1 = 10i

x j(yx)2i−2yxx ≤ 3(i − 1) ≤ 3(i − 1) 2× (2i − 1)− 1 ≤ 6(i − 1) + 4 2i − 1 ≤ 5
+AlgMin(〈yxx〉) +AlgMax(〈yxx〉) = 4i − 3 +(4i − 3) = 10i − 5

Joan Boyar Online Algorithms with Advice April/May 2019 86 / 93

Breaking the lower bound

Phase-partitioning technique:

Compare the costs of the algorithms with Opt for each projected
sequence in phases.
Each phase ends with two consecutive requests to the same item.

Type 1 phase: At start: L = [x , y].
AlgMin(σ) = min{Mtfo(σ),Mtfe)(σ)}
AlgMax(σ) = max{Mtfo(σ),Mtfe)(σ)}
The costs are in the partial cost model.

Phase AlgMin AlgMax TS
Sum (AlgMin +

Opt’ Sum
Opt′AlgMax + TS)

x jyy 1 2 2 5 1 5

x j(yx)2iyy ≤ 3i + 1 ≤ 3i + 2 2× 2i = 4i ≤ 10i + 3 2i + 1 < 5

x j(yx)2i−2yxyy ≤ 3(i − 1) + 1 ≤ 3(i − 1) + 1 2× (2i − 1) ≤ 6(i − 1) + 2 + 4 2i < 5
+AlgMin(〈xyy〉) +AlgMax(〈xyy〉) = 4i − 2 +(4i − 2) = 10i − 2

x j(yx)2ix ≤ 3i ≤ 3i + 1 2× 2i − 1 ≤ (6i + 1) + (4i − 1) 2i ≤ 5
= 4i − 1 = 10i

x j(yx)2i−2yxx ≤ 3(i − 1) ≤ 3(i − 1) 2× (2i − 1)− 1 ≤ 6(i − 1) + 4 2i − 1 ≤ 5
+AlgMin(〈yxx〉) +AlgMax(〈yxx〉) = 4i − 3 +(4i − 3) = 10i − 5

Joan Boyar Online Algorithms with Advice April/May 2019 86 / 93

Breaking the lower bound

Theorem

For any sequence σ we have TS(σ) + Mtfo(σ) + Mtfe(σ) ≤ 5Opt(σ)

Since at least one must do as well as the average:

Theorem

There is an algorithm that receives two bits of advice and achieves a
competitive ratio of 1.6̄.

This can be regarded as the best existing (deterministic)
approximation algorithm for the offline problem.

If list access is used for file compression, adding two bits at the
beginning of the file can guarantee better compression.

Joan Boyar Online Algorithms with Advice April/May 2019 87 / 93

Breaking the lower bound

Theorem

For any sequence σ we have TS(σ) + Mtfo(σ) + Mtfe(σ) ≤ 5Opt(σ)

Since at least one must do as well as the average:

Theorem

There is an algorithm that receives two bits of advice and achieves a
competitive ratio of 1.6̄.

This can be regarded as the best existing (deterministic)
approximation algorithm for the offline problem.

If list access is used for file compression, adding two bits at the
beginning of the file can guarantee better compression.

Joan Boyar Online Algorithms with Advice April/May 2019 87 / 93

Breaking the lower bound

Theorem

For any sequence σ we have TS(σ) + Mtfo(σ) + Mtfe(σ) ≤ 5Opt(σ)

Since at least one must do as well as the average:

Theorem

There is an algorithm that receives two bits of advice and achieves a
competitive ratio of 1.6̄.

This can be regarded as the best existing (deterministic)
approximation algorithm for the offline problem.

If list access is used for file compression, adding two bits at the
beginning of the file can guarantee better compression.

Joan Boyar Online Algorithms with Advice April/May 2019 87 / 93

Breaking the lower bound

Theorem

For any sequence σ we have TS(σ) + Mtfo(σ) + Mtfe(σ) ≤ 5Opt(σ)

Since at least one must do as well as the average:

Theorem

There is an algorithm that receives two bits of advice and achieves a
competitive ratio of 1.6̄.

This can be regarded as the best existing (deterministic)
approximation algorithm for the offline problem.

If list access is used for file compression, adding two bits at the
beginning of the file can guarantee better compression.

Joan Boyar Online Algorithms with Advice April/May 2019 87 / 93

Randomization and advice

The randomized algorithm which chooses each of TS, Mtfe, and
Mtfo with probability 1/3 is 1.6̄-competitive.

If the number of algorithms was 2k for some k ,
there would be a randomized algorithm using only k bits of
randomness.

A c-competitive randomized algorithm using b(n) bits of randomness
implies a c-competitive algorithm using at most b(n) bits of advice.

If there is provably no algorithm which is c-competitive using only
b(n) bits of advice, then there is no c-competitive randomized
algorithm using only b(n) bits of randomness.

Joan Boyar Online Algorithms with Advice April/May 2019 88 / 93

Randomization and advice

A c-competitive randomized algorithm using b(n) bits of randomness
implies a c-competitive algorithm using at most b(n) bits of advice.

[Böckenhauer,Komm,Královic,Královic, 2011]
A c-competitive randomized algorithm
implies a (c + ε)-competitive algorithm using at most

b(n) = dlog ne+ 2dlogdlog nee+ log

(⌊
log(m(n))

log(1 + ε)

⌋
+ 1

)
bits of advice.

The number of different inputs of length n is m(n).
Holds for any ε > 0.

Now proving that any algorithm which is c-competitive requires
enough advice, shows there is no c ′-competitive randomized
algorithm.

Joan Boyar Online Algorithms with Advice April/May 2019 89 / 93

Randomization and advice

A c-competitive randomized algorithm using b(n) bits of randomness
implies a c-competitive algorithm using at most b(n) bits of advice.

[Böckenhauer,Komm,Královic,Královic, 2011]
A c-competitive randomized algorithm
implies a (c + ε)-competitive algorithm using at most

b(n) = dlog ne+ 2dlogdlog nee+ log

(⌊
log(m(n))

log(1 + ε)

⌋
+ 1

)
bits of advice.
The number of different inputs of length n is m(n).
Holds for any ε > 0.

Now proving that any algorithm which is c-competitive requires
enough advice, shows there is no c ′-competitive randomized
algorithm.

Joan Boyar Online Algorithms with Advice April/May 2019 89 / 93

Randomization and advice

A c-competitive randomized algorithm using b(n) bits of randomness
implies a c-competitive algorithm using at most b(n) bits of advice.

[Böckenhauer,Komm,Královic,Královic, 2011]
A c-competitive randomized algorithm
implies a (c + ε)-competitive algorithm using at most

b(n) = dlog ne+ 2dlogdlog nee+ log

(⌊
log(m(n))

log(1 + ε)

⌋
+ 1

)
bits of advice.
The number of different inputs of length n is m(n).
Holds for any ε > 0.

Now proving that any algorithm which is c-competitive requires
enough advice, shows there is no c ′-competitive randomized
algorithm.

Joan Boyar Online Algorithms with Advice April/May 2019 89 / 93

Randomization and advice

The randomized k-server conjecture claims there is a randomized
algorithm for the k-server problem which is Θ(log k)-competitive.

[Böckenhauer,Komm,Královic,Královic, 2011]
If every online algorithm with advice for the k-server problem needs to use
at least ω(log n) advice bits to be O(log k)-competitive, the randomized
k-server conjecture does not hold.

Joan Boyar Online Algorithms with Advice April/May 2019 90 / 93

Randomization and advice

The randomized k-server conjecture claims there is a randomized
algorithm for the k-server problem which is Θ(log k)-competitive.

[Böckenhauer,Komm,Královic,Královic, 2011]
If every online algorithm with advice for the k-server problem needs to use
at least ω(log n) advice bits to be O(log k)-competitive, the randomized
k-server conjecture does not hold.

Joan Boyar Online Algorithms with Advice April/May 2019 90 / 93

Section 5

Concluding remarks

Joan Boyar Online Algorithms with Advice April/May 2019 91 / 93

Concluding remarks

Lower bounds on advice complexity can:

Rule out possibilities for certain semi-online approaches.
Rule out possibilities for randomized approaches.

Upper bounds can be either practical or purely theoretical.

There is a start of a complexity theory, based on string guessing
problems.

Joan Boyar Online Algorithms with Advice April/May 2019 92 / 93

Concluding remarks

Lower bounds on advice complexity can:

Rule out possibilities for certain semi-online approaches.
Rule out possibilities for randomized approaches.

Upper bounds can be either practical or purely theoretical.

There is a start of a complexity theory, based on string guessing
problems.

Joan Boyar Online Algorithms with Advice April/May 2019 92 / 93

Concluding remarks

Lower bounds on advice complexity can:

Rule out possibilities for certain semi-online approaches.
Rule out possibilities for randomized approaches.

Upper bounds can be either practical or purely theoretical.

There is a start of a complexity theory, based on string guessing
problems.

Joan Boyar Online Algorithms with Advice April/May 2019 92 / 93

Thank you for your attention.

Joan Boyar Online Algorithms with Advice April/May 2019 93 / 93

	The advice model
	The bin packing problem
	Bin packing background
	Advice complexity results for bin packing

	An advice complexity class, AOC
	Vertex Cover
	A complexity class for online problems
	The class AOC
	Asymmetric string guessing
	Vertex Cover is AOC-Complete

	Randomization and list access
	Problem statement
	Online algorithms
	Breaking the lower bound
	Randomization and advice

	Concluding remarks

