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Abstract. The relative worst order ratio, a new measure for the quality of on-line algorithms, was recently
defined and applied to two bin packing problems. Here, we extend the definition and apply it to the paging
problem. Work in progress by other researchers shows that the measure gives interesting results and new
separations for bin coloring and scheduling problems as well.
Using the relative worst order ratio, we obtain the following results: We devise a new deterministic paging
algorithm, Retrospective-LRU, and show that it performs better than LRU. This is supported by exper-
imental results, but contrasts with the competitive ratio. All deterministic marking algorithms have the
same competitive ratio, but here we find that LRU is better than FWF. Furthermore, LRU is better than
Permπ, which also has the same competitive ratio as LRU. No deterministic marking algorithm can be
significantly better than LRU, but the randomized algorithm MARK is better than LRU. Finally, look-
ahead is shown to be a significant advantage, in contrast to the competitive ratio, which does not reflect
that look-ahead can be helpful.

1 Introduction

The standard measure for the quality of on-line algorithms is the competitive ratio [17, 28, 20], which
is, roughly speaking, the worst-case ratio, over all possible input sequences, of the on-line performance
to the optimal off-line performance. The definition of the competitive ratio is essentially identical to
that of the approximation ratio. This seems natural in that on-line algorithms can be viewed as a
special class of approximation algorithms. However, for approximation algorithms, the comparison
to an optimal off-line algorithm, OPT, is natural, since the approximation algorithm is compared
to another algorithm of the same general type, just with more computing power, while for on-line
algorithms, the comparison to OPT is to a different type of algorithm.

Although the competitive ratio has been an extremely useful notion, in many cases, and particularly
for the paging problem, it has appeared inadequate at differentiating between on-line algorithms. In a
few cases (bin coloring [25] and dual bin packing [9]), one algorithm A even has a better competitive
ratio than another algorithm B, though intuitively, B is clearly better than A.

When differentiating between on-line algorithms is the goal, performing a direct comparison be-
tween the algorithms, instead of involving an intermediate comparison to OPT, seems the obvious
choice. A direct comparison on exactly the same sequences will produce the result that many algo-
rithms are not comparable, because one algorithm does well on one type of ordering, while the other
does well on another type. With the relative worst order ratio, on-line algorithms are compared di-
rectly to each other on their respective worst permutations of sequences. In this way, the relative worst
order ratio [8] combines some of the desirable properties of the Max/Max ratio [5] and the random
order ratio [22].

The Max/Max Ratio The Max/Max ratio [5] allows direct comparison of two on-line algorithms
for an optimization problem, without the intermediate comparison to OPT. Rather than comparing
two algorithms on the same sequence, they are compared on their respective worst-case sequences of
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the same length. The Max/Max Ratio applies only when the length of an input sequence yields a
bound on the profit/cost of an optimal solution. Technically, it applies to the paging problem, but the
Max/Max ratio of any paging algorithm (deterministic or randomized) approaches 1 as the size of the
slow memory approaches infinity.

The Random Order Ratio The random order ratio [22] gives the possibility of considering some
randomness of the request sequences without specifying a complete probability distribution. For an
on-line algorithm A, the random order ratio is the worst-case ratio, over all sequences of requests, of
the expected performance of A on a random permutation of the sequence, compared with an optimal
solution. If, for all possible sequences of requests, any ordering of these requests is equally likely,
this ratio gives a meaningful worst-case measure of how well an algorithm can do. Unfortunately, the
random order ratio seems to be difficult to compute.

The Relative Worst Order Ratio With the relative worst order ratio, one considers the worst-case
performance over all permutations instead of the average-case performance as with the random order
ratio. Thus, when comparing two on-line algorithms, one considers a worst-case sequence and takes
the ratio of how the two algorithms perform on their respective worst permutations of that sequence.
Note that the two algorithms may have different “worst orderings” for the same sequence.

The relative worst order ratio can be viewed as a worst case version of Kenyon’s random order ratio,
with the modification that on-line algorithms are compared directly, rather than indirectly through
OPT. It can also be viewed as a modification of the Max/Max ratio, where a finer partition of the
request sequences is used; instead of finding the worst sequence among those having the same length,
one finds the worst sequence among those which are permutations of each other. This particular finer
partition was inspired by the random order ratio.

The Paging Problem We consider the well studied paging problem. The input sequence consists of
requests for pages in a slow memory, which contains N pages. There is a fast memory, called the cache,
which has space for k < N pages. A request for a page currently in cache is a hit, while a request for
a page not in cache is a page fault. When a page fault occurs, the requested page must be brought
into the cache. If the cache already contains k pages when this happens, at least one of them must
be evicted. A paging algorithm decides which page to evict on a fault. This decision must usually be
made on-line, i.e., without any knowledge about future requests. The goal is to minimize the number
of faults.

Paging Algorithms Two major classes of deterministic algorithms for the paging problem are
conservative algorithms [32] and marking algorithms [7].

A paging algorithm A is called conservative, if no request sequence has a consecutive subsequence
with requests to at most k distinct pages causing A to fault more than k times. The algorithms,
Least-Recently-Used (LRU) and First-In/First-Out (FIFO) are examples of conservative algorithms.
On a page fault, LRU evicts the least recently used page in cache and FIFO evicts the page which has
been in cache longest.

Marking algorithms work in phases. Each time a page is requested, this page is marked. When
a page must be evicted, one of the unmarked pages is chosen, if one exists. Otherwise all marks are
erased, and the requested page is marked. This request starts a new phase. Note that LRU is a marking
algorithm, whereas FIFO is not. Another example of a marking algorithm is Flush-When-Full (FWF),
the algorithm which evicts all pages in cache at the end of each phase. The randomized marking
algorithm MARK chooses the unmarked page to be evicted uniformly at random.

We also study MARKLIFO, LIFO, and Permπ [6] defined in Sections 4 and 6.
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Previous Results All conservative and marking algorithms have competitive ratio k [31, 29] and this
is optimal among deterministic algorithms [28]. However, in practice, these algorithms do not all have
the same performance: LRU is better than FIFO and much better than FWF [32]. Moreover, results
from [15] suggest there may be algorithms that perform even better than LRU.

In [3] an alternative model, the Max-/Average-Model, for the paging problem capturing locality
of reference was suggested. It was proven that, in this model, LRU is slightly better than FIFO, but
LRU is still best possible among deterministic algorithms. Using access graphs, it has been proven
that LRU is better than FIFO [12] and algorithms have been designed that are better than LRU [7].
Hence, these alternative ways of measuring the quality of paging algorithms give more satisfactory
results. However, they are only defined for paging and paging-like problems.

In contrast to deterministic algorithms, MARK [14] has been shown to have a competitive ratio
of 2Hk − 1[1], where Hk is the kth harmonic number, i.e., Hk =

∑k
i=1

1
i ≈ ln k. Other randomized

algorithms have been shown to have the optimal competitive ratio for randomized algorithms of Hk

[26, 1].

Look-Ahead. Look-ahead, where the algorithm deciding which page to evict is allowed to see the next
` page requests before making that decision, is a model which intuitively lies between on-line and
off-line. It is well known that look-ahead cannot reduce the competitive ratio of any algorithm, but
clearly it can be useful when it can be implemented.

Previously, alternative definitions of look-ahead have led to results showing that look-ahead helps.
In each case, the algorithm is allowed to see a sequence of future requests satisfying some property.
Young [31] proposed resource-bounded look-ahead, where the sequence is a maximal sequence of future
requests for which it would incur ` page faults, Albers [2] proposed strong look-ahead, where the
sequence of future requests contains ` distinct pages different from the current request, and Breslauer
[10] proposed natural look-ahead, where the sequence of future requests contains ` pages not currently
in cache. Here we retain the original definition, so the algorithm is only allowed to see the next ` pages,
regardless of what they are.

The Max/Max Ratio [5] has been somewhat successfully applied to the standard definition of
look-ahead, showing that a greedy strategy achieves a Max/Max ratio of N−1

` for N − k < ` ≤ N − 1
(recall that N is the size of the slow memory). Comparative analysis [24] is more successful, showing
that look-ahead gives a result which is a factor min{k, ` + 1} better than without look-ahead. This is
the same result we obtain with the relative worst order ratio.

Other Measures. Many alternatives to or variations on the competitive ratio have been proposed. We
have already mentioned the Max/Max ratio, the random order ratio, access graphs, the Max-/Average-
Model, and comparative analysis. Other alternatives are Markov paging [21], diffuse adversaries [24],
extra resource analysis [19, 28], the accommodating function [9], and statistical adversaries [27]. Most of
these techniques have been applied to only a few closely related problems. So far, the techniques which
have been applied to a broader range of problems, extra resource analysis and the accommodating
function, for instance, have given new separation results for only a limited number of different types
of problems.

The Relative Worst Order Ratio. In contrast to previous measures, the relative worst order ratio has
already been applied quite successfully to two very different problem types: bin packing [8] and now
paging, here. For Classical Bin Packing, Worst-Fit is better than Next-Fit according to the relative
worst order ratio, even though they have the same competitive ratio [18]. Thus, the advantage of
keeping all bins open, instead of just one, is reflected by the relative worst order ratio. For Dual
Bin Packing, the relative worst order ratio shows that First-Fit is better than Worst-Fit, while the
competitive ratio indicates the opposite [9].
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Other New Results on the Relative Worst Order Ratio The wide applicability of the relative
worst order ratio has been confirmed by other new results. Recently, various researchers have applied
the relative worst order ratio to other problems and obtained separations not given by the competitive
ratio, but consistent with intuition and/or practice.

One simple example is given in [13]. For the problem of minimizing makespan on two related
machines with speed ratio s, the optimal competitive ratio of s+1

s for s ≥ Φ ≈ 1.618 is obtained both
by the post-greedy algorithm, which schedules each job on the machine where it will finish earliest,
and by the algorithm which simply schedules all jobs on the fast machine. In contrast, the relative
worst order ratio shows that the post-greedy algorithm is better. A similar result is obtained for the
problem of minimizing makespan on m ≥ 2 identical machines with preemption.

The relative worst order ratio was also found by [23] to give the intuitively correct result for the
bin coloring problem, where the competitive ratio gives the opposite result [25]: a trivial algorithm
using only one open bin has a better competitive ratio than a natural greedy-type algorithm.

New Results on Paging First, we propose a new algorithm, Retrospective-LRU (RLRU), which is
a variation on LRU that takes into account which pages would be in the cache of the optimal off-line
algorithm, LFD, if it were given the subsequence of page requests seen so far. We show that, according
to the relative worst order ratio, RLRU is better than LRU. This is interesting, since it contrasts with
results on the competitive ratio and with results in [3] where a new model of locality of reference is
studied.

It is easily shown that RLRU does not belong to either of the common classes of algorithms,
conservative and marking algorithms which all have the optimal competitive ratio k. In fact, the
competitive ratio of RLRU is k + 1 and thus slightly worse than that of LRU. Initial testing of RLRU
indicates that it may perform better than LRU in practice.

Analyzing paging algorithms with the relative worst order ratio, we obtain far more detailed
information than with competitive analysis. With the relative worst order ratio, LRU is better than
FWF, so not all marking algorithms are equivalent, but no marking algorithm is significantly better
than LRU. All conservative algorithms are equivalent, so LRU and FIFO have the same performance,
but LRU is better than the k-competitive algorithm Permπ. MARK is better than LRU, which is
consistent with competitive analysis.

Look-ahead is shown to help significantly with respect to the relative worst order ratio. Compared
to the competitive ratio which does not reflect that look-ahead can be of any use, this is a very nice
property of the relative worst order ratio.

A new phenomenon with respect to the relative worst order ratio is observed: in [8], the pairs of
algorithms investigated were either comparable or incomparable, but here some are found to be weakly
comparable, i.e., while one algorithm performs marginally better than the other on some sequences
and their permutations, the other algorithm performs significantly better on other sequences and
their permutations. Furthermore, algorithms can be asymptotically comparable, which for the paging
problem means that, for arbitrarily large cache sizes, the pair of algorithms are “arbitrarily close to
being comparable”. This is defined more formally in Section 2.

The definition of the relative worst order ratio is extended to randomized algorithms, and MARK
and LRU are compared, giving that MARK is the better algorithm, as with the competitive ratio.

2 The New Measure

In this section, we define the relative worst order ratio and the notion of two algorithms being com-
parable (Definition 2) as in [8]. This is the most important definition, but the new notions of being
weakly comparable and asymptotically comparable (defined in Definitions 4 and 5) give the possibility
of adding more detail to the description of the relation between two algorithms.
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minimization maximization

A better than B < 1 > 1

B better than A > 1 < 1

Table 1. Ratio values for minimization and maximization problems

The Relative Worst Order Ratio. The definition of the relative worst order ratio uses AW(I), the
performance of an on-line algorithm A on the “worst ordering” of the sequence I of requests, formally
defined in the following way.

Definition 1. Consider an on-line optimization problem P and let I be any request sequence of length
n. If σ is a permutation on n elements, then σ(I) denotes I permuted by σ. Let A be any algorithm
for P .

If P is a maximization problem, A(I) is the value of running A on I, and AW(I) = minσ A(σ(I)).
If P is a minimization problem, A(I) is a cost, and AW(I) = maxσ A(σ(I)).

For many on-line problems, some algorithms perform well on particular types of orderings of the
input, while other algorithms perform well on other types of orderings. The purpose of comparing
on the worst permutation of sequences, rather than on each sequence independently, is to be able to
differentiate between such pairs of algorithms, rather than just concluding that they are incomparable.
Sequences with the same “content” are considered together, but the measure is worst case, so the
algorithms are compared on their respective worst permutations. This was originally motivated by
problems where all orderings are equally likely, but appears to be applicable to other problems as well.

Definition 2. Let S1(c) and S2(c) be statements about algorithms A and B defined in the following
way.

S1(c) : There exists a constant b such that AW(I) ≤ c · BW(I) + b for all I.

S2(c) : There exists a constant b such that AW(I) ≥ c · BW(I)− b for all I.

The relative worst order ratio WRA,B of on-line algorithm A to algorithm B is defined if S1(1) or
S2(1) holds. In this case, A and B are said to be comparable.

If S1(1) holds, then WRA,B = sup {r | S2(r)}, and if S2(1) holds, then WRA,B = inf {r | S1(r)} .

The sentences S1(1) and S2(1) check that the one algorithm is always at least as good as the other
on every sequence (on their respective worst permutations). When one of them holds, the relative
worst order ratio is a bound on how much better the one algorithm can be. Note that if S1(1) holds,
the supremum involves S2 rather than S1, and vice versa. A ratio of 1 means that the two algorithms
perform identically with respect to this quality measure; the further away from 1, the greater the
difference in performance. The ratio may be greater than or less than one, depending on whether the
problem is a minimization or a maximization problem and on which of the two algorithms is better.
These possibilities are illustrated in Table 1.

It is easily shown [8] that the relative worst order ratio is a transitive measure, i.e., for any three
algorithms A, B, and C, WRA,B ≥ 1 and WRB,C ≥ 1 implies WRA,C ≥ 1. The proof of transitivity
shows that when WRA,B ≥ 1, WRB,C ≥ 1, and both are bounded above by some constant, then
max(WRA,B,WRB,C) ≤ WRA,C ≤ WRA,B · WRB,C. Thus, when a new algorithm is analyzed, it need
not be compared to all algorithms.

Although one of the goals in defining the relative worst order ratio was to avoid the intermediate
comparison of any on-line algorithm, A, to the optimal off-line algorithm, OPT, it is still possible
to compare on-line algorithms to OPT. In this case, the measure is called the worst order ratio and
denoted WRA.
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Relatedness. Even if a pair of algorithms are not comparable, there may be something interesting
to say about their relative performance. Therefore, we introduce the notion of relatedness that applies
to most pairs of algorithms.

Definition 3. Let A and B be algorithms for an on-line optimization problem P , and let S1 and S2

be defined as in Definition 2.
Assume first that P is a minimization problem. If there exists a positive constant c such that S1(c)

is true, let cA,B = inf {r | S1(r)} . Otherwise, cA,B is undefined.
– If cA,B and cB,A are both defined, A and B are (cA,B, cB,A)-related.
– If cA,B is defined and cB,A is undefined, A and B are (cA,B,∞)-related.
– If cA,B is undefined and cB,A is defined, A and B are (∞, cB,A)-related.

If P is a maximization problem, relatedness is defined similarly: If there exists a positive constant c
such that S2(c) is true, let cA,B = sup {r | S2(r)} . Otherwise, cA,B is undefined.
– If cA,B and cB,A are both defined, A and B are (cA,B, cB,A)-related.
– If cA,B is defined and cB,A is undefined, A and B are (cA,B, 0)-related.
– If cA,B is undefined and cB,A is defined, A and B are (0, cB,A)-related.

This notation can also be used for algorithms which are comparable. In this case, one of the values
is the relative worst order ratio and the other is typically 1 (unless one algorithm is strictly better
than the other in all cases).

Weakly and Asymptotically Comparable. In Section 6, it is shown that LRU and Last-In/First-
Out (LIFO) are (k+1

2 ,∞)-related. With this result it seems reasonable to prefer LRU to LIFO, even
though they are not comparable by Definition 2. We say, therefore, that the pair of algorithms are
weakly comparable.

Definition 4. Let A and B be algorithms for an on-line optimization problem P and let cA,B be defined
as in Definition 3. A and B are weakly comparable if A and B are comparable, if exactly one of cA,B
and cB,A is defined, or if both are defined and cA,B 6∈ Θ(cB,A).

More specifically, if P is a minimization problem and cA,B ∈ o(cB,A), or if P is a maximization
problem and cA,B ∈ ω(cB,A), A and B are weakly comparable in A’s favor. Similarly, if cA,B is defined
and cB,A is undefined, A and B are weakly comparable in A’s favor.

We conclude with a definition which is relevant for optimization problems with some limited
resource, such as the size of the cache in the paging problem, the capacity of the knapsack in a
knapsack problem, or the number of machines in a machine scheduling problem.

Definition 5. A resource dependent problem is an on-line optimization problem, where each problem
instance, in addition to the input data given on-line, also has a parameter k, referred to as the amount
of resources, such that for each input, the optimal solution depends monotonically on k.

Let A and B be algorithms for a resource dependent problem P and let cA,B be defined as in
Definition 3. A and B are asymptotically comparable, if(

lim
k→∞

{cA,B} ≤ 1 and lim
k→∞

{cB,A} ≥ 1
)

or
(

lim
k→∞

{cA,B} ≥ 1 and lim
k→∞

{cB,A} ≤ 1
)

Let A and B be asymptotically comparable algorithms. For a minimization problem, A and B are
asymptotically comparable in A’s favor if limk→∞{cB,A} > 1; and for a maximization problem, if
limk→∞{cB,A} < 1.

If one algorithm is not clearly better than the other, as captured by the notions comparable, weakly
comparable, and asymptotically comparable, we say the pair of algorithms are incomparable.

Definition 6. Let A and B be algorithms for an on-line optimization problem. If A and B are neither
weakly nor asymptotically comparable, we say that they are incomparable.
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3 A Better Algorithm than LRU

In this section, we introduce an algorithm which turns out to be better than LRU according to the
relative worst order ratio. This is in contrast to the competitive ratio which says that LRU is best
possible among deterministic algorithms. The algorithm, called Retrospective-LRU (RLRU), is defined
in Figure 1. The name comes from the algorithm’s marking policy. When evicting pages, RLRU uses
the LRU policy, but it chooses only from the unmarked pages in cache, unless they are all marked.
Marks are set according to what the optimal off-line algorithm, LFD [4], would have in cache, if given
the part of the sequence seen so far. LFD is the algorithm that, on a fault, evicts the page that will
be requested farthest in the future.

If RLRU has a fault and LFD does not, RLRU marks the page requested. If RLRU has a hit, the
page p requested is marked if it is different from the page of the previous request. Requiring the page
to be different from the previous page ensures that at least one other page has been requested since
p was brought into the cache. A phase of the execution starts with the removal of all marks and this
occurs whenever there would otherwise be a second fault on the same page within the current phase.

The first phase begins with the first request.

On request r to page p:
Update p’s timestamp
if p is not in cache then

if there is no unmarked page then
evict the least recently used page in cache

else
evict the least recently used unmarked page

if this is the second fault on p
since the start of the current phase then

unmark all pages
start a new phase with r

if p was in LFD’s cache just before this request then
mark p

else
if p is different from the previous page then

mark p

Fig. 1. Retrospective-LRU (RLRU)

Lemma 1. For any request sequence, each complete phase defined by RLRU contains requests to at
least k + 1 distinct pages.

Proof. Consider any phase P and the page p which starts the next phase. Page p was requested in
phase P , and was later evicted, also within phase P . At that point, all other pages in the cache must
either be marked or have been requested since the last request to p, so every page in cache at that
point has been requested in phase P . The page requested when p is evicted must be different from the
k pages in cache at that point. Thus, there must be at least k + 1 different pages requested in phase
P . ut

Lemma 2. For any sequence I of page requests, RLRUW(I) ≤ LRUW(I).

Proof. Consider a worst ordering IRLRU of I with respect to RLRU. By definition, RLRU never faults
twice on the same page within any single phase of IRLRU.
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Move the last, possibly incomplete, phase of IRLRU to the beginning and call the resulting sequence
ILRU. Process the requests in this sequence phase by phase (the phases are the original RLRU phases),
starting at the beginning. LRU faults on each distinct page in the first phase. Since there are at least
k + 1 distinct pages in each of the later phases, all of the distinct pages in a phase can be ordered so
that there will be a fault by LRU on each of them. Hence, in each phase, LRU faults at least as many
times as RLRU, i.e., LRU has at least as many faults on ILRU as RLRU on IRLRU. ut

Theorem 1. WRLRU,RLRU = k+1
2 .

Proof. Since the previous lemma shows that WRLRU,RLRU ≥ 1, for the lower bound, it is sufficient to
find a family of sequences In with limn→∞ LRU(In) = ∞, where there exists a constant b such that
for all In,

LRUW (In) ≥ k + 1
2

RLRUW (In)− b.

Let In consist of n phases, where, in each phase, the first k − 1 requests are to the k − 1 pages
p1, p2, ..., pk−1, always in that order, and the last two requests are to completely new pages. LRU will
fault on every page, so it will fault n(k + 1) times.

Regardless of the order this sequence is given in, LFD will never evict the pages p1, p2, ..., pk−1

from cache, so RLRU will mark them the first time they are requested in each phase, if they have
ever been requested before. Thus, for each of these pages p′, at most one phase is ended because of a
fault on p′, and the requests to the pages which only occur once cannot end phases. This gives at most
k− 1 phases, each containing at most one fault on each of the pages p1, p2, . . . , pk−1, which limits the
number of faults RLRU has on these k− 1 pages to a constant (dependent on k, but not n), so RLRU
faults at most 2n + c times for some constant c. Asymptotically, the ratio is k+1

2 .
For the upper bound, suppose there exists a sequence I, where LRU faults s times on its worst

permutation, ILRU, RLRU faults s′ times on its worst ordering, IRLRU, and s > k+1
2 · s′. Then,

s > k+1
2 · s′′, where s′′ is the number of times RLRU faults on ILRU. Assume by Lemma 3, that ILRU

is such that LRU faults on each request of a prefix I1 of ILRU and on no request after I1. Then there
must exist a subsequence, J = 〈r1, r2, ..., rk+1〉, of consecutive requests in I1, where RLRU faults at
most once. Since LRU faults on every request, they must be to k +1 different pages. One may assume
that r1 is not the first request, since then RLRU would fault on all the requests in J . Let p be the
page requested immediately before J . Clearly, p must be in RLRU’s cache when it begins processing
J . If rk+1 is not a request to p, then the fact that LRU faulted on every request in J means that J
contains k + 1 pages different from p, but at most k − 1 of them could be in RLRU’s cache when it
begins processing J . Thus, LRU must fault at least twice on the requests in J . On the other hand,
if rk+1 is a request to p, there are exactly k requests in J which are different from p. At least one of
them must cause a fault, since at most k− 1 of them could have been in the cache when RLRU began
processing J . If no others caused faults, then they must have all been marked. In this case RLRU
evicts the least recently used page in cache, which cannot be a page requested in J before this fault,
so it must be a later page in J , causing a second fault. This is a contradiction. ut

The proofs which establish that RLRU is better than LRU according to the relative worst order
ratio rely on a few basic properties of RLRU. Modifications to the algorithm which do not change
these basic properties will result in other algorithms which, according to the relative worst order ratio,
are also better than LRU. One example of this is the test as to whether or not the current page is
the same as the previous. This test could be removed and the page marked unconditionally and the
proofs still hold. Another example is the decision when to end a phase. The important property is
that each phase consists of requests to at least k + 1 distinct pages and there is at most one fault on
each of them. This leaves room for experimentally testing a number of variations, and it could lead to
algorithms which are even better in practice than the one we have found here.
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Note that RLRU is neither a conservative nor a marking algorithm. This can be seen from the
sequence 〈p1, p2, p3, p4, p1, p2, p3, p4, p3〉 for k = 3, where RLRU faults on every request.

In contrast to Theorem 1, the competitive ratio of RLRU is slightly worse than that of LRU:

Theorem 2. The competitive ratio of RLRU is k + 1.

Proof. The upper bound of k + 1 follows since each phase of the algorithm contains requests to at
least k + 1 different pages, and RLRU faults at most once on each page within a phase. If there are
s > k different pages in a phase, OPT must fault at least s − k times in that phase. The worst ratio
is obtained when there are exactly k + 1 different pages in a phase, giving a ratio of k + 1.

The lower bound follows from a sequence with k + 1 distinct pages p1, p2, . . . ,pk+1, where each re-
quest is to the page not in RLRU’s cache. This sequence is 〈p1, p2, . . . , pk+1〉2 〈pk, p1, p2, . . . , pk−1, pk+1 |
pk−1, pk, p1, p2, . . . , pk−2, pk+1 | pk−2, pk−1, pk, p1, p2, . . . , pk−3, pk+1 | . . . | p1, p2, . . . , pk+1〉n, where |
marks the beginning of a new phase. The part of the sequence which is repeated n times is called a su-
perphase and consists of k phases, the ith phase consisting of the sequence 〈pk+1−i, . . . , pk, p1, . . . , pk−i,
pk+1〉, for 1 ≤ i ≤ k− 1, and 〈p1, p2, . . . , pk+1〉, for i = k. The optimal strategy is to evict page pk−1−i

in the ith phase of a superphase for 1 ≤ i ≤ k − 2, pk for i = k − 1, and pk−1 for i = k. Hence, an
optimal off-line algorithm faults k + 1 times on the initial 2k + 1 requests and then exactly once per
phase, while RLRU faults on all k + 1 requests of each phase. ut

When LRU and RLRU are compared to OPT using the worst order ratio, instead of the competitive
ratio, one finds that they have the same ratio k, confirming the intuition that information is lost in
an indirect comparison to OPT.

Theorem 3. WRLRU = WRRLRU = k.

Proof. Consider any sequence I. Since no algorithm is better than OPT, on OPT’s worst ordering of I,
LRU will fault at least as many times as OPT, so it also will on its own worst ordering. The sequence
consisting of n copies of k + 1 pages repeated cyclicly is a worst ordering of the underlying multi-set
for both LRU and OPT. LRU faults k times for every time that OPT faults. Since the worst order
ratio cannot be larger than the competitive ratio, and LRU’s competitive ratio is k, WRLRU = k.

Consider any sequence I. As above, on OPT’s worst ordering of I, RLRU will fault at least as many
times as OPT, so it also will on its own worst ordering. By Lemma 2, for any sequence I, RLRUW(I) ≤
LRUW(I). Thus, since WRLRU = k, WRRLRU ≤ k. The sequence 〈p1, p2, . . . , pk+1〉2〈pk, p1, p2, . . . , pk−1,
pk+1 | pk−1, pk, p1, p2, . . . , pk−2, pk+1 | pk−2, pk−1, pk, p1, p2, . . . , pk−3, pk+1 | . . . | p1, p2, . . . , pk+1〉n,
where | marks the beginning of a new phase, will cause RLRU to fault every time. A worst ordering
for OPT will repeat the k + 1 pages in a cyclic manner and OPT will fault once on every k pages,
giving the ratio k. ut

Implementation RLRU decides whether or not to mark pages based on whether or not they are in
LFD’s cache. At any given point in time, it is of course impossible to compute the entire contents of
LFD’s cache, since this depends on future requests. It is, however, possible, given a request and the
request sequence up to that point, to compute whether or not LFD would have that particular page
in cache.

RLRU can be implemented to run in time O(log N) and space O(N), where N is the number of
different pages requested. The question is whether or not these time and space bounds are good enough
in practice. We believe there are at least two interesting scenarios to consider. One is the interaction
between two high speed storage media, the speed of which differ by only a small multiplicative constant,
such as primary versus secondary cache. Here, a paging algorithm must be very efficient, which also
implies that it cannot be allowed much working space. In such a scenario, even LRU is most often too
time and space consuming. Another scenario is the interaction of storage media, the speed of which
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differ by orders of magnitude. This could be the buffer pool versus the disk in database systems or local
file caching of Internet files. In those situations, we can use substantial space, and time logarithmic
in either the number of different pages or just in the cache size would both be insignificant compared
with almost any small improvement in cache behavior. A similar point is made in [15]. If, in some
special application, space is a problem, then it could possibly be reduced to a function of k using
the techniques of [1]. In summary, a comparison between LRU and RLRU is interesting because the
circumstances under which they can reasonably be applied are close to identical.

Empirical Analysis To see if the positive theoretical results are also reflected in practice, we have
investigated the behavior of LRU and RLRU on traces1 collected from very different applications,
including key words searches in text files, selections and joins in the Postgres database system, external
sorting, and various kernel operations. We have used all ten data files from the site.

In Table 2, we list the results for each data file, and for cache sizes of 8, 16, 32, and 64. Each
entry in the table shows first the number of page faults of LRU, then the number of faults of RLRU,
and finally the percent-wise improvement of RLRU over LRU. Thus, if ` and r denote the number of
faults by LRU and RLRU, respectively, then the improvement is computed as 100 `−r

` . This number
is negative if LRU performs best.

File names and lengths

Cache bigsort j1 j2 j3 j4 j5 j6 pjoin pq7 xds

Size 40167 18533 25881 38112 59744 95723 20709 41558 32989 88558

14632 494 8233 4262 7278 25412 5100 8014 9371 10768

8 13204 491 8197 4276 7278 25385 4545 7200 9419 10724

9.76 0.61 0.44 -0.33 0.00 0.11 10.88 10.16 -0.51 0.41

12619 470 8177 4243 7201 25332 4596 7718 9277 10762

16 10736 468 8134 4255 7221 25326 4525 7003 9259 10709

14.92 0.43 0.53 -0.28 -0.28 0.02 1.54 9.26 0.19 0.49

10744 463 8138 4239 7180 25307 4516 7401 9216 10756

32 10561 425 8078 4248 7186 25303 4513 6888 9170 10697

1.70 8.21 0.74 -0.21 -0.08 0.02 0.07 6.93 0.50 0.55

10587 136 8120 4230 7135 25276 4505 6879 9185 10754

64 10402 137 8057 4239 7140 25278 4506 6838 9103 10695

1.75 -0.74 0.78 -0.21 -0.07 -0.01 -0.02 0.60 0.89 0.55

Table 2. Empirical comparison of LRU and RLRU

Out of the 40 tests, 11 are negative. The largest negative result of −0.74% is from a short sequence
and is due to a difference of only one page fault. The remaining negative results lie between zero and
approximately half a per cent. There are 28 positive results. RLRU beats LRU with more than half
a per cent in 18 cases, more than 1% in 10 cases, and more than 5% in 7 cases. This is illustrated in
Figure 2.

1 www.cs.wisc.edu/∼cao/traces/
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Fig. 2. Percentages with which RLRU is better than LRU

4 Conservative and Marking Algorithms

It is easy to see that both LRU and FIFO are conservative algorithms [32]: between any two faults on
the same page there must be requests to at least k other pages. According to the relative worst order
ratio, all conservative algorithms have the same performance:

For conservative algorithms, we first prove a technical lemma for LRU.

Lemma 3. For any sequence I of page requests, there exists a worst ordering of I for LRU with all
faults appearing before all hits.

Proof. We describe how any permutation I ′ of I can be transformed, step by step, to a permutation
ILRU with all hits appearing at the end of the sequence, without decreasing the number of faults LRU
will have on the sequence. Let I ′ consist of the requests r1, r2, . . . , rn, in that order.

Consider the first hit ri in I ′ with respect to LRU. We construct a new sequence I ′′ by moving ri

later in I ′. Let p denote the page requested by ri.
First, we remove ri from the sequence. If p is evicted at some point after ri−1 in this shorter

sequence, and is not evicted at the same point in I ′, ri is placed just after the first request rj , j > i,
causing p to be evicted (see Figure 3). Otherwise, ri is inserted after rn. In this case, let j = n.

I ′ : r1, . . . , ri−1, ri, ri+1, . . . , rj , rj+1, . . . , rn

I ′′ : r1, . . . , ri−1, ri+1, . . . , rj , ri, rj+1, . . . , rn

Fig. 3. The two sequences I ′ and I ′′ in the case where p is evicted at rj .

LRU maintains a queue of the pages in cache, and, on a fault, evicts the first page in the queue.
Moving ri within the sequence affects the position of p in the queue, but the mutual order of the
other pages stays the same. Just before ri+1, the cache contents are the same for both sequences.
Therefore, for I ′′, the behavior of LRU is the same as for I ′ until p is evicted. Just after this eviction,
p is requested by ri in I ′′. Thus, just before rj+1, the cache contents are again the same for both
sequences, but for I ′′, p is at the end of queue. This means that all pages that are in cache just before
rj+1, except p, are evicted no later for I ′′ than for I ′. The first request to p after the jth request may
be a fault in I ′ and a hit in I ′′. On the other hand, ri is a hit in I ′ and a fault in I ′′.

Let r` be the first request after ri in I ′′, where p is either requested or evicted. After r`, the state
of LRU is the same for both sequences.

By moving ri, the number of faults among the first j requests is increased by at least one, and
the total number of faults is not decreased. Thus, continuing in this way, we obtain ILRU in a finite
number of steps. ut

LRU is best possible among conservative algorithms.

Lemma 4. WRC,LRU ≥ 1, for any conservative paging algorithm C.

Proof. By Lemma 3, we can consider a sequence I where all faults by LRU occur before all hits. Let
I1 denote the subsequence consisting of the faults. We prove by induction on the lengths of prefixes of
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I1 that, on any request in I1, any conservative algorithm C evicts the same page as LRU, and hence
has as many faults on I as LRU.

For the base case, consider the first k + 1 requests in the sequence. Since LRU faults on each
request, these k+1 requests are all to different pages (ignoring the trivial case with at most k pages in
I). Hence, on the (k + 1)st request, any algorithm must evict a page. Since C is conservative it evicts
p1 (if it evicted some page pi 6= p1, requesting pi after pk+1 would yield a sequence with a subsequence
〈p2, . . . , pk+1, pi〉 with requests to only k distinct pages, but with k + 1 faults).

The induction step is similar to the base case. By the induction hypothesis, C has the same pages
in cache as LRU. For each request r to some page p, the previous k requests were all to different pages
different from p. Hence, C must evict the first of these k pages, as LRU does. ut

In addition, LRU is a worst possible conservative algorithm.

Lemma 5. WRLRU,C ≥ 1, for any conservative paging algorithm C.

Proof. Consider any conservative algorithm C and any request sequence I. Divide I into phases, so
that C faults exactly k + 1 times per phase, starting the next phase with a fault (the last phase may
have fewer than k +1 faults). Since C is conservative, each phase, except possibly the last, contains at
least k + 1 distinct pages. These can be reordered, phase by phase, so that LRU faults once on each
distinct page within a phase. Thus, with this new ordering LRU faults at least as many times as C
on I, except possibly in the last phase. Since C faults at least once in the last phase, LRU faults as
many times on the new ordering of I as C on I, except for at most k faults. ut

Thus, all conservative algorithms are equivalent under the relative worst order ratio:

Theorem 4. For any pair of conservative algorithms C1 and C2, WRC1,C2 = 1.

Proof. By Lemmas 4 and 5, WRC1,LRU ≥ 1 and WRLRU,C2 ≥ 1. Since the relative worst order ratio
is easily seen to be a transitive measure [8], this means that WRC1,C2 ≥ 1. Similarly, WRC1,LRU ≤ 1
and WRLRU,C2 ≤ 1, which implies WRC1,C2 ≤ 1. ut

In particular, since LRU and FIFO are both conservative, they are equivalent.

Corollary 1. WRLRU,FIFO = 1.

By Theorems 1 and 4 and the transitivity of the relative worst order ratio, we have the following:

Corollary 2. For any conservative algorithm C, WRC,RLRU = k+1
2 .

Similarly, the results below, showing that LRU is at least as good as or better than some algorithm
A, also show that RLRU is better than A. In addition, any result holding for LRU also holds for any
conservative algorithm. These results are not all stated explicitly.

Although all pairs of conservative algorithms are indistinguishable using the relative worst order
ratio, not all pairs of marking algorithms are. In particular, LRU is better than FWF, as it is in
practice, despite the fact that they have the same competitive ratio.

Lemma 6. WRFWF,LRU ≥ 2k
k+1 .

Proof. Consider any sequence I. If LRU faults on request r in I to page p, then p was not among the
last k different pages that were requested. Thus, p could not be in FWF’s cache when request r occurs
and FWF will also fault. Hence, on any sequence, FWF will fault at least as many times on its worst
ordering as LRU will on its. This shows that WRFWF,LRU ≥ 1.
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It is now sufficient to find a family of sequences In with limn→∞ LRU(In) = ∞, where there exists
a constant b such that for all In,

FWFW (In) ≥ 2k

k + 1
LRUW (In)− b.

Let In = 〈p1, p2, . . . , pk, pk+1, pk, . . . , p2〉n. FWF will fault on every page, so it will fault n(2k) times.
By Lemma 3, a worst ordering for LRU consists of some permutation of the k + 1 pages, with p1

and pk+1 at the end, repeated n times, followed by the first k − 1 pages in the permutation repeated
n times, i.e., 〈p2, p3, . . . , pk+1, p1〉n〈p2, p3, . . . , pk〉n is a worst ordering of In with respect to LRU. LRU
will fault n(k + 1) + k − 1 times. Asymptotically, the ratio is 2k

k+1 . ut

FWF is worst possible among marking algorithms:

Lemma 7. For any marking algorithm M and any request sequence I, MW(I) ≤ 2k
k+1LRUW(I) + k.

Proof. For any sequence with n complete phases, M faults at most kn times. Since for any request
sequence, every pair of consecutive phases contains requests to at least k + 1 distinct pages, for the
first 2 · bn

2 c complete phases, there is a permutation such that LRU faults at least (k + 1)bn
2 c times.

If the remaining requests consist of a complete phase, plus a partial phase, then LRU will also fault
on k + 1 of those requests if given in the correct order. Thus, the additive constant is bounded by the
number of faults M makes on the last partial or complete phase and is thus at most k. ut

Combining the above two lemmas, Theorem 4, and the the transitivity of the relative worst order
ratio gives:

Theorem 5. For any conservative algorithm C, WRFWF,C = 2k
k+1 .

Furthermore, LRU is close to being a best possible marking algorithm:

Lemma 8. For any marking algorithm M and any sequence I of page requests,

LRUW(I) ≤ k + 1
k

MW(I).

Proof. Consider any sequence I of requests. By Lemma 3, there is a worst ordering ILRU such that LRU
faults on each request of a prefix I1 of ILRU and on no request after I1. Partition I1 into consecutive
subsequences, each consisting of exactly k + 1 requests (the last subsequence may contain fewer).
Since LRU faults on all requests in I1, each subsequence, except possibly the last, must contain k + 1
distinct pages. Hence, for each subsequence with pages p1, p2, . . . , pk+1, an adversary can create a
marking phase, by choosing k of the pages p1, p2, . . . , pk+1, such that the marking algorithm faults
on all k pages. This is easily seen in the following way. Pages requested within a phase stay in
cache throughout the phase. Therefore, when x of the pages p1, p2, . . . , pk+1 have been requested, the
remaining k + 1− x pages cannot all be in the cache. ut

This immediately gives the following:

Corollary 3. For any marking algorithm M with WRLRU,M defined, WRLRU,M ≤ k+1
k .

Let MARKLIFO denote the marking algorithm which, on a fault, evicts the unmarked page that
was most recently brought into cache. On some sequences, MARKLIFO is slightly better than LRU,
but on others, LRU is about twice as good as MARKLIFO:

The following lemma shows that Lemma 8 is tight. It does not settle, however, whether Corollary 3
is tight.
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Lemma 9. There exists a family of sequences In of page requests such that

LRUW(In) =
k + 1

k
MARKLIFO

W (In),

and limn→∞ LRUW(In) = ∞.

Proof. First note that, for any sequence I of page requests, there is a worst ordering of I with respect
to MARKLIFO such that all faults precede all hits. This is because the eviction strategy considers only
the order in which the pages where brought into the cache. Therefore, moving a hit to the end of the
sequence does not affect which of the other requests will be faults, and hence can only increase the
number of faults.

Consider the sequence 〈p1, p2, . . . , pk+1〉n and a permutation for which MARKLIFO faults on a
longest possible prefix and then has no more faults. Since there are only k + 1 pages, once the first k
requests are given, the remaining part of the prefix is fixed. Hence, there is essentially only one such
permutation, namely 〈p1, p2, . . . , pk, pk+1, pk, . . . , p2〉n/2〈p1, pk+1〉n/2. MARKLIFO does not fault on the
last n− 1 requests, whereas LRU will fault on all requests in the permutation 〈p1, p2, . . . , pk+1〉n. ut

Despite Lemma 9, MARKLIFO is not better than LRU:

Lemma 10. There exists a family of sequences In of page requests and a constant b such that

MARKLIFO
W (In) =

2k

k + 1
· LRUW(In)− b,

and limn→∞MARKLIFO
W (In) = ∞.

Proof. On the sequence In = 〈p1, p2, . . . , pk, pk+1, pk, . . . , p2〉n, which was also used in the proof of
Lemma 6, MARKLIFO faults on every request. As explained in the proof of Lemma 6, the sequence
〈p2, p3, . . . , pk+1, p1〉n〈p2, p3, . . . , pk〉n is a worst ordering of In with respect to LRU. Hence, LRU faults
at most (k + 1)n + k − 1 times, i.e.,

MARKLIFO
W (In) = 2kn =

2k

k + 1
(k + 1)n =

2k

k + 1
LRUW(In)− 2k(k − 1)

k + 1
.

ut

This gives the following:

Theorem 6. LRU and MARKLIFO are (1 + 1
k , c)-related with c ≥ 2− 1

k , i.e., they are asymptotically
comparable in LRU’s favor.

5 Look-Ahead

In the standard on-line model, requests arrive one by one. A model in which the algorithm is informed
of the next ` ≥ 1 page requests before servicing the current one, is a look-ahead model. This model is
in-between the standard on-line model and the off-line model.

It is well known that using standard competitive analysis one cannot show that knowing the next
` requests is any advantage for any fixed `; for any input sequence, an adversary can “fill up” the look-
ahead by using `+1 consecutive copies of each request, adding no cost to the optimal off-line solution.
In contrast, results on the relative worst order ratio, indicate that look-ahead helps significantly. Here
we only look at a modification of LRU, using look-ahead, though the technique can be applied to other
algorithms as well.
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Define LRU(`) to be the algorithm which on a fault evicts the least recently used page in cache
which is not among the next ` requests. If ` ≥ k, all pages in cache may be among the next ` requests.
In this case, the page whose next request is farthest in the future is evicted.

One can see that LRU(`) is at least as good as LRU on any sequence by noting that LRU(`) is
conservative.

Lemma 11. LRU(`) is a conservative algorithm.

Proof. Let I be a request sequence, and assume that there is an interval, I ′, in I, containing only k
distinct pages, on which LRU(`) faults at least k + 1 times. Then it must fault on some page, p, twice
in I ′. Between these two faults, say at request r, page p must be evicted. First assume that ` < k. At
this point, p is the least recently used page which is not among the next `. Clearly the second request
causing a fault on p must be beyond these next `. So the other k − 1 pages in cache, when request r
occurs, must all have been requested between these two faults on p. In addition, the request r cannot
be for p or any of the other pages in cache at that time. Thus, there must be at least k + 1 distinct
pages in I ′, giving a contradiction. Now assume that ` ≥ k. If p is not among the next ` requests
when r occurs, then the previous argument holds, so assume that it is. In this case p must have been
the page in cache which was requested furthest in the future, so the other k − 1 pages are requested
between request r and the second fault on p. Again, counting the request r and p, there must be at
least k + 1 distinct pages in I ′, which is a contradiction. Thus, LRU(`) is conservative. ut

Observe that Lemma 5 holds for algorithms using look-ahead, though Lemma 4 does not.

Theorem 7. WRLRU,LRU(`) = min{k, ` + 1}.

Proof. Since the previous lemma combined with Lemma 5 show that WRLRU,LRU(`) ≥ 1, to prove the
lower bound, it is sufficient to find a family of sequences In with limn→∞ LRU(In) = ∞, where there
exists a constant b such that for all In,

LRUW (In) ≥ min{k, ` + 1}LRU(`)W (In)− b.

Let In consist of n phases, each containing the pages p1, p2, ..., pk, pk+1, in that order. LRU will fault
n(k + 1) times. However, if ` ≤ k − 1, after the first k faults, LRU(`) never faults on any of the next
` pages after a fault. Thus, regardless of the order, LRU(`) faults on at most k + bn(k+1)−k

`+1 c pages.
Asymptotically, this gives a ratio of ` + 1. If ` ≥ k, then LRU(`) faults on at most one out of every k
pages.

For the upper bound, suppose there exists a sequence I, where LRU faults s times on its worst
permutation, ILRU, LRU(`) faults s′ times on its worst ordering, ILRU(`), and s > min(k, ` + 1) · s′.
Then, s > min(k, ` + 1) · s′′, where s′′ is the number of times LRU(`) faults on ILRU. One cannot have
` ≥ k, since then LRU(`) faults fewer times than OPT. So suppose ` < k, and assume by Lemma 3,
that ILRU is such that LRU faults on each request of a prefix I1 of ILRU and on no request after I1.
Then there must exist a request r in ILRU where LRU(`) faults, but it does not fault on any of the
next ` + 1 requests, all of which are in I1. The last of these ` + 1 requests caused LRU to fault, so it
was not among the last k distinct requests at that point. Since l < k, it was not in any of the requests
in the look-ahead when LRU(`) processed request r, and all of the pages in the look-ahead were in
cache then since LRU(`) did not fault on any of them. Hence, this `+1st page was evicted by LRU(`)
when r was requested, and there must have been a fault the next time it was requested after that,
giving a contradiction. ut
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6 Other Algorithms

The algorithm LIFO, which evicts the page most recently brought into cache, is clearly much worse
than any of the conservative or marking algorithms. This behavior is also reflected in the relative
worst order ratio, since there exists a family of sequences where LIFO does unboundedly worse than
LRU. However, there also exists a family of sequences, where LIFO does better than LRU by a factor
of k+1

2 . This factor is tight, though, so LRU can be unboundedly better than LIFO, while LIFO can
be at most a factor k+1

2 better than LRU.

Theorem 8. LRU and LIFO are (k+1
2 ,∞)-related, i.e., they are weakly comparable in LRU’s favor.

Proof. Let In be the sequence 〈p1, p2, . . . , pk−1〉〈pk, pk+1〉n. LIFO faults on every request of this se-
quence. LRU’s worst ordering is with 〈pk, pk+1〉 first and then the pages 〈p1, p2, . . . , pk, pk+1〉, since
then it faults k + 3 times. Hence, for this sequence, the ratio is unbounded in LRU’s favor.

On the other hand, with the sequence Jn = 〈p1, p2, . . . , pk, pk+1〉n, LRU faults n(k + 1) times, so
this is clearly its worst order of Jn. Regardless of the order of Jn, LIFO faults exactly 2n+k−1 times,
since it holds k − 1 pages in memory, never changing them. Thus, there is a ratio of k+1

2 in LIFO’s
favor.

Since LRU has a competitive ratio of k it cannot be more than a factor of k worse than LIFO. We
can show, however, that the lower bound of k+1

2 is tight. Let I be any request sequence. By Lemma 3,
there is a worst ordering ILRU such that LRU faults on each request of a prefix I1 of ILRU and on no
request after I1. Consider the prefix I1, divided into phases with k+1 pages per phase, except possibly
fewer in the last phase. We reorder the requests within each complete phase, starting at the beginning.
The contents of LIFO’s cache at the beginning of a phase will be with respect to the sequence I1 with
all modifications up to that point. Since LRU faults on every page in a phase in the original I1, the
k + 1 pages must all be different. LIFO has at most k of the k + 1 pages from the current phase in its
cache at the start of the phase. If there were only k − 1, instead of k, we would be done, since then it
must fault at least twice in this phase. Suppose pi is the page requested in the current phase, which
was not in LIFO’s cache. Move the request to pi to the beginning of the phase. This will evict a page
requested later in the phase, so LIFO will fault at least twice in this phase. ut

The algorithm MixPerm [6] is a mixed, randomized, memory-bounded algorithm which obtains a
competitive ratio of k+1

2 when N = k + 1. It is the uniform mixture of all the permutation algorithms
Permπ [11] 2, which have competitive ratio k. The parameter π in the definition of Permπ is a
cyclic permutation of the N pages in slow memory. Let π(m) denote the m-fold composition of the
cyclic permutation π, and let m(i) be the minimum m with π(m)(i) currently in cache. The algorithm
Permπ is defined so that on a page fault on page i, the page π(m(i))(i) is evicted. Permπ and LRU
are equivalent according to the competitive ratio, and when N = k + 1, they are equivalent according
to the relative worst order ratio. However, for N ≥ k +2, Permπ performs worse than LRU according
to the relative worst order ratio.

Theorem 9. If N = k + 1, WRPermπ ,LRU = 1. If N ≥ k + 2, WRPermπ ,LRU > 2− k−1
N + 2

k .

Proof. We first show that WRPermπ ,LRU ≥ 1. Consider any request sequence I. By Lemma 3, there is
a worst ordering ILRU such that LRU faults on each request of a prefix I1 of ILRU and on no request
after I1. Consider the prefix I1, divided into phases with k+1 requests per phase, except possibly fewer
in the last phase. We reorder the requests within each complete phase, starting at the beginning, such
that Permπ will also fault on all of these requests. The contents of Permπ’s cache at the beginning
of a phase will be with respect to the sequence I1 with all modifications up to that point. Since LRU
faults on every page in a phase in the original I1, the k + 1 pages must all be different.
2 Chrobak et al. called this algorithm Rotate.
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Consider the current phase being processed, phase Pi. Arrange the pages in Pi in a cycle C, in the
same order in which they occur in π. We will find a starting point in C so that requesting the pages
in the order given by C, starting at this point, will cause Permπ to fault on every page.

Arrange the pages in Permπ’s cache at the beginning of this phase in a cycle, C ′, also in the order
in which they occur in π. If the cycles C and C ′ have no pages in common, none of the pages in phase
Pi are currently in cache, so Permπ will fault on every request. Thus, we assume that they have some
pages in common. Since both cycles are ordered according to π the pages they have in common occur
in the same order in both cycles. Match up the identical pages on the two cycles, and count on each
cycle the number of pages strictly between consecutive matched pages. Create a cycle C ′′ consisting
of integers representing the difference between the number of pages in C ′ and the number of pages in
C between consecutive matched pages. Since C has one more page than C ′, the sum of the numbers
in C ′′ is −1.

Claim. There exists a starting point on C ′′ such that, in the string S defined by starting at this point
on C ′′ and including the remainder of C ′′ in order, the sums of all prefixes are negative.

Proof. Suppose there is no such starting point. Take any starting point and follow a prefix until a
nonnegative sum occurs. Continue like this, using the first value not in the previous prefix as the next
starting point and stopping when a nonnegative sum has been found. This process can be repeated
indefinitely. Since C ′′ is finite, eventually two starting points will be the same. Between these two
starting points, one has been around C ′′ an integer number of times with the sum of all values adding
to some nonnegative integer value. This is a contradiction since the sum of the numbers in C ′′ is
−1. ut

Choose a starting point on C ′′ where all prefix sums are negative. This corresponds to a subsequence
of at least one page request in C which is not in C ′ and thus not in cache. This will be the starting
point in C. Each request to a page in C, but not in C ′, will cause the eviction of a page in C ′ and
these evictions will occur in the order given by C ′. When a page p in both C and C ′ is requested, the
number of pages before p in C is greater than the number before p in C ′, so p will have been evicted
and will also cause a fault. Thus Permπ will also fault k + 1 times on this set of k + 1 pages.

This occurs for every complete phase. Thus, LRU faults at most an additive constant k times more
on its worst ordering than what Permπ does on its worst ordering, on the pages in the incomplete
phase, if it exists.

We now prove that for N = k+1, WRPermπ ,LRU ≤ 1. This completes the proof that, for N = k+1,
WRPermπ ,LRU = 1. Consider any sequence I with requests to at most k + 1 pages and let IPermπ be a
worst ordering of I with respect to Permπ. Whenever Permπ faults on a page p, it goes through π
starting at p until it finds a page which is in cache and evicts this page. Since N = k + 1, this will be
the page p′ immediately succeeding p in π, and the next fault will be on p′. Thus, if IPermπ is reordered
such that the pages that Permπ faults on occur at the beginning of the sequence, in the same mutual
order as in IPermπ , then LRU will also fault on each of these requests.

Now, consider the case N ≥ k + 2. To see that WRPermπ ,LRU > 2− k−1
N + 2

k , assume without loss
of generality that π = (1, 2, . . . , N) and consider the family of request sequences

In = 〈p1, p2, . . . , pk+1, p1, pk+2, p1, pk+3, . . . , p1, pN 〉n,

where each subsequence 〈p1, p2, . . . , pk+1, p1, pk+2, p1, pk+3, . . . , p1, pN 〉 is called a phase. We show that
Permπ faults on all requests in In. Since each phase has one request to each of the N pages and one
extra request to p1 for each of the N − (k + 1) pages pk+2, pk+3, . . . , pN , this implies

(Permπ)W (In) = (N + N − (k + 1))n = (2N − (k + 1))n.

17



Consider the first phase of In. We prove by induction that just before the ith request to p1,
2 ≤ i ≤ N −k, the cache contains pi, . . . , pi+k−1. For i = 2, this is clearly the case. Therefore, consider
the ith request ri to p1 and assume that the cache contains the pages pi, . . . , pi+k−1. Since p1 is not in
the cache, ri will cause pi to be evicted. After ri, pk+i is requested, and this causes p1 to be evicted.
Thus, the induction hypothesis is maintained. At the end of the first phase, the pages pN−k+1, . . . , pN

are in cache. Therefore, for the following k requests, the request to pi will cause pN−k+i to be evicted.
Thus, after the first k requests of the second phase of In, the cache contents are the same as after the
first k requests of the first phase. Since the algorithm is memoryless, this is sufficient to prove that it
will behave the same during all n phases of In.

Now consider LRU. Between any pair of faults on p1, at least k of the N − 1 other pages are
requested. Thus, regardless of the ordering, LRU faults on at most bN−1

k nc+ 1 requests to p1, i.e.

LRUW(In) ≤
⌊

N − 1
k

n

⌋
+ 1 + (N − 1)n ≤

(
N − 1

k
+

1
n

+ N − 1
)

n ≤
(

N

k
+ N − 1

)
n, for n ≥ k.

This gives a ratio of

(Permπ)W(In)
LRUW(In)

≥ 2N − (k + 1)
N − 1 + N

k

=
2N − 2 + 2N

k + 2− 2N
k − (k + 1)

N − 1 + N
k

≥ 2−
k − 1 + 2N

k

N − 1 + N
k

≥ 2− k − 1
N

+
2
k
, since N > k

ut

7 Randomized Algorithms

The relative worst order ratio can also be applied to randomized algorithms. The only change to the
definitions is that an algorithm’s expected value/cost on a worst ordering of a sequence is used in
place of the value/cost obtained by a deterministic algorithm.

Definition 7. Consider an on-line optimization problem P and let I be any request sequence of length
n. If σ is a permutation on n elements, then σ(I) denotes I permuted by σ. Let A be any randomized
algorithm for P . If P is a maximization problem, E[A(I)] is the expected value of running A on
I, and AW(I) = minσ E[A(σ(I))]. If P is a minimization problem, A(I) is a cost, and AW(I) =
maxσ E[A(σ(I))].

Using the above definition, the relative worst order ratio, related, weakly comparable, asymptoti-
cally comparable, and incomparable are now defined as in the deterministic case.

Consider the randomized paging algorithm MARK [14]. On a fault, MARK chooses the unmarked
page to be evicted uniformly at random. In this section, we show that MARK and LRU are comparable
and WRLRU,MARK ≥ k/Hk. This is consistent with the results one obtains with the competitive ratio
where MARK has ratio 2Hk − 1 [1], while LRU has ratio k.

In each phase of MARK’s processing (except possibly the last), exactly k distinct pages are re-
quested, and the first page requested within a phase was not requested in the previous phase. Thus,
the subsequence processed within a phase (except possibly the last) is a maximal subsequence contain-
ing requests to exactly k distinct pages. A subsequence processed within one marking phase is called
a k-phase. Note that the partitioning of a sequence into k-phases is independent of the particular
marking algorithm.

For Lemma 12 and Theorem 10, we need the fact that MARK’s expected number of faults in the
ith k-phase is mi(Hk −Hmi + 1) [14], where mi is the number of new pages in the ith phase, i.e., the
number of pages that are requested in the ith phase and not in the (i− 1)st phase.
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Lemma 12. There exists a sequence I, which is a worst ordering for both MARK and LRU, where
MARK’s expected number of faults is Hk per k-phase, while LRU faults k times per k-phase.

Proof. Consider the sequence with k + 1 pages repeated cyclicly. ut

Lemma 13. For any sequence I of page requests, there exists a worst ordering IMARK of I with respect
to MARK, such that all k-phases, except possibly the last, have the following properties:

1. The first page requested in a k-phase did not appear in the previous k-phase.
2. There are exactly k requests, all to distinct pages.

Proof. Consider a worst ordering IMARK of I for MARK and consider its k-phase partition. The first
property follows by the definition of a k-phase partition. Within a phase, the first occurrence of each
page is the only one MARK has any chance of faulting on. Thus, moving extra occurrences of a page
within a phase to the end of the sequence will never decrease the probability of MARK faulting on
any page. After this has been completed, each phase (except possibly the last) consists of exactly k
requests, all to distinct pages. ut

Lemma 14. For any request sequence I, LRU(ILRU) ≥ MARK(IMARK) − b, where b is a constant
independent of the sequence I.

Proof. For any request sequence I, consider the worst permutation IMARK of I with respect to MARK,
satisfying the conditions of the previous lemma. Partition the sequence IMARK in blocks, each consist-
ing of variable numbers of consecutive k-phases satisfying the following property:

Definition 8. Call pages requested in every phase of a block S frequent pages, and the others rare
pages. A block S, containing s k-phases, has the sizing property if each k-phase in S contains s − 1
rare pages, and there is no r < s such that the first block R consisting of the first r pages of S contains
r − 1 rare pages.

Each block in the partition will be analyzed separately, and it will be shown that each block can
be reordered so that LRU faults at least as many times as the expected number of faults by MARK
on that block.

Consider a block, S, containing s rare pages and thus s + 1 k-phases. Note that s ≥ 1, since a new
k-phase is started by a new page, which was not among the last k distinct pages.

If the first k-phase, P , in the block has at most s new pages, then MARK’s expected number of
faults is at most s(s + 1)(1 + Hk −Hs). Since the rare pages occur at most s times in this block, one
can reorder the block into s groups of k + 1 distinct pages, plus (s + 1)k − s(k + 1) = k − s extra
pages. Thus, LRU can be forced to fault s(k + 1) times. Since MARK’s expected number of faults on
this block is s(s + 1)(1 + Hk −Hs) ≤ s(s + 1)(1 + k−s

s+1 ) = s(k + 1), the result holds if P has at most s
new pages.

Now assume that the first k-phase, P , in the block, S, has at most s + i new pages, where i > 0.
Then, some frequent page in P is also a new page. MARK’s expected number of faults is at most
s2(1 + Hk −Hs) + (s + i)(1 + Hk −Hs+i).

Let S′ be the previous block. Since S′ satisfies the sizing property, there are |S′| − 1 rare pages in
each k-phase of S′. Consider any frequent page, p, in P which is also new. It is clearly not a frequent
page in S′. If it occurs in all but the last k-phase of S′, then the block consisting of the first |S′-1
k-phases of S′ has at least one more frequent page than all of S′ does. Since S′ has the sizing property,
this cannot occur. Thus, p occurs at most |S′| − 2 times in S′. Hence, one can choose i frequent, new
pages in P which can be moved back into the previous block, S′, ordering S′ such that LRU faults on
these i pages, in addition to the (|S′| − 1)(k + 1) pages originally in S′ which it faults on. Removing
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these i pages from block S will not decrease the number of pages within block S which LRU faults
on. Thus, one can count s(k + 1) + i pages from block S which LRU will fault on. The lemma follows
by the following claim:

Claim. For all integers s, i, k, such that 1 ≤ s ≤ k, i ≥ 0, and s + i ≤ k,

s2(1 + Hk −Hs) + (s + i)(1 + Hk −Hs+i) ≤ s(k + 1) + i.

Proof. To show this, one can check that it holds for all k ≤ 5 by hand.
Assume first that s > k/2. Then, s2(1+Hk−Hs)+(s+i)(1+Hk−Hs+i) = s(s+1)(1+

∑k
j=s+1

1
j )+

i(1+
∑k

j=s+i+1
1
j )−s(

∑s+i
j=s+1

1
j ) ≤ s(s+1)(1+ k−s

s+1 )+i(1+ k−s−i
s+i+1 )−s i

s+i = s(k+1)+i+( i(k−s−i)
s+i+1 − si

s+i)
The last part of this is negative when s > k/2, so the result holds for s > k/2.

Note that approximating by integrals, one gets that Hx − Hy ≤ ln(x) − ln(y) for x > y. Thus,
s2(1 + Hk −Hs) + (s + i)(1 + Hk −Hs+i) ≤ s2(1 + ln(k)− ln(s)) + (s + i)(1 + ln(k)− ln(s + i)), so it is
sufficient to prove that f(s, i, k) = s2(1+ ln(k)− ln(s))+ (s+ i)(1+ ln(k)− ln(s+ i))− s(k +1)− i ≤ 0
for k ≥ 6 and s ≤ k/2.

Taking the derivative of f(s, i, k) with respect to i gives f ′i(s, i, k) = ln(k)− ln(s + i)− 1, which is
zero at i = k−se

e , positive for smaller i and negative for larger. Thus, for fixed s and k, f(s, i, k) has
its maximum at i = k−se

e . For s > k
e , this value of i is negative, and hence outside the specified range.

Since f(s, i, k) is decreasing for i > k−se
e , for s ≥ k

e , f(s, i, k) is maximum at its smallest allowable
value, i = 0.

Consider s ≥ k
e , so f(s, 0, k) = s(s+1)(1+ ln(k)− ln(s))− s(k +1) is an upper bound on f(s, i, k).

The derivative of this with respect to s is −s− k− 2 + (1 + ln(k)− ln(s))(2s + 1) which is zero where
(s+k+2)/(2s+1) = (1+ln(k)− ln(s)). At this point, f(s, 0, k) = s(s+1)(s+k+2)/2s+1)−sk−s =
s3+s2+s−s2k

2s+1 . This is equal to zero, where s2 + s + 1− sk = 0, which is not in the range k
e ≤ s ≤ k

2 for
k ≥ 4. At the endpoints of this range s = k/2 and s = k/e, where f(k/2, 0, k) is negative for k ≥ 6,
and f(k/e, 0, k) is negative for k ≥ 4. Thus, f(s, i, k) is negative for s ≥ k/e and k ≥ 6.

For s ≤ k
e , f(s, i, k) has its maximum at f(s, k−se

e , k) = s2(1+ ln(k)− ln(s))+2s+ k−se
e − s(k +1).

Taking the derivative with respect to s gives s − k + 2s(ln(k) − ln(s)), which is negative for s small
enough and then positive, so the function has a local minimum where the derivative is zero. Thus, the
maximum values are at the endpoints. For s = 1, one gets that f(1, k

e −1, k) = 1+ln(k)+ k
e −k, which

is negative for k ≥ 4. For s = k
e , one gets that f(k

e , 0, k) = (2
e − 1)sk + s, which is negative for k ≥ 4.

Thus, s2(1+Hk−Hs)+(s+ i)(1+Hk−Hs+i) ≤ s(k+1)+ i for 1 ≤ s ≤ k, i ≥ 0, and s+ i ≤ k. ut

This proves the lower bound for the following:

Theorem 10. WRLRU,MARK = k
Hk

.

Proof. To see the the ratio cannot be higher, consider any k-phase in LRU’s worst ordering. LRU
never faults more than k times on any k-phase, and MARK never has an expected number of faults
less than Hk on any complete k-phase. Thus, the result is tight. ut

8 Conclusion and Open Problems

This second problem area, paging, studied using the relative worst order ratio, gives even more con-
vincing evidence than the first, bin packing, that this new performance measure could become an
important tool for analyzing on-line algorithms. Comparing algorithms directly to each other, rather
than doing it indirectly through a comparison to OPT, appears to give more meaningful results, both
for paging and for bin packing. The results mentioned in the introduction for the bin coloring problem
and two scheduling problems show more types of problems where the relative worst order ratio gives
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“better” results than the competitive ratio. Previous measures and models, proposed as replacements
or supplements to the competitive ratio, have been more limited as to applicability, usually to very
few problems. Further study is needed to determine how widely applicable the relative worst order
ratio is, but paging and bin packing are very different problems. Together with the results on the bin
coloring and scheduling problems, this gives a convincing basis for further investigation.

For paging, the competitive ratio of many algorithms with widely varying performance in practice
is k. The relative worst order ratio is able to distinguish between some of these algorithms. Most
notably, LRU is found to be better than FWF, and look-ahead is shown to help. It is also promising
that this new performance measure is leading to the discovery of new algorithms. Further testing is
needed to determine if RLRU, or some variant of it, is better than LRU in practice.

We expect that for many other problems, the relative worst order ratio will distinguish between
known algorithms which have the same competitive ratio, give the correct relationship between al-
gorithms where the competitive ratio fails to, and lead to new algorithms which are better than
algorithms which have an optimal competitive ratio.

Theorem 3 shows that no marking algorithm can be much better than LRU. It would be interesting
to know if LRU is in fact the best marking algorithm according to the relative worst order ratio.
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Appendix

Additional Comments on an Implementation of RLRU

In addition to the administration required to evict least recently used pages, which is similar to the
administration necessary for LRU, RLRU needs to be able to perform the following operations:

1. Check if it faults on a page for the second time in a phase.
2. Mark a page, and unmark all pages.
3. Find least recently used page, possibly just among unmarked pages.
4. Check for a page in LFD’s cache.

These can all be implemented in time O(log N) and space O(N), where N is the number of different
pages requested.

1. We use a balanced binary search tree over all the different pages on which RLRU has faulted
during the phase.

2. Using a balanced binary search tree over all the different pages which have been requested, we
mark a page by associating the current phase number with the page. Thus, by incrementing the
phase number, we can unmark all pages in constant time.

3. Using a balanced binary search tree ordered on timestamp, the least recently used page can be found
in logarithmic time. If the timestamp is also associated with pages in cache, then old timestamp
entries can be found and updated when a page is requested. By adding information to the nodes in
the tree regarding the last phase in which the page stored in the node was marked and information
regarding the least recent phase of any node in the subtree, it is also possible in logarithmic time to
find the least recently used page among those which are unmarked, i.e., not marked in the current
phase. In an actual implementation, points 1, 2, and 3 can be combined.

4. At any given point in time, it is of course impossible to compute the entire contents of LFD’s
cache, since this depends on future requests. It is, however, possible, given a request and the
request sequence up to that point, to compute whether or not LFD would have that particular
page in cache. Using techniques [16] inspired by geometric algorithms [30], this can be done by
registering the known time intervals of pages in LFD’s cache in a balanced binary search tree. Also
here, time O(log N) and space O(N) can be obtained.
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