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Abstract

The relative worst order ratio, a relatively new measure for the quality of on-line al-
gorithms, is extended and applied to the paging problem. We obtain results significantly
different from those obtained with the competitive ratio. First, we devise a new deter-
ministic paging algorithm, Retrospective-LRU, and show that, according to the relative
worst order ratio, it performs better than LRU. This is supported by experimental re-
sults, but contrasts with the competitive ratio. Furthermore, the relative worst order ratio
(and practice) indicates that LRU is better than FWF, though all deterministic marking
algorithms have the same competitive ratio. Look-ahead is also shown to be a signif-
icant advantage with this new measure, whereas the competitive ratio does not reflect
that look-ahead can be helpful. Finally, as with the competitive ratio, no deterministic
marking algorithm can be significantly better than LRU, but the randomized algorithm
MARK is better than LRU.

Keywords: On-line algorithms, relative worst order ratio, paging, LRU, RLRU, look-ahead
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Measure Value

Competitive Ratio CRA = max
I

A(I)
OPT(I)

Max/Max Ratio MRA =
max|I|=n A(I)

max|J |=n OPT(J)

Random Order Ratio RRA = max
I

Eσ

[
A(σ(I))

]
OPT(I)

Relative Worst Order Ratio WRA,B = max
I

maxσ

{
A(σ(I))

}
maxσ

{
B(σ(I))

}
Table 1: Comparison of measures

1 Introduction

The standard measure for the quality of on-line algorithms is the competitive ratio [20, 30, 23],
which is, roughly speaking, the worst-case ratio, over all possible input sequences, of the on-
line performance to the optimal off-line performance. The definition of the competitive ratio
is essentially identical to that of the approximation ratio. This seems natural in that on-
line algorithms can be viewed as a special class of approximation algorithms. However, for
approximation algorithms, the comparison to an optimal off-line algorithm, OPT, is natural,
since the approximation algorithm is compared to another algorithm of the same general type,
just with more computing power, while for on-line algorithms, the comparison to OPT is to
a different type of algorithm.

Although the competitive ratio has been an extremely useful notion, in many cases, and
particularly for the paging problem, it has appeared inadequate at differentiating between
on-line algorithms. In a few cases (bin coloring [27] and dual bin packing [11]), one algorithm
A even has a better competitive ratio than another algorithm B, though intuitively, B is
clearly better than A.

Often, when the competitive ratio fails to distinguish algorithms that are very different in
practice, it seems that information is lost in the intermediate comparison to OPT. Thus,
when differentiating between on-line algorithms is the goal, performing a direct comparison
between the algorithms seems the obvious choice. A direct comparison on exactly the same
sequences will produce the result that many algorithms are not comparable, because one
algorithm does well on one type of request sequence, while the other does well on another
type. With the relative worst order ratio, on-line algorithms are compared directly to each
other on their respective worst permutations of sequences. In this way, the relative worst
order ratio [9] combines some of the desirable properties of the Max/Max ratio [6] and the
random order ratio [25]. These measures are compared in Table 1 and explained in more detail
below. Note that the ratios given in the table are not the exact definitions of the measures;
they are all asymptotic measures but for simplicity, this is not reflected in the table. Thus,
for the competitive ratio, for example, the additive constant in the definition is ignored, so
what the table shows is actually the strict competitive ratio.
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Many previous approaches to getting better results for the paging problem have consisted
of modeling the paging problem better, i.e., locality of reference has been introduced into
the model. It is somewhat surprising that with the relative worst order ratio we get results
significantly more realistic than those obtained with the competitive ratio, since the relative
worst order ratio does not model locality of reference. This is a nice feature that the measure
is general and still seems to give the “right” results for paging.

We now describe the two measures that were the inspiration for the relative worst order ratio.

The Max/Max Ratio

The Max/Max ratio [6] allows direct comparison of two on-line algorithms for an optimiza-
tion problem, without the intermediate comparison to OPT. Rather than comparing two
algorithms on the same sequence, they are compared on their respective worst-case sequences
of the same length. The Max/Max Ratio applies only when the length of an input sequence
yields a bound on the profit/cost of an optimal solution. Technically, it can be applied to the
paging problem, but the Max/Max ratio of any paging algorithm (deterministic or random-
ized) approaches 1 as the size of the slow memory approaches infinity.

The Random Order Ratio

The random order ratio [25] gives the possibility of considering some randomness of the request
sequences without specifying a complete probability distribution. For an on-line algorithm
A, the random order ratio is the worst-case ratio, over all input sequences, of the expected
performance of A on a random permutation of the sequence, compared with an optimal
solution. If, for all possible input sequences, any permutation of the sequence is equally
likely, this ratio gives a meaningful worst-case measure of how well an algorithm can do.

The Relative Worst Order Ratio

With the relative worst order ratio, one considers the worst-case performance over all permu-
tations instead of the average-case performance as with the random order ratio. Thus, when
comparing two on-line algorithms, one considers a worst-case sequence and takes the ratio
of how the two algorithms perform on their respective worst permutations of that sequence.
Note that the two algorithms may have different worst permutations for the same sequence.
The relative worst order ratio is formally defined in Section 2.

The relative worst order ratio can be viewed as a worst case version of Kenyon’s random
order ratio, with the modification that on-line algorithms are compared directly, rather than
indirectly through OPT. This seems to make it much easier to compute than the random
order ratio.

The relative worst order ratio can also be viewed as a modification of the Max/Max ratio,
where a finer partition of the request sequences is used; instead of finding the worst sequence
among those having the same length, one finds the worst sequence among those which are
permutations of each other. This particular finer partition was inspired by the random order
ratio.
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The Paging Problem

We consider the well studied paging problem. The input sequence consists of requests for
pages in a slow memory, which contains N pages. There is a fast memory, the cache, which
has space for k < N pages. A request for a page currently in cache is a hit, while a request
for a page not in cache is a page fault. When a page fault occurs, the requested page must
be brought into cache. If the cache already contains k pages when this happens, at least one
of these must be evicted. A paging algorithm decides which page to evict on a fault. This
decision must usually be made on-line, i.e., without any knowledge about future requests.
The goal is to minimize the number of faults.

Paging Algorithms

Two major classes of deterministic algorithms for the paging problem are conservative algo-
rithms [34] and marking algorithms [8].

A paging algorithm A is called conservative, if no request sequence has a consecutive sub-
sequence with requests to at most k distinct pages causing A to fault more than k times.
The algorithms, Least-Recently-Used (LRU) and First-In/First-Out (FIFO) are examples of
conservative algorithms. On a page fault, LRU evicts the least recently used page in cache
and FIFO evicts the page which has been in cache longest.

Marking algorithms work in phases. Each time a page is requested, this page is marked
(implicitly in the analysis or explicitly by the algorithm). When a page must be evicted,
one of the unmarked pages is chosen, if one exists. Otherwise all marks are erased, and the
requested page is marked. This request starts a new phase. Note that LRU is a marking
algorithm, whereas FIFO is not. Another example of a marking algorithm is Flush-When-
Full (FWF), the algorithm which evicts all pages in cache at the end of each phase. The
randomized marking algorithm MARK chooses the unmarked page to be evicted uniformly
at random. We also study MARKLIFO, LIFO, and Permπ [7] defined in Sections 4 and 5.

Previous Results

All deterministic conservative and marking algorithms have competitive ratio k [33, 31] and
this is optimal among deterministic algorithms [30]. However, in practice, these algorithms
do not all have the same performance: LRU is better than FIFO and much better than FWF
[34]. Moreover, results from [18] suggest there may be algorithms that perform even better
than LRU.

In [3], an alternative model, the Max-/Average-Model, for the paging problem capturing lo-
cality of reference was suggested. It was proven that, in this model, LRU is slightly better
than FIFO, but LRU is still best possible among deterministic algorithms. Related to this
type of study, in [4], locality of reference for paging algorithms is modelled using diffuse
adversaries [26], considering different families of probability distributions for generating se-
quences. LRU is the focus of the study, which also compares LRU to FWF, obtaining a large
separation. Using access graphs, it has been proven that LRU is better than FIFO [15] and
algorithms have been designed that are better than LRU [8]. Hence, these alternative ways
of measuring the quality of paging algorithms give more satisfactory results. However, they
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are only defined for paging and paging-like problems.

In contrast to deterministic algorithms, MARK [17] has a competitive ratio of 2Hk − 1 [1],
where Hk is the kth harmonic number, i.e., Hk =

∑k
i=1

1
i ≈ ln k. Other randomized algo-

rithms have been shown to have the optimal competitive ratio for randomized algorithms of
Hk [28, 1].

Look-Ahead. Look-ahead, where the algorithm deciding which page to evict is allowed to
see the next ` page requests before making that decision, is a model which intuitively lies
between on-line and off-line. It is well known that look-ahead cannot reduce the competitive
ratio of any algorithm, but clearly it can be useful when it can be implemented.

Previously, alternative definitions of look-ahead have led to results showing that look-ahead
helps. In each case, the algorithm is allowed to see a sequence of future requests satisfying
some property. Young [33] proposed resource-bounded look-ahead, where the sequence is a
maximal sequence of future requests for which it would incur ` page faults, and Breslauer [13]
proposed natural look-ahead, where the sequence of future requests contains ` pages not cur-
rently in cache. Albers [2] proposed strong look-ahead, where the sequence of future requests
contains ` distinct pages different from the current request. In this paper, we retain the
original definition, so the algorithm is only allowed to see the next ` pages, regardless of what
they are.

The Max/Max Ratio [6] has been somewhat successfully applied to the standard definition
of look-ahead, showing that a greedy strategy achieves a Max/Max ratio of N−1

` for N − k <
` ≤ N − 1 (recall that N is the size of the slow memory). Comparative analysis [26] is more
successful, showing that look-ahead gives a result which is a factor min{k, ` + 1} better than
without look-ahead. This is the same result we obtain with the relative worst order ratio.

Other Measures. Many alternatives to or variations on the competitive ratio have been
proposed. We have already mentioned the Max/Max ratio, the random order ratio, access
graphs, the Max-/Average-Model, diffuse adversaries, and comparative analysis. Other alter-
natives are Markov paging [24], extra resource analysis [22, 30], the accommodating function
[11], and statistical adversaries [29]. Most of these techniques have been applied to only a few
closely related problems. So far, the techniques which have been applied to a broader range of
problems, extra resource analysis and the accommodating function, for instance, have given
new separation results for only a limited number of different types of problems.

The Relative Worst Order Ratio. The relative worst order ratio has already been ap-
plied quite successfully to very different problem types: bin packing [9] and now paging. For
Classical Bin Packing, Worst-Fit is better than Next-Fit according to the relative worst order
ratio, even though they both have competitive ratio 2 [21]. Thus, the advantage of keeping
more bins open is reflected by the relative worst order ratio. For Dual Bin Packing, the
relative worst order ratio shows that First-Fit is better than Worst-Fit, while the competitive
ratio indicates the opposite [11].
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Other New Results on the Relative Worst Order Ratio

The wide applicability of the relative worst order ratio has been confirmed by other new
results. Recently, various researchers have applied the relative worst order ratio to other
problems and obtained separations not given by the competitive ratio, but consistent with
intuition and/or practice.

Some scheduling examples are given in [16]. For instance, for the problem of minimizing
makespan on two related machines with speed ratio s, the optimal competitive ratio of s+1

s
for s ≥ Φ ≈ 1.618 is obtained both by the post-greedy algorithm, which schedules each job on
the machine where it will finish earliest, and by the algorithm which simply schedules all jobs
on the fast machine. In contrast, the relative worst order ratio shows that the post-greedy
algorithm is better. A similar result is obtained for the problem of minimizing makespan on
m ≥ 2 identical machines with preemption.

The relative worst order ratio was also found by [16] to give the intuitively correct result for
the bin coloring problem, where the competitive ratio gives the opposite result [27]: a trivial
algorithm using only one open bin has a better competitive ratio than a natural greedy-type
algorithm.

The proportional price version of the seat reservation problem has largely been ignored due
to very negative impossibility results using competitive analysis [10]. However, algorithms for
the problem were compared and separated with the relative worst order ratio in [12].

Our Results

First, we propose a new algorithm, Retrospective-LRU (RLRU), which is a variation on LRU
that takes into account which pages would be in the cache of the optimal off-line algorithm,
LFD [5], if it were given the subsequence of page requests seen so far. We show that, according
to the relative worst order ratio, RLRU is better than LRU. This is interesting, since it
contrasts with results on the competitive ratio and with results in [3], where a new model of
locality of reference was studied.

It is easily shown that RLRU does not belong to either of the common classes of algorithms,
conservative and marking algorithms, which all have the optimal competitive ratio k. In fact,
the competitive ratio of RLRU is k + 1 and thus slightly worse than that of LRU. Initial
testing of RLRU indicates that it may perform better than LRU in practice.

Analyzing paging algorithms with the relative worst order ratio, we obtain more detailed
information than with competitive analysis. With the relative worst order ratio, LRU is
better than FWF, so not all marking algorithms are equivalent, but no marking algorithm is
significantly better than LRU. All conservative algorithms are equivalent, so LRU and FIFO
have the same performance, but LRU is better than the k-competitive algorithm Permπ.
The randomized algorithm, MARK, is better than LRU, which is consistent with competitive
analysis.

Look-ahead is shown to help significantly with respect to the relative worst order ratio.
Compared to the competitive ratio which does not reflect that look-ahead can be of any
use, this is a very nice property of the relative worst order ratio.

A new phenomenon with respect to the relative worst order ratio is observed: in [9], the pairs
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of algorithms investigated were either comparable or incomparable, but here some are found
to be weakly comparable, i.e., while one algorithm performs marginally better than the other
on some sequences and their permutations, the other algorithm performs significantly better
on other sequences and their permutations. Furthermore, algorithms can be asymptotically
comparable, which for the paging problem means that, for arbitrarily large cache sizes, the
pair of algorithms are “arbitrarily close to being comparable”. This is defined more formally
in Section 2.

Finally, in the appendix, we discuss implementation issues for RLRU and initial experimental
results.

2 The New Measure

In this section, we define the relative worst order ratio and the notion of two algorithms
being comparable (Definition 2) as in [9]. This is the most important definition, but the new
notions of being weakly comparable and asymptotically comparable (defined in Definitions 4
and 5) give the possibility of adding more detail to the description of the relation between
two algorithms.

2.1 The Relative Worst Order Ratio

The definition of the relative worst order ratio uses AW(I), the performance of an algorithm
A on the worst permutation of the input sequence I, formally defined in the following way.

Definition 1 Consider an optimization problem P , let I be any input sequence, and let n
be the length of I. If σ is a permutation on n elements, then σ(I) denotes I permuted by σ.
Let A be any algorithm for P .

If P is a maximization problem, A(I) is the profit of running A on I, and AW(I) = minσ A(σ(I)).

If P is a minimization problem, A(I) is the cost of running A on I, and AW(I) = maxσ A(σ(I)).
�

For many on-line problems, some algorithms perform well on particular types of request
sequences, while other algorithms perform well on other types. The purpose of comparing on
the worst permutation of sequences, rather than on each sequence independently, is to be able
to differentiate between such pairs of algorithms, rather than just concluding that they are
incomparable. Sequences with the same “content” are considered together, but the measure
is worst case, so the algorithms are compared on their respective worst permutations. This
was originally motivated by problems where all permutations are equally likely, but appears
to be applicable to other problems as well.

Definition 2 Let S1 and S2 be statements about algorithms A and B defined in the following
way.

S1(c) , ∃b : ∀I : AW (I) ≤ cBW (I) + b

S2(c) , ∃b : ∀I : AW (I) ≥ cBW (I)− b
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The relative worst order ratio WRA,B of algorithm A to algorithm B is defined if S1(1) or
S2(1) holds.

If S1(1) holds, then WRA,B = sup {r | S2(r)} , and

if S2(1) holds, then WRA,B = inf {r | S1(r)} .

�

The statements S1(1) and S2(1) check that the one algorithm is always at least as good as the
other on every sequence (on their respective worst permutations). When one of them holds,
the relative worst order ratio is a bound on how much better the one algorithm can be. If
both S1(1) and S2(1) hold, then WRA,B = sup {r | S2(r)} = inf {r | S1(r)} = 1.

Note that if S1(1) holds, the supremum involves S2 rather than S1, and vice versa. A ratio
of 1 means that the two algorithms perform identically with respect to this quality measure;
the further away from 1, the greater the difference in performance. The ratio may be greater
than or less than one, depending on whether the problem is a minimization or a maximization
problem and on which of the two algorithms is better. These possibilities are illustrated in
Table 2.

minimization maximization
A better than B < 1 > 1
B better than A > 1 < 1

Table 2: Ratio values for minimization and maximization problems

It is easily shown [9] that the relative worst order ratio is a transitive measure, i.e., for any
three algorithms A, B, and C, WRA,B ≥ 1 and WRB,C ≥ 1 implies WRA,C ≥ 1. Further-
more, when WRA,B ≥ 1, WRB,C ≥ 1, and both are bounded above by some constant, then
max{WRA,B,WRB,C} ≤ WRA,C ≤ WRA,B ·WRB,C. Thus, when a new algorithm is analyzed,
it need not be compared to all other algorithms.

Although one of the goals in defining the relative worst order ratio was to avoid the interme-
diate comparison of an on-line algorithm, A, to the optimal off-line algorithm, OPT, it is still
possible to compare on-line algorithms to OPT. In this case, the measure is called the worst
order ratio of A and denoted WRA.

2.2 Relatedness

Even if a pair of algorithms is not comparable, there may be something interesting to say
about their relative performance. Therefore, we introduce the notion of relatedness that
applies to most pairs of algorithms.

Definition 3 Let A and B be algorithms for an on-line optimization problem P , and let S1

and S2 be defined as in Definition 2.

Assume first that P is a minimization problem. If there exists a positive constant c such that
S1(c) is true, let cA,B = inf {r | S1(r)} . Otherwise, cA,B is undefined.
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• If cA,B and cB,A are both defined, A and B are (cA,B, cB,A)-related.

• If cA,B is defined and cB,A is undefined, A and B are (cA,B,∞)-related.

• If cA,B is undefined and cB,A is defined, A and B are (∞, cB,A)-related.

If P is a maximization problem, relatedness is defined similarly: If there exists a positive
constant c such that S2(c) is true, let cA,B = sup {r | S2(r)} . Otherwise, cA,B is undefined.

• If cA,B and cB,A are both defined, A and B are (cA,B, cB,A)-related.

• If cA,B is defined and cB,A is undefined, A and B are (cA,B, 0)-related.

• If cA,B is undefined and cB,A is defined, A and B are (0, cB,A)-related.

�

This notation can also be used for algorithms which are comparable. In this case, one of the
values is the relative worst order ratio and the other is typically 1 (unless one algorithm is
strictly better than the other in all cases).

2.3 Weakly and Asymptotically Comparable

In Section 5, it is shown that LRU and Last-In/First-Out (LIFO) are (k+1
2 ,∞)-related. With

this result it seems reasonable to prefer LRU to LIFO, even though they are not comparable
by Definition 2. We say, therefore, that the pair of algorithms are weakly comparable.

Definition 4 Let A and B be algorithms for an on-line optimization problem P and let cA,B
be defined as in Definition 3. A and B are weakly comparable if A and B are comparable, if
exactly one of cA,B and cB,A is defined, or if both are defined and cA,B 6∈ Θ(cB,A).

More specifically, if P is a minimization problem and cA,B ∈ o(cB,A), or if P is a maximization
problem and cA,B ∈ ω(cB,A), A and B are weakly comparable in A’s favor. Similarly, if cA,B is
defined and cB,A is undefined, A and B are weakly comparable in A’s favor. �

We conclude with a definition which is relevant for optimization problems with some limited
resource, such as the size of the cache in the paging problem, the capacity of the knapsack in
a knapsack problem, or the number of machines in a machine scheduling problem.

Definition 5 A resource dependent problem is an on-line optimization problem, where each
problem instance, in addition to the input data given on-line, also has a parameter k, re-
ferred to as the amount of resources, such that for each input, the optimal solution depends
monotonically on k.

Let A and B be algorithms for a resource dependent problem P and let cA,B be defined as in
Definition 3. A and B are asymptotically comparable, if(

lim
k→∞

{cA,B} ≤ 1 and lim
k→∞

{cB,A} ≥ 1
)

or
(

lim
k→∞

{cA,B} ≥ 1 and lim
k→∞

{cB,A} ≤ 1
)

Let A and B be asymptotically comparable algorithms. For a minimization problem, A and
B are asymptotically comparable in A’s favor if limk→∞{cB,A} > 1; and for a maximization
problem, if limk→∞{cB,A} < 1. �
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Definition 6 Let A and B be algorithms for an on-line optimization problem. If A and B
are neither weakly nor asymptotically comparable, we say that they are incomparable. �

3 A Better Algorithm than LRU

In this section, we introduce an algorithm which turns out to be better than LRU according
to the relative worst order ratio. This is supported by initial experimental results (see the
appendix), but is in contrast to the competitive ratio which says that LRU is best possible
among deterministic algorithms. The algorithm, called Retrospective-LRU (RLRU), is de-
fined in Figure 1. The name comes from the algorithm’s marking policy. When evicting pages,
RLRU uses the LRU policy, but it chooses only from the unmarked pages in cache, unless
they are all marked. Marks are set according to what the optimal off-line algorithm, LFD [5],
would have in cache, if given the part of the sequence seen so far. LFD is the algorithm that,
on a fault, evicts the page that will be requested farthest in the future.

If RLRU has a fault and LFD does not, RLRU marks the page requested. If RLRU has a
hit, the page p requested is marked if it is different from the page of the previous request.
Requiring the page to be different from the previous page ensures that at least one other page
has been requested since p was brought into the cache. A phase of the execution starts with
the removal of all marks and this occurs whenever there would otherwise be a second fault
on the same page within the current phase.

Intuitively, RLRU tries to keep pages in cache that OPT would have had there. This implies,
for example, that RLRU avoids the very poor behavior that LRU has on cyclic repetitions of
page requests. A similar example is a very large B-tree in a database application. With LRU,
paths from the root down to some fixed number of leaves would be in cache, but which paths
were there would keep changing. RLRU would tend to keep more of the frequently accessed
nodes close to the root in cache.

Lemma 1 For any request sequence, each complete phase defined by RLRU contains requests
to at least k + 1 distinct pages.

Proof Consider any phase P and the page p which starts the next phase. Page p was
requested in phase P , and was later evicted, also within phase P . At that point, all other
pages in the cache must either be marked or have been requested since the last request to
p, so every page in cache at that point has been requested in phase P . The page requested
when p is evicted must be different from the k pages in cache at that point. Thus, there must
be at least k + 1 different pages requested in phase P . �

Lemma 2 For any sequence I of page requests, RLRUW(I) ≤ LRUW(I).

Proof Consider a worst permutation IRLRU of I with respect to RLRU. By definition, RLRU
never faults twice on the same page within any single phase of IRLRU.

Move the last, possibly incomplete, phase of IRLRU to the beginning and call the resulting
sequence ILRU. Process the requests in this sequence phase by phase (the phases are the
original RLRU phases), starting at the beginning. LRU faults on each distinct page in the
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The first phase begins with the first request.

On request r to page p:
Update p’s timestamp
if p is not in cache then

if there is no unmarked page then
evict the least recently used page

else
evict the least recently used unmarked page

if this is the second fault on p
since the start of the current phase then

unmark all pages
start a new phase with r

if p was in LFD’s cache just before this request then
mark p

else
if p is different from the previous page then

mark p

Figure 1: Retrospective-LRU (RLRU)

first phase. Since, by Lemma 1, there are at least k + 1 distinct pages in each of the later
phases, all of the distinct pages in a phase can be ordered so that there will be a fault by
LRU on each of them. Hence, in each phase, LRU faults at least as many times as RLRU,
i.e., LRU has at least as many faults on ILRU as RLRU on IRLRU. �

Lemma 2 establishes that WRLRU,RLRU ≥ 1. To find the exact relative worst order ratio for
the two algorithms, the following technical lemma for LRU is proven. This lemma is also used
extensively in the section on conservative and marking algorithms.

Lemma 3 For any sequence I of page requests, there exists a worst permutation of I for
LRU with all faults appearing before all hits.

Proof We describe how any permutation I ′ of I can be transformed, step by step, to a
permutation ILRU with all hits appearing at the end of the sequence, without decreasing the
number of faults LRU will have on the sequence. Let I ′ consist of the requests r1, r2, . . . , rn,
in that order.

Consider the first hit ri in I ′ with respect to LRU. We construct a new sequence I ′′ by moving
ri later in I ′. Let p denote the page requested by ri.

First, we remove ri from the sequence. If p is evicted at some point after ri−1 in this shorter
sequence, and is not evicted at the same point in I ′, ri is placed just after the first request
rj , j > i, causing p to be evicted (see Figure 2). Otherwise, ri is inserted after rn. In this
case, let j = n.

LRU maintains a queue of the pages in cache, and, on a fault, evicts the first page in the
queue. Moving ri within the sequence affects the position of p in the queue, but the mutual
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I ′ : r1, . . . , ri−1, ri, ri+1, . . . , rj , rj+1, . . . , rn

I ′′ : r1, . . . , ri−1, ri+1, . . . , rj , ri, rj+1, . . . , rn

Figure 2: The two sequences I ′ and I ′′ in the case where p is evicted at rj .

order of the other pages stays the same. Just before ri+1, the cache contents are the same for
both sequences. Therefore, for I ′′, the behavior of LRU is the same as for I ′ until p is evicted.
Just after this eviction, p is requested by ri in I ′′. Thus, just before rj+1, the cache contents
are again the same for both sequences, but for I ′′, p is at the end of queue. This means that
all pages that are in cache just before rj+1, except p, are evicted no later for I ′′ than for I ′.
The first request to p after the jth request may be a fault in I ′ and a hit in I ′′. On the other
hand, ri is a hit in I ′ and a fault in I ′′.

Let r` be the first request after ri in I ′′, where p is either requested or evicted. After r`, the
state of LRU is the same for both sequences.

By moving ri, the number of faults among the first j requests is increased by at least one,
and the total number of faults is not decreased. Thus, continuing in this way, we obtain ILRU

in a finite number of steps. �

Theorem 1 WRLRU,RLRU = k+1
2 .

Proof Since Lemma 2 shows that WRLRU,RLRU ≥ 1, for the lower bound, it is sufficient
to find a family of sequences In with limn→∞ LRU(In) = ∞, where there exists a constant b
such that for all In,

LRUW (In) ≥ k + 1
2

RLRUW (In)− b.

Let In consist of n phases, where, in each phase, the first k−1 requests are to the k−1 pages
p1, p2, ..., pk−1, always in that order, and the last two requests are to completely new pages.
LRU will fault on every page, so it will fault n(k + 1) times.

Regardless of the order this sequence is given in, LFD will never evict the pages p1, p2, ..., pk−1

from cache, so RLRU will mark them the first time they are requested in each phase, if they
have ever been requested before. Since there are never more than k − 1 marked pages in
cache, none of these pages is ever evicted in a phase in which it is marked. Thus, for each
of these pages p′, at most one phase is ended because of a fault on p′, and the requests to
the pages which only occur once cannot end phases. This gives at most k − 1 phases, each
containing at most one fault on each of the pages p1, p2, . . . , pk−1, which limits the number of
faults RLRU has on these k − 1 pages to a constant (dependent on k, but not n), so RLRU
faults at most 2n + c times for some constant c. Asymptotically, the ratio is k+1

2 .

For the upper bound, suppose there exists a sequence I, where LRU faults s times on its worst
permutation, ILRU, RLRU faults s′ times on its worst permutation, IRLRU, and s > k+1

2 · s′.
Then, s > k+1

2 · s′′, where s′′ is the number of times RLRU faults on ILRU. Assume, by
Lemma 3, that ILRU is such that LRU faults on each request of a prefix I1 of ILRU and on no
request after I1. Then there must exist a subsequence, J = 〈r1, r2, ..., rk+1〉, of consecutive
requests in I1, where RLRU faults at most once. Since LRU faults on every request, they
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must be to k + 1 different pages. One may assume that r1 is not the first request, since
then RLRU would fault on all the requests in J . Let p be the page requested immediately
before J . Clearly, p must be in RLRU’s cache when it begins processing J . If rk+1 is not
a request to p, then the fact that LRU faulted on every request in J means that J contains
k + 1 pages different from p, but at most k − 1 of them could be in RLRU’s cache when it
begins processing J . Thus, RLRU must fault at least twice on the requests in J . On the
other hand, if rk+1 is a request to p, there are exactly k requests in J which are different from
p. At least one of them must cause a fault, since at most k − 1 of them could have been in
cache when RLRU began processing J . If no others caused faults, then they must have all
been marked. In this case, RLRU evicts the least recently used page in cache, which cannot
be a page requested in J before this fault, so it must be a later page in J , causing a second
fault. This is a contradiction. �

The proof of Theorem 1 relies on a few basic properties of RLRU. Modifications to the
algorithm which do not change these basic properties will result in other algorithms which,
according to the relative worst order ratio, are also better than LRU. One example of this is
the test as to whether or not the current page is the same as the previous. This test could
be removed and the page marked unconditionally or never marked, and the proofs still hold.
Another example is the decision when to end a phase. The most important property is that
each phase consists of requests to at least k + 1 distinct pages and there is at most one fault
on each of them. This leaves room for experimentally testing a number of variations, and it
could lead to algorithms which are even better in practice than the one we present here.

Note that RLRU is neither a conservative nor a marking algorithm. This can be seen from
the sequence 〈p1, p2, p3, p4, p1, p2, p3, p4, p3〉 for k = 3, where RLRU faults on every request.

In contrast to Theorem 1, the competitive ratio of RLRU is slightly worse than that of LRU:

Theorem 2 The competitive ratio of RLRU is k + 1.

Proof The upper bound of k + 1 follows since each phase of the algorithm contains requests
to at least k + 1 different pages, and RLRU faults at most once on each page within a phase.
If there are s > k different pages in a phase, OPT must fault at least s − k times in that
phase. The worst ratio is obtained when there are exactly k + 1 different pages in a phase,
giving a ratio of k + 1.

The lower bound follows from a sequence with k+1 distinct pages p1, p2, . . . ,pk+1, where each
request is to the page not in RLRU’s cache. This sequence is 〈p1, p2, . . . , pk+1〉2 〈pk, p1, p2,
. . . , pk−1, pk+1 | pk−1, pk, p1, p2, . . . , pk−2, pk+1 | pk−2, pk−1, pk, p1, p2, . . . , pk−3, pk+1 | . . . |
p1, p2, . . . , pk+1〉n, where | marks the beginning of a new phase. The part of the sequence which
is repeated n times is called a superphase and consists of k phases, the ith phase consisting
of the sequence 〈pk+1−i, . . . , pk, p1, . . . , pk−i, pk+1〉, for 1 ≤ i ≤ k − 1, and 〈p1, p2, . . . , pk+1〉,
for i = k. The optimal strategy is to evict page pk−1−i in the ith phase of a superphase for
1 ≤ i ≤ k− 2, pk for i = k− 1, and pk−1 for i = k. Hence, an optimal off-line algorithm faults
k +1 times on the initial 2k +1 requests and then exactly once per phase, while RLRU faults
on all k + 1 requests of each phase. �

When LRU and RLRU are compared to OPT using the worst order ratio, instead of the
competitive ratio, one finds that they have the same ratio k.
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Theorem 3 WRLRU = WRRLRU = k.

Proof Consider any sequence I. Since no algorithm is better than OPT, on OPT’s worst
permutation of I, LRU will fault at least as many times as OPT, so it also will on its own
worst permutation. The sequence consisting of n copies of k + 1 pages repeated cyclicly is a
worst permutation of the underlying multi-set for both LRU and OPT. LRU faults k times for
every time that OPT faults. Since the worst order ratio cannot be larger than the competitive
ratio, and LRU’s competitive ratio is k, WRLRU = k.

Consider any sequence I. As above, on OPT’s worst permutation of I, RLRU will fault
at least as many times as OPT, so it also will on its own worst permutation. By Lemma
2, for any sequence I, RLRUW(I) ≤ LRUW(I). Thus, since WRLRU = k, WRRLRU ≤ k.
The sequence 〈p1, p2, . . . , pk+1〉2 〈pk, p1, p2, . . . , pk−1, pk+1 | pk−1, pk, p1, p2, . . . , pk−2, pk+1 |
pk−2, pk−1, pk, p1, p2, . . . , pk−3, pk+1 | . . . | p1, p2, . . . , pk+1〉n, where | marks the beginning of a
new phase, will cause RLRU to fault every time. A worst permutation for OPT will repeat
the k +1 pages in a cyclic manner and OPT will fault once on every k pages, giving the ratio
k. �

4 Conservative and Marking Algorithms

It is easy to see that both LRU and FIFO are conservative algorithms [34]: between any two
faults on the same page, there must be requests to at least k other pages. Using Lemma 3, we
can prove that for any sequence I, there exists a permutation IC of I which is worst possible
for any conservative algorithm and that all conservative algorithms behave exactly the same
when given IC.

We first prove that LRU is best possible among conservative algorithms.

Lemma 4 WRC,LRU ≥ 1, for any conservative paging algorithm C.

Proof By Lemma 3, we can consider a sequence I where all faults by LRU occur before all
hits. Let I1 denote the subsequence consisting of the faults. We prove by induction on the
lengths of prefixes of I1 that, on any request in I1, any conservative algorithm C evicts the
same page as LRU, and hence has as many faults on I as LRU.

For the base case, consider the first k + 1 requests in the sequence. Since LRU faults on each
request, these k + 1 requests are all to different pages (ignoring the trivial case with at most
k pages in I). Hence, on the (k + 1)st request, any algorithm must evict a page. Since C is
conservative it evicts p1 (if it evicted some page pi 6= p1, requesting pi after pk+1 would yield
a sequence with a subsequence 〈p2, . . . , pk+1, pi〉 with requests to only k distinct pages, but
with k + 1 faults).

The induction step is similar to the base case. By the induction hypothesis, C has the same
pages in cache as LRU. For each request r to some page p, the previous k requests were all
to different pages different from p. Hence, C must evict the first of these k pages, as LRU
does. �

In addition, LRU is a worst possible conservative algorithm.
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Lemma 5 WRLRU,C ≥ 1, for any conservative paging algorithm C.

Proof Consider any conservative algorithm C and any request sequence I. Divide I into
phases, so that C faults exactly k + 1 times per phase, starting the next phase with a fault
(the last phase may have fewer than k + 1 faults). Since C is conservative, each phase,
except possibly the last, contains at least k +1 distinct pages. These can be reordered, phase
by phase, so that LRU faults once on each distinct page within a phase. Thus, with this
new permutation LRU faults at least as many times as C on I, except possibly in the last
phase. Since C faults at least once in the last phase, LRU faults as many times on the new
permutation of I as C on I, except for at most k faults. �

Thus, all conservative algorithms are equivalent under the relative worst order ratio:

Theorem 4 For any pair of conservative algorithms C1 and C2, WRC1,C2 = 1.

Proof By Lemmas 4 and 5, WRC1,LRU ≥ 1 and WRLRU,C2 ≥ 1. Since the relative worst order
ratio is easily seen to be a transitive measure [9], this means that WRC1,C2 ≥ 1. Similarly,
WRC1,LRU ≤ 1 and WRLRU,C2 ≤ 1, which implies WRC1,C2 ≤ 1. �

In particular, since LRU and FIFO are both conservative, they are equivalent.

Corollary 1 WRLRU,FIFO = 1.

By Theorems 1 and 4 and the transitivity of the relative worst order ratio, we have the
following:

Corollary 2 For any conservative algorithm C, WRC,RLRU = k+1
2 .

In contrast to the competitive ratio, the relative worst order ratio distinguishes between
different marking algorithms. In particular, LRU is better than FWF, as it is in practice. We
first show that the marking algorithm FWF is strictly worse than any conservative algorithm:

Lemma 6 For any conservative algorithm C, WRFWF,C ≥ 2k
k+1 .

Proof By Theorem 4 and transitivity, it is sufficient to show that WRFWF,LRU ≥ 2k
k+1 .

Consider any sequence I. If LRU faults on request r in I to page p, then p was not among
the last k different pages that were requested. Thus, p could not be in FWF’s cache when
request r occurs and FWF will also fault. Hence, on any sequence, FWF will fault at least as
many times on its worst permutation as LRU will on its. This shows that WRFWF,LRU ≥ 1.

It is now sufficient to find a family of sequences In with limn→∞ LRU(In) = ∞, where there
exists a constant b such that for all In,

FWFW (In) ≥ 2k

k + 1
LRUW (In)− b.
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Let In = 〈p1, p2, . . . , pk, pk+1, pk, . . . , p2〉n. FWF will fault on every page, so it will fault n(2k)
times.

By Lemma 3, a worst permutation for LRU consists of some permutation of the k + 1 pages,
with p1 and pk+1 at the end, repeated n times, followed by the first k − 1 pages in the per-
mutation repeated n times, i.e., 〈p2, p3, . . . , pk+1, p1〉n〈p2, p3, . . . , pk〉n is a worst permutation
of In with respect to LRU. LRU will fault n(k + 1) + k − 1 times. Asymptotically, the ratio
is 2k

k+1 . �

Lemma 7 For any marking algorithm M and any request sequence I,

MW(I) ≤ 2k

k + 1
LRUW(I) + k.

Proof For any sequence with n complete phases, M faults at most kn times. Since for any
request sequence, every pair of consecutive phases contains requests to at least k + 1 distinct
pages, for the first 2 · bn

2 c complete phases, there is a permutation such that LRU faults at
least (k + 1)bn

2 c times. If the remaining requests consist of a complete phase, plus a partial
phase, then LRU will also fault on k + 1 of those requests if given in the correct order. Thus,
the additive constant is bounded by the number of faults M makes on the last, partial or
complete, phase and is thus at most k. �

Combining the above two lemmas, Theorem 4, and the transitivity of the relative worst order
ratio, we find that FWF is worst possible among marking algorithms.

Theorem 5 For any conservative algorithm C, WRFWF,C = 2k
k+1 .

Furthermore, LRU is close to being a best possible marking algorithm:

Lemma 8 For any marking algorithm M and any sequence I of page requests,

LRUW(I) ≤ k + 1
k

MW(I).

Proof Consider any sequence I of requests. By Lemma 3, there is a worst permutation
ILRU such that LRU faults on each request of a prefix I1 of ILRU and on no request after I1.
Partition I1 into consecutive subsequences, each consisting of exactly k + 1 requests (the last
subsequence may contain fewer). Since LRU faults on all requests in I1, each subsequence,
except possibly the last, must contain k + 1 distinct pages. Hence, for each subsequence with
pages p1, p2, . . . , pk+1, an adversary can create a marking phase, by choosing k of the pages
p1, p2, . . . , pk+1, such that the marking algorithm faults on all k pages. This is easily seen
in the following way. Pages requested within a phase stay in cache throughout the phase.
Therefore, when x of the pages p1, p2, . . . , pk+1 have been requested, the remaining k + 1− x
pages cannot all be in the cache. �

This immediately gives the following:

Corollary 3 For any marking algorithm M with WRLRU,M defined, WRLRU,M ≤ k+1
k .
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Let MARKLIFO denote the marking algorithm which, on a fault, evicts the unmarked page
that was most recently brought into cache. On some sequences, MARKLIFO is slightly better
than LRU, but on others, LRU is about twice as good as MARKLIFO:

The following lemma shows that Lemma 8 is tight. It does not settle, however, whether
Corollary 3 is tight, since the relative worst order ratio of LRU to MARKLIFO is undefined.

Lemma 9 There exists a family of sequences In of page requests such that

LRUW(In) =
k + 1

k
MARKLIFO

W (In),

and limn→∞ LRUW(In) = ∞.

Proof First note that, for any sequence I of page requests, there is a worst ordering of I
with respect to MARKLIFO such that all faults precede all hits. This is because the eviction
strategy considers only the order in which the pages where brought into the cache. Therefore,
moving a hit to the end of the sequence does not affect which of the other requests will be
faults, and hence can only increase the number of faults.

Consider the sequence 〈p1, p2, . . . , pk+1〉n and a permutation for which MARKLIFO faults on
a longest possible prefix and then has no more faults. Since there are only k + 1 pages,
once the first k requests are given, the remaining part of the prefix is fixed. Hence, there is
essentially only one such permutation, namely 〈p1, p2, . . . , pk, pk+1, pk, . . . , p2〉n/2〈p1, pk+1〉n/2.
MARKLIFO does not fault on the last n − 1 requests, whereas LRU will fault on all requests
in the permutation 〈p1, p2, . . . , pk+1〉n. �

Despite Lemma 9, MARKLIFO is not better than LRU:

Lemma 10 There exists a family of sequences In of page requests and a constant b such that

MARKLIFO
W (In) =

2k

k + 1
· LRUW(In)− b,

and limn→∞ MARKLIFO
W (In) = ∞.

Proof On the sequence In = 〈p1, p2, . . . , pk, pk+1, pk, . . . , p2〉n, which was also used in the
proof of Lemma 6, MARKLIFO faults on every request. As explained in the proof of Lemma 6,
the sequence 〈p2, p3, . . . , pk+1, p1〉n〈p2, p3, . . . , pk〉n is a worst ordering of In with respect to
LRU. Hence, LRU faults at most (k + 1)n + k − 1 times, i.e.,

MARKLIFO
W (In) = 2kn =

2k

k + 1
(k + 1)n =

2k

k + 1
LRUW(In)− 2k(k − 1)

k + 1
.

�

Combining Lemmas 7, 8, 9, and 10 gives the following:

Theorem 6 LRU and MARKLIFO are (1 + 1
k , 2− 2

k+1)-related, i.e., they are asymptotically
comparable in LRU’s favor.
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5 Other Algorithms

The algorithm LIFO, which evicts the page most recently brought into cache, is clearly much
worse than any of the conservative or marking algorithms. This behavior is also reflected
in the relative worst order ratio, since there exists a family of sequences where LIFO does
unboundedly worse than LRU. However, there also exists a family of sequences, where LIFO
does better than LRU by a factor of k+1

2 . This factor is tight, though, so LRU can be
unboundedly better than LIFO, while LIFO can be at most a factor k+1

2 better than LRU.

Theorem 7 LRU and LIFO are (k+1
2 ,∞)-related, i.e., they are weakly comparable in LRU’s

favor.

Proof Let In be the sequence 〈p1, p2, . . . , pk−1〉〈pk, pk+1〉n. LIFO faults on every request of
this sequence. LRU’s worst ordering is with 〈pk, pk+1〉 first and then the pages 〈p1, p2, . . .,
pk, pk+1〉, since then it faults k + 3 times. Hence, for this sequence, the ratio is unbounded
in LRU’s favor.

On the other hand, with the sequence Jn = 〈p1, p2, . . . , pk, pk+1〉n, LRU faults n(k +1) times,
so this is clearly its worst order of Jn. Regardless of the order of Jn, LIFO faults exactly
2n + k − 1 times, since it holds k − 1 pages in memory, never changing them. Thus, there is
a ratio of k+1

2 in LIFO’s favor.

Since LRU has a competitive ratio of k it cannot be more than a factor of k worse than LIFO.
We can show, however, that the lower bound of k+1

2 is tight. Let I be any request sequence.
By Lemma 3, there is a worst ordering ILRU such that LRU faults on each request of a prefix
I1 of ILRU and on no request after I1. Consider the prefix I1, divided into phases with k + 1
pages per phase, except possibly fewer in the last phase. We reorder the requests within each
complete phase, starting at the beginning. The contents of LIFO’s cache at the beginning of
a phase will be with respect to the sequence I1 with all modifications up to that point. Since
LRU faults on every page in a phase in the original I1, the k + 1 pages must all be different.
LIFO has at most k of the k + 1 pages from the current phase in its cache at the start of the
phase. If there were only k − 1, instead of k, we would be done, since then it must fault at
least twice in this phase. Suppose pi is the page requested in the current phase, which was
not in LIFO’s cache. Move the request to pi to the beginning of the phase. This will evict a
page requested later in the phase, so LIFO will fault at least twice in this phase. �

The algorithm MixPerm [7] is a mixed, randomized, memory-bounded algorithm which
obtains a competitive ratio of k+1

2 when N = k + 1. It is the uniform mixture of all the
permutation algorithms Permπ [14] 1, which have competitive ratio k. The parameter π in
the definition of Permπ is a cyclic permutation of the N pages in slow memory. Let π(m)

denote the m-fold composition of the cyclic permutation π, and let m(i) be the minimum
m with π(m)(i) currently in cache. The algorithm Permπ is defined so that on a page fault
on page i, the page π(m(i))(i) is evicted. Permπ and LRU are equivalent according to the
competitive ratio, and when N = k + 1, they are equivalent according to the relative worst
order ratio. However, for N ≥ k + 2, Permπ performs worse than LRU according to the
relative worst order ratio.

1Chrobak et al. called this algorithm Rotate.
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Theorem 8

If N = k + 1, WRPermπ ,LRU = 1.

If N ≥ k + 2, WRPermπ ,LRU ≥ 2− k − 1
N

+
2
k
.

Proof We first show that WRPermπ ,LRU ≥ 1. Consider any request sequence I. By Lemma 3,
there is a worst ordering ILRU such that LRU faults on each request of a prefix I1 of ILRU

and on no request after I1. Consider the prefix I1, divided into phases with k+1 requests per
phase, except possibly fewer in the last phase. We reorder the requests within each complete
phase, starting at the beginning, such that Permπ will also fault on all of these requests. The
contents of Permπ’s cache at the beginning of a phase will be with respect to the sequence
I1 with all modifications up to that point. Since LRU faults on every page in a phase in the
original I1, the k + 1 pages must all be different.

Consider the current phase being processed, phase Pi. Arrange the pages in Pi in a cycle
C, in the same order in which they occur in π. We will find a starting point in C so that
requesting the pages in the order given by C, starting at this point, will cause Permπ to fault
on every page.

Arrange the pages in Permπ’s cache at the beginning of this phase in a cycle, C ′, also in the
order in which they occur in π. If the cycles C and C ′ have no pages in common, none of
the pages in phase Pi are currently in cache, so Permπ will fault on every request. Thus,
we assume that they have some pages in common. Since both cycles are ordered according
to π the pages they have in common occur in the same order in both cycles. Match up
the identical pages on the two cycles, and count on each cycle the number of pages strictly
between consecutive matched pages. Create a cycle C ′′ consisting of integers representing
the difference between the number of pages in C ′ and the number of pages in C between
consecutive matched pages. Since C has one more page than C ′, the sum of the numbers in
C ′′ is −1.

Claim There exists a starting point on C ′′ such that, in the string S defined by starting at
this point on C ′′ and including the remainder of C ′′ in order, the sums of all prefixes are
negative.

Proof of claim Suppose there is no such starting point. Take any starting point and follow
a prefix until a nonnegative sum occurs. Continue like this, using the first value not in the
previous prefix as the next starting point and stopping when a nonnegative sum has been
found. This process can be repeated indefinitely. Since C ′′ is finite, eventually two starting
points will be the same. Between these two starting points, one has been around C ′′ an integer
number of times with the sum of all values adding to some nonnegative integer value. This
is a contradiction since the sum of the numbers in C ′′ is −1. This establishes the claim.

Choose a starting point on C ′′ where all prefix sums are negative. This corresponds to a
subsequence of at least one page request in C which is not in C ′ and thus not in cache. This
will be the starting point in C. Each request to a page in C, but not in C ′, will cause the
eviction of a page in C ′ and these evictions will occur in the order given by C ′. When a
page p in both C and C ′ is requested, the number of pages before p in C is greater than the
number before p in C ′, so p will have been evicted and will also cause a fault. Thus Permπ

will also fault k + 1 times on this set of k + 1 pages.
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This occurs for every complete phase. Thus, LRU faults at most an additive constant k times
more on its worst ordering than what Permπ does on its worst ordering, on the pages in the
incomplete phase, if it exists.

We now prove that for N = k + 1, WRPermπ ,LRU ≤ 1. This completes the proof that, for
N = k + 1, WRPermπ ,LRU = 1. Consider any sequence I with requests to at most k + 1 pages
and let IPermπ be a worst ordering of I with respect to Permπ. Whenever Permπ faults on
a page p, it goes through π starting at p until it finds a page which is in cache and evicts
this page. Since N = k + 1, this will be the page p′ immediately succeeding p in π, and the
next fault will be on p′. Thus, if IPermπ is reordered such that the pages that Permπ faults
on occur at the beginning of the sequence, in the same mutual order as in IPermπ , then LRU
will also fault on each of these requests.

Now, consider the case N ≥ k + 2. To see that WRPermπ ,LRU > 2− k−1
N + 2

k , assume without
loss of generality that π = (1, 2, . . . , N) and consider the family of request sequences

In = 〈p1, p2, . . . , pk+1, p1, pk+2, p1, pk+3, . . . , p1, pN 〉n,

where each subsequence 〈p1, p2, . . . , pk+1, p1, pk+2, p1, pk+3, . . . , p1, pN 〉 is called a phase. We
show that Permπ faults on all requests in In. Since each phase has one request to each of
the N pages and one extra request to p1 for each of the N − (k + 1) pages pk+2, pk+3, . . . , pN ,
this implies

(Permπ)W (In) = (N + N − (k + 1))n = (2N − (k + 1))n.

Consider the first phase of In. We prove by induction that just before the ith request to p1,
2 ≤ i ≤ N −k, the cache contains pi, . . . , pi+k−1. For i = 2, this is clearly the case. Therefore,
consider the ith request ri to p1 and assume that the cache contains the pages pi, . . . , pi+k−1.
Since p1 is not in the cache, ri will cause pi to be evicted. After ri, pk+i is requested, and this
causes p1 to be evicted. Thus, the induction hypothesis is maintained. At the end of the first
phase, the pages pN−k+1, . . . , pN are in cache. Therefore, for the following k requests, the
request to pi will cause pN−k+i to be evicted. Thus, after the first k requests of the second
phase of In, the cache contents are the same as after the first k requests of the first phase.
Since the algorithm is memoryless, this is sufficient to prove that it will behave the same
during all n phases of In.

Now consider LRU. Between any pair of faults on p1, at least k of the N − 1 other pages are
requested. Thus, regardless of the ordering, LRU faults on at most bN−1

k nc + 1 requests to
p1, i.e.

LRUW(In) ≤
⌊

N − 1
k

n

⌋
+ 1 + (N − 1)n ≤

(
N − 1

k
+

1
n

+ N − 1
)

n

≤
(

N

k
+ N − 1

)
n, for n ≥ k.

This gives a ratio of

(Permπ)W(In)
LRUW(In)

≥ 2N − (k + 1)
N − 1 + N

k

=
2N − 2 + 2N

k + 2 − 2N
k − (k + 1)

N − 1 + N
k

≥ 2 −
k − 1 + 2N

k

N − 1 + N
k

≥ 2 − k − 1
N

+
2
k
, since N > k

�
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6 Look-Ahead

In the standard on-line model, requests arrive one by one. A model in which the algorithm
is informed of the next ` ≥ 1 page requests before servicing the current one, is a look-ahead
model. This model is in-between the standard on-line model and the off-line model.

It is well known that using standard competitive analysis one cannot show that knowing the
next ` requests is any advantage for any fixed `; for any input sequence, an adversary can “fill
up” the look-ahead by using ` + 1 consecutive copies of each request, adding no cost to the
optimal off-line solution. In contrast, results on the relative worst order ratio indicate that
look-ahead helps significantly. Here we only look at a modification of LRU, using look-ahead,
though the technique can be applied to other algorithms as well.

Define LRU(`) to be the algorithm which on a fault evicts the least recently used page in
cache which is not among the next ` requests. If ` ≥ k, all pages in cache may be among the
next ` requests. In this case, the page whose next request is farthest in the future is evicted.

One can see that LRU(`) is at least as good as LRU on any sequence by noting that LRU(`)
is conservative.

Lemma 11 LRU(`) is a conservative algorithm.

Proof Let I be a request sequence, and assume that there is an interval, I ′, in I, containing
only k distinct pages, on which LRU(`) faults at least k+1 times. Then it must fault on some
page, p, twice in I ′. Between these two faults, say at request r, page p must be evicted. First
assume that ` < k. At this point, p is the least recently used page which is not among the
next `. Clearly the second request causing a fault on p must be beyond these next `. So the
other k − 1 pages in cache, when request r occurs, must all have been requested between the
two faults on p. In addition, the request r cannot be for p or any of the other pages in cache
at that time. Thus, there must be at least k + 1 distinct pages in I ′, giving a contradiction.
Now assume that ` ≥ k. If p is not among the next ` requests when r occurs, the previous
argument holds, so assume that it is. In this case p must have been the page in cache which
was requested furthest in the future, so the other k − 1 pages are requested between request
r and the second fault on p. Again, counting the request r and p, there must be at least k +1
distinct pages in I ′, which is a contradiction. Thus, LRU(`) is conservative. �

Observe that Lemma 5 holds for algorithms using look-ahead, though Lemma 4 does not.

Theorem 9 WRLRU,LRU(`) = min{k, ` + 1}.

Proof Since the previous lemma combined with Lemma 5 show that WRLRU,LRU(`) ≥ 1, to
prove the lower bound, it is sufficient to find a family of sequences In with limn→∞ LRU(In) =
∞, where there exists a constant b such that for all In,

LRUW (In) ≥ min{k, ` + 1}LRU(`)W (In)− b.

Let In consist of n phases, each containing the pages p1, p2, ..., pk, pk+1, in that order. LRU
will fault n(k + 1) times. However, if ` ≤ k − 1, after the first k faults, LRU(`) never faults
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on any of the next ` pages after a fault. Thus, regardless of the order, LRU(`) faults on at
most k + bn(k+1)−k

`+1 c pages. Asymptotically, this gives a ratio of ` + 1. If ` ≥ k, then LRU(`)
faults on at most one out of every k pages.

For the upper bound, suppose there exists a sequence I, where LRU faults s times on its
worst permutation, ILRU, LRU(`) faults s′ times on its worst permutation, ILRU(`), and s >
min(k, `+1) ·s′. Then, s > min(k, `+1) ·s′′, where s′′ is the number of times LRU(`) faults on
ILRU. One cannot have ` ≥ k, since then LRU(`) faults fewer times than OPT. So suppose
` < k, and assume by Lemma 3, that ILRU is such that LRU faults on each request of a
prefix I1 of ILRU and on no request after I1. Then there must exist a request r in ILRU where
LRU(`) faults, but it does not fault on any of the next ` + 1 requests, all of which are in I1.
The last of these ` + 1 requests caused LRU to fault, so it was not among the last k distinct
requests at that point. Since l < k, it was not in any of the requests in the look-ahead when
LRU(`) processed request r, and all of the pages in the look-ahead were in cache then since
LRU(`) did not fault on any of them. Hence, this ` + 1st page was evicted by LRU(`) when
r was requested, and there must have been a fault the next time it was requested after that,
giving a contradiction. �

Note that by transitivity, Theorem 9 shows that for any conservative algorithm, C, WRC,LRU(`) =
min{k, ` + 1}.

7 Randomized Algorithms

The relative worst order ratio can also be applied to randomized algorithms. The only change
to the definition is that an algorithm’s expected profit/cost on a worst permutation of a
sequence is used in place of the profit/cost obtained by a deterministic algorithm.

Definition 7 Consider an optimization problem P and let I be any input sequence of length
n. Let A be any randomized algorithm for P .

If P is a maximization problem, E[A(I)] is the expected profit of running A on I, and AW(I) =
minσ E[A(σ(I))]. If P is a minimization problem, E[A(I)] is the expected cost of running A
on I, and AW(I) = maxσ E[A(σ(I))]. �

Using the above definition, the relative worst order ratio is now defined as in the deterministic
case.

Consider the randomized paging algorithm MARK [17]. On a fault, MARK chooses the
unmarked page to be evicted uniformly at random. We show that WRLRU,MARK = k/Hk,
which is consistent with the results one obtains with the competitive ratio where MARK has
ratio 2Hk − 1 [1], while LRU has ratio k.

Recall that marking algorithms, such as MARK, work in phases. In each phase (except
possibly the last), exactly k distinct pages are requested, and the first page requested within
a phase was not requested in the previous phase. Thus, the subsequence processed within a
phase (except possibly the last) is a maximal subsequence containing requests to exactly k
distinct pages. A subsequence processed within one marking phase is called a k-phase. Note
that the partitioning of a sequence into k-phases is independent of the particular marking
algorithm.
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For Lemma 12 and Theorem 10 below, we need the fact that MARK’s expected number of
faults in the ith k-phase is mi(Hk − Hmi + 1) [17], where mi is the number of new pages in
the ith phase, i.e., the number of pages that are requested in the ith phase and not in the
(i− 1)st phase.

Lemma 12 There exists a sequence I, which is a worst permutation for both MARK and
LRU, where MARK’s expected number of faults is Hk per k-phase, while LRU faults k times
per k-phase.

Proof Consider a cyclic repetition of k + 1 pages. �

Lemma 13 For any sequence I of page requests, there exists a worst permutation IMARK of
I with respect to MARK, such that all k-phases, except possibly the last, have the following
properties:

1. The first page requested in a k-phase did not appear in the previous k-phase.

2. There are exactly k requests, all to distinct pages.

Proof Consider a worst permutation IMARK of I for MARK and consider its k-phase par-
tition. The first property follows by the definition of a k-phase partition. Within a phase,
the first occurrence of each page is the only one MARK has any chance of faulting on. Thus,
moving extra occurrences of a page within a phase to the end of the sequence will never
decrease the probability of MARK faulting on any page. After this has been completed, each
phase (except possibly the last) consists of exactly k requests, all to distinct pages. �

Lemma 14 below uses the following definition of rare and frequent pages and blocks.

Definition 8 Consider a sequence S consisting of s ≥ 2 consecutive k-phases. Call pages
requested in every phase of S frequent pages, and the others rare pages. The sequence S is
called a block, if it has the following properties.

1. Each k-phase in S contains exactly s− 1 rare pages.

2. There is no r < s such that the first r ≥ 2 k-phases of S contain exactly r − 1 rare
pages.

�

Note that any sequence with m k-phases contains at least b m
k+1c consecutive blocks.

Lemma 14 There exists a constant b such that, for any sequence I, LRUW(I) ≥ MARKW(I)−
b.
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Proof For any request sequence I, consider a worst permutation IMARK of I with respect
to MARK, satisfying the conditions of Lemma 13. Partition the sequence IMARK in blocks.
Each block in the partition will be analyzed separately, and it will be shown that the sequence
can be permuted so that LRU faults at least as many times as the expected number of faults
by MARK on the requests of that block.

Consider a block, S, containing s+1 k-phases and thus s rare pages and k− s frequent pages
in each k-phase. Clearly, no frequent page is a new page in any of the last s k-phases of
S. Therefore, if the first k-phase, P1, in the block has at most s new pages, then MARK’s
expected number of faults is at most s(s + 1)(1 + Hk −Hs).

Since each rare page occurs at most s times in S, one can permute the block into s groups of
k + 1 distinct pages, plus (s + 1)k − s(k + 1) = k − s extra pages. Thus, LRU can be forced
to fault s(k + 1) times. If P1 has at most s new pages, MARK’s expected number of faults
on this block is at most s(s + 1)(1 + Hk −Hs) ≤ s(s + 1)(1 + k−s

s+1 ) = s(k + 1), so in this case
the result holds.

Now assume that the first k-phase, P1, in the block, S, has s+i new pages, where 0 < i ≤ k−s.
Then, some frequent page in P1 is also a new page. MARK’s expected number of faults is at
most s2(1 + Hk −Hs) + (s + i)(1 + Hk −Hs+i).

Let S′ be the block immediately preceding S. Assume that it contains s′ + 1 k-phases and
thus s′ rare pages in each k-phase. Consider any frequent, new page, p, in P1. It is clearly
not a frequent page in S′. Assume for a moment that p occurs in all but the last k-phase of
S′. In this case, the first s′ k-phases of S′ have at least one more frequent page than all of S′

does. Generally, removing k-phases from the end of a block cannot decrease the number of
frequent pages, and the first two k-phases have at most k−1 frequent pages. Thus, removing
k-phases from the end of S′, we would eventually end up with 2 ≤ r < s + 1 consecutive
k-phases with r − 1 rare pages. This contradicts the fact that S′ is a block, so p occurs at
most s′ − 2 times in S′. Hence, one can choose i requests to frequent, new pages in P1 which
can be moved back into the previous block, S′, permuting S′ such that LRU faults on these
i pages, in addition to the s′(k + 1) pages originally in S′ which it faults on. After removing
these i requests from S, there are still s requests to rare pages in each k-phase, and a total of
at least s(k + 1) requests in S, so the remaining requests can still be permuted to give LRU
s(k + 1) faults. Thus, one can count s(k + 1) + i requests from block S which LRU will fault
on. The lemma now follows by the following proposition. �

Proposition 1 For all integers s, i, k, such that 1 ≤ s ≤ k, i ≥ 0, and s + i ≤ k, s2(1 + Hk −
Hs) + (s + i)(1 + Hk −Hs+i) ≤ s(k + 1) + i.
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Proof For s > k
2 , the claim holds by the following calculations.

s2(1 + Hk −Hs) + (s + i)(1 + Hk −Hs+i)

= s(s + 1)
(
1 +

k∑
j=s+1

1
j

)
+ i
(
1 +

k∑
j=s+i+1

1
j

)
− s
( s+i∑

j=s+1

1
j

)
≤ s(s + 1)

(
1 +

k − s

s + 1

)
+ i

(
1 +

k − s− i

s + i + 1

)
− s

i

s + 1

= s(k + 1) + i +
(

i(k − s− i)
s + i + 1

− si

s + 1

)

< s(k + 1) + i +

(
i
(

k
2 − i

)
s + i + 1

−
k
2 i

s + 1

)
, for s >

k

2

≤ s(k + 1) + i, since i ≥ 0

Note that approximating by integrals, one gets that Hx−Hy ≤ ln(x)− ln(y) for x > y. Thus,
s2(1+Hk −Hs)+ (s+ i)(1+Hk −Hs+i) ≤ s2(1+ ln(k)− ln(s))+ (s+ i)(1+ ln(k)− ln(s+ i)),
so it is sufficient to prove that

f(s, i, k) = s2(1 + ln(k)− ln(s)) + (s + i)(1 + ln(k)− ln(s + i))− s(k + 1)− i ≤ 0

for k ≥ 6 and s ≤ k/2.

Taking the derivative of f(s, i, k) with respect to i gives f ′i(s, i, k) = ln(k) − ln(s + i) − 1,
which is zero at i = k−se

e , positive for smaller i and negative for larger. Thus, for fixed s and
k, f(s, i, k) has its maximum at i = k−se

e .

Assume now that k
e ≤ s ≤ k

2 . In this case, i = k−se
e is negative, and hence outside the

specified range for i. Since f(s, i, k) is decreasing for i > k−se
e , f(s, i, k) is maximum at its

smallest allowable value, i = 0. Hence,

f(s, i, k) ≤ f(s, 0, k) = s(s + 1)(1 + ln(k)− ln(s))− s(k + 1).

The derivative of this with respect to s is −s − k − 2 + (1 + ln(k) − ln(s))(2s + 1) which is
zero where (s + k + 2)/(2s + 1) = (1 + ln(k)− ln(s)). At this point, f(s, 0, k) = s(s + 1)(s +
k +2)/(2s+1)− sk− s = s3+s2+s−s2k

2s+1 . This is equal to zero, where s2 + s+1− sk = 0, which
has no solution in the range k

e ≤ s ≤ k
2 for k ≥ 4. Looking at the endpoints of this range, we

see that f(k
e , 0, k) is negative for k ≥ 4, and f(k

2 , 0, k) is negative for k ≥ 6. Thus, f(s, i, k)
is negative for k

e ≤ s ≤ k
2 and k ≥ 6.

Finally, consider s ≤ k
e . In this range, the maximum value of f is

f

(
s,

k − se

e
, k

)
= s2(1 + ln(k)− ln(s)) + 2s +

k − se

e
− s(k + 1).

Taking the derivative with respect to s gives s− k + 2s(ln(k)− ln(s)), which is negative for s
small enough and then positive, so the function has a local minimum where the derivative is
zero. Thus, the maximum values are at the endpoints. For s = 1, one gets that f(1, k

e −1, k) =
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1+ln(k)+ k
e−k, which is negative for k ≥ 4. For s = k

e , one gets that f(k
e , 0, k) = (2

e−1)sk+s,
which is negative for k ≥ 4.

Thus, for 1 ≤ s ≤ k, i ≥ 0, and s+i ≤ k, s2(1+Hk−Hs)+(s+i)(1+Hk−Hs+i) ≤ s(k+1)+i.
�

Theorem 10 WRLRU,MARK = k/Hk.

Proof The lower bound follows from Lemmas 12 and 14. To see that the ratio cannot be
higher than k/Hk, consider any k-phase in LRU’s worst permutation. LRU never faults more
than k times on any k-phase, and MARK never has an expected number of faults less than
Hk on any complete k-phase [17]. MARK would fault at least as many times on its own worst
ordering. Thus, the result is tight. �

8 Conclusion and Open Problems

This second problem area, paging, studied using the relative worst order ratio gives even more
convincing evidence than the first, bin packing, that this performance measure could become
an important tool for analyzing on-line algorithms. Comparing algorithms directly to each
other, rather than indirectly through a comparison to OPT, appears to give more meaningful
results, both for paging and for bin packing. Previous measures and models, proposed as
alternatives or supplements to the competitive ratio, have generally been more limited as to
applicability, usually to very few problems. Further study is needed to determine how widely
applicable the relative worst order ratio is, but paging and bin packing are very different
problems. Together with the results on the bin coloring, scheduling, and seat reservation
problems mentioned in the introduction, this gives a convincing basis for further investigation.

For paging, many algorithms with widely varying performance in practice all have competitive
ratio k. The relative worst order ratio distinguishes between some of these. Most notably,
LRU is found to be better than FWF, and look-ahead is shown to help. It is also promising
that this new performance measure is leading to the discovery of new algorithms. Further
testing is needed to determine which variant of RLRU is best in practice and how much better
it is than LRU.

Theorem 3 shows that no marking algorithm can be much better than LRU. It would be
interesting to know if LRU is in fact the best marking algorithm according to the relative
worst order ratio.
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Appendix: Experimental Results on RLRU

The focus of attention in this paper is the theoretical results comparing various algorithms and
algorithm classes using the relative worst order ratio. Using this measure, we have concluded
that RLRU is better than LRU. We believe it would be very interesting to determine if
this result is reflected in the behavior of RLRU exhibited in practical applications. In our
opinion, a full paper should be devoted to this issue alone. However, initial discussion of
implementation considerations and experiments have been included here to demonstrate that
a careful investigation could lead to new findings of interest in practice.

Implementation of RLRU

RLRU decides whether or not to mark pages based on whether or not they are in LFD’s
cache. At any given point in time, it is of course impossible to compute the entire contents of
LFD’s cache, since this depends on future requests. It is, however, possible, given a request
and the request sequence up to that point, to compute whether or not LFD would have that
particular page in cache.

RLRU can be implemented to run in time O(log N) and space O(N), where N is the number
of different pages requested, which we argue below.

In addition to the administration required to evict least recently used pages, which is similar
to the administration necessary for LRU, RLRU needs to be able to perform the following
operations:

1. Check if it faults on a page for the second time in a phase.

2. Mark a page, and unmark all pages.

3. Find the least recently used page, possibly just among unmarked pages.

4. Check for a page in LFD’s cache.

The following implementation strategies will ensure the stated complexities:

1. We use a balanced binary search tree over all the different pages on which RLRU has
faulted during the phase.

2. Using a balanced binary search tree over all the different pages which have been re-
quested, we mark a page by associating the current phase number with the page. Thus,
by incrementing the phase number, we can unmark all pages in constant time.

3. Using a balanced binary search tree ordered on timestamp, the least recently used page
can be found in logarithmic time. If the timestamp is also associated with pages in
cache, then old timestamp entries can be found and updated when a page is requested.
By adding information to the nodes in the tree regarding the last phase in which the
page stored in the node was marked and information regarding the least recent phase of
any node in the subtree, it is also possible in logarithmic time to find the least recently
used page among those which are unmarked, i.e., not marked in the current phase. In
an actual implementation, points 1, 2, and 3 can be combined.
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4. At any given point in time, it is of course impossible to compute the entire contents
of LFD’s cache, since this depends on future requests. It is, however, possible, given
a request and the request sequence up to that point, to compute whether or not LFD
would have that particular page in cache. Using techniques [19] inspired by geometric
algorithms [32], this can be done by registering the known time intervals of pages in
LFD’s cache in a balanced binary search tree. Also here, time O(log N) and space O(N)
can be obtained.

The question is whether or not these time and space bounds are good enough in practice. We
believe there are at least two interesting scenarios to consider. One is the interaction between
two high speed storage media, the speed of which differ by only a small multiplicative constant,
such as primary versus secondary cache. Here, a paging algorithm must be very efficient, which
also implies that it cannot be allowed much working space. In such a scenario, even LRU
is most often too time and space consuming. Another scenario is the interaction of storage
media, the speed of which differ by orders of magnitude. This could be the buffer pool versus
the disk in database systems or local file caching of Internet files. In those situations, we can
use substantial space, and time logarithmic in either the number of different pages or just
in the cache size would both be insignificant compared with almost any small improvement
in cache behavior. A similar point is made in [18]. If, in some special application, space is
a problem, then it could possibly be reduced to a function of k using the techniques of [1].
In summary, a comparison between LRU and RLRU is interesting because the circumstances
under which they can reasonably be applied are quite similar.

Empirical Analysis

To get an indication as to whether or not the positive theoretical results are reflected in
practice, we have investigated the behavior of LRU and RLRU on traces2 collected from very
different applications, including key words searches in text files, selections and joins in the
Postgres database system, external sorting, and kernel operations. We have used all ten data
files from the site.

In Table 3, we list the results for each data file, and for cache sizes of 8, 16, . . . , 1024. Each
entry shows the percent-wise improvement of RLRU over LRU. If ` and r denote the number
of faults by LRU and RLRU, respectively, then the improvement is computed as 100 `−r

` . This
number is negative if LRU performs best. In addition to the percentages, each entry shows
the number of page faults of each of the three algorithms LFD, LRU, and RLRU, in that
order.

Out of the 80 tests, 16 are negative. The largest negative result of −0.74% is from a short
sequence and is due to a difference of only one page fault. The remaining negative results lie
between zero and approximately half a per cent. RLRU beats LRU with more than half a per
cent in 32 cases, more than 1% in 17 cases, and more than 5% in 9 cases. This is illustrated
in Figure 3.

We also consider another variant, RLRU′, of RLRU. The only difference is that RLRU′ never
marks pages that are already in cache. Thus, RLRU′ is defined as in Figure 1 with the
else-statement deleted. For this variant, we obtain the results displayed in Table 4.

2www.cs.wisc.edu/∼cao/traces/
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File names and lengths
Cache bigsort j1 j2 j3 j4 j5 j6 pjoin pq7 xds
Size 40167 18533 25881 38112 59744 95723 20709 41558 32989 88558

11080 418 8110 4194 7064 25169 4490 6906 9046 10665
14632 494 8233 4262 7278 25412 5100 8014 9371 10768

8 13204 491 8197 4276 7278 25385 4545 7200 9419 10724
9.76 0.61 0.44 -0.33 0.00 0.11 10.88 10.16 -0.51 0.41

10346 331 8016 4143 6945 25014 4461 6760 8887 10630
12619 470 8177 4243 7201 25332 4596 7718 9277 10762

16 10736 468 8134 4255 7221 25326 4525 7003 9259 10709
14.92 0.43 0.53 -0.28 -0.28 0.02 1.54 9.26 0.19 0.49
10054 205 7882 4076 6795 24773 4425 6594 8718 10566
10744 463 8138 4239 7180 25307 4516 7401 9216 10756

32 10561 425 8078 4248 7186 25303 4513 6888 9170 10697
1.70 8.21 0.74 -0.21 -0.08 0.02 0.07 6.93 0.50 0.55
9757 126 7658 3974 6586 24325 4386 6363 8514 10438

10587 136 8120 4230 7135 25276 4505 6879 9185 10754
64 10402 137 8057 4239 7140 25278 4506 6838 9103 10695

1.75 -0.74 0.78 -0.21 -0.07 -0.01 -0.02 0.60 0.89 0.55
9440 126 7210 3782 6370 23477 4322 6026 8141 10182

10466 126 8120 4223 7087 25256 4503 6815 9075 10749
128 10311 126 8057 4234 7093 25211 4505 6808 9069 10694

1.48 0.00 0.78 -0.26 -0.08 0.18 -0.04 0.10 0.07 0.51
8928 126 6314 3398 5986 21813 4194 5474 7501 9768

10238 126 8118 4213 7039 25209 4499 6793 8989 10564
256 10166 126 8057 4221 7038 24913 4492 6780 8984 10534

0.70 0.00 0.75 -0.19 0.01 1.17 0.16 0.19 0.06 0.28
8139 126 4522 2630 5218 18771 3938 4796 6221 9236

10016 126 8115 4171 6933 24470 4491 6782 8870 10272
512 9881 126 8057 4173 6908 24021 4486 6753 8835 10232

1.35 0.00 0.71 -0.05 0.36 1.83 0.11 0.43 0.39 0.39
6744 126 1288 1180 3682 14032 3426 4098 4571 8571
9618 126 5060 1921 6709 24024 4476 6042 8674 10190

1024 9532 126 4157 1799 6674 23693 4470 6040 8607 10183
0.89 0.00 17.85 6.35 0.52 1.38 0.13 0.03 0.77 0.07

Table 3: Empirical comparison of LRU and RLRU
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Figure 3: Percentages with which RLRU is better than LRU
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File names and lengths
Cache bigsort j1 j2 j3 j4 j5 j6 pjoin pq7 xds
Size 40167 18533 25881 38112 59744 95723 20709 41558 32989 88558

11080 418 8110 4194 7064 25169 4490 6906 9046 10665
14632 494 8233 4262 7278 25412 5100 8014 9371 10768

8 13451 499 8208 4265 7254 25368 5033 7205 9357 10724
8.07 -1.01 0.30 -0.07 0.33 0.17 1.31 10.09 0.15 0.41

10346 331 8016 4143 6945 25014 4461 6760 8887 10630
12619 470 8177 4243 7201 25332 4596 7718 9277 10762

16 10862 470 8149 4220 7181 25315 4570 6986 9220 10714
13.92 0.00 0.34 0.54 0.28 0.07 0.57 9.48 0.61 0.45
10054 205 7882 4076 6795 24773 4425 6594 8718 10566
10744 463 8138 4239 7180 25307 4516 7401 9216 10756

32 10620 426 8097 4217 7131 25299 4516 6927 9152 10703
1.15 7.99 0.50 0.52 0.68 0.03 0.00 6.40 0.69 0.49
9757 126 7658 3974 6586 24325 4386 6363 8514 10438

10587 136 8120 4230 7135 25276 4505 6879 9185 10754
64 10521 136 8079 4199 7051 25250 4507 6895 9122 10703

0.62 0.00 0.50 0.73 1.18 0.10 -0.04 -0.23 0.69 0.47
9440 126 7210 3782 6370 23477 4322 6026 8141 10182

10466 126 8120 4223 7087 25256 4503 6815 9075 10749
128 10422 126 8079 4199 6958 25149 4505 6836 9075 10703

0.42 0.00 0.50 0.57 1.82 0.42 -0.04 -0.31 0.00 0.43
8928 126 6314 3398 5986 21813 4194 5474 7501 9768

10238 126 8118 4213 7039 25209 4499 6793 8989 10564
256 10226 126 8079 4189 6920 25127 4498 6783 8984 10541

0.12 0.00 0.48 0.57 1.69 0.33 0.02 0.15 0.06 0.22
8139 126 4522 2630 5218 18771 3938 4796 6221 9236

10016 126 8115 4171 6933 24470 4491 6782 8870 10272
512 9934 126 8077 4045 6866 24409 4487 6772 8842 10262

0.82 0.00 0.47 3.02 0.97 0.25 0.09 0.15 0.32 0.10
6744 126 1288 1180 3682 14032 3426 4098 4571 8571
9618 126 5060 1921 6709 24024 4476 6042 8674 10190

1024 9617 126 5074 1921 6723 23564 4471 6041 8658 10188
0.01 0.00 -0.28 0.00 -0.21 1.91 0.11 0.02 0.18 0.02

Table 4: Empirical comparison of LRU and RLRU′
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For this algorithm, only 8 out of the 80 tests are negative. Except for the result of −1.01%,
all results are larger than −1

3%. RLRU′ beats LRU with more than 1
3% in 39 cases, more

than 1% in 13 cases, and more than 5% in 6 cases. The distribution of the percentages can
be seen in Figure 4.

0%−2% 18%

Figure 4: Percentages with which RLRU′ is better than LRU

Test Conclusions

The test performed here is limited. We believe a thorough testing of the value of RLRU
(and variants) in practice should be carried out in a full paper devoted to that. However, the
preliminary tests reported here seem to indicate that LRU and RLRU (and variants) most
often behave very similarly, but in the (relatively few) cases where LRU performs poorly
compared with the optimal algorithm, RLRU’s behavior is significantly better. Furthermore,
we have not seen any scenarios where LRU performs significantly better than RLRU.
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