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Abstract. The relative worst order ratio is a new measure for the quality of on-line algorithms,
which has been giving new separations and even new algorithms for a variety of problems. Here,
we apply the relative worst order ratio to the Seat Reservation Problem, the problem of assigning
seats to passengers in a train. We consider the unit price problem, where all tickets have the
same cost, and the proportional price problem, where the ticket price is proportional to the
distance travelled.
Using the relative worst order ratio, we show that First-Fit and Best-Fit are better than Worst-
Fit, for the unit price problem, even though they have not been separated using the competitive
ratio. The same relative worst order ratio result holds for the proportional price problem, where
no deterministic algorithm has a competitive ratio, or even a competitive ratio on accommod-
ating sequences, which is bounded below by a constant.
Comparing algorithms to OPT with the relative worst order ratio gives the worst order ratio.
The worst order ratio of any deterministic algorithm for either the unit price problem or the
proportional price problem is always bounded above by the competitive ratio on accommodating
sequences for the algorithm and bounded below by the competitive ratio on accommodating
sequences for some algorithm. Thus, for the unit price problem, the worst order ratio of any
algorithm is at least 1

2
, even though the competitive ratio is not bounded below by any constant.

This gives a much more optimistic and realistic view of how well the algorithms perform, but
it is still necessary to use the relative worst order ratio to separate their performances.

1 Introduction

The standard measure for the quality of on-line algorithms has been the competitive ratio
[10,15,12], which is, roughly speaking, the worst-case ratio, over all possible input sequences,
of the on-line performance to the optimal o�-line performance. In many cases, the competitive
ratio has been quite successful in predicting the performance of algorithms. However, in many
others, it has given results that are either counter-intuitive or counter to the experimental
data. There is therefore a need to develop better performance measures that, at the very
least, would supplement the competitive ratio.

The competitive ratio resembles the approximation ratio, as on-line algorithms can be
viewed as a special case of approximation algorithms. However, while it seems natural to
compare an approximation algorithm to an optimal algorithm, which solves the same problem
in unlimited time, it does not seem as natural to compare an on-line algorithm to an o�-line
optimal algorithm, which actually solves a di�erent problem (an o�-line version). Additionally,
when there is need to compare two on-line algorithms against each other, it seems more
appropriate to compare them directly, rather than involve an intermediate comparison to an
optimal o�-line algorithm.

For this reason, a new performance measure for the quality of on-line algorithms has
been developed [3]. This measure, the relative worst order ratio, allows on-line algorithms to
be compared directly to each other. It combines the desirable properties of some previously
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considered performance measures, namely the Max/Max ratio [2] and the random order ratio
[13]. To compare two algorithms, we consider a worst-case sequence and take the ratio of how
the two algorithms do on their respective worst orderings of that sequence. Though intended
for direct comparison of on-line algorithms, the relative worst order ratio may also be used to
compare an on-line algorithm to the optimal o�-line algorithm, in which case it more closely
parallels the competitive ratio. We then refer to the ratio as simply the worst order ratio.

The relative worst order ratio has already been applied to some problems and has led to
more intuitively and/or experimentally correct results than the competitive ratio, as well as
to new algorithms. For paging, for example, it has shown that Least-Recently-Used(LRU)
is strictly better than Flush-When-Full(FWF) [5], even though both algorithms have the
same competitive ratio. This result is intuitively correct. Additionally, although LRU is an
optimal deterministic algorithm according to the competitive ratio, a new algorithm RLRU
has been discovered, which not only has a better relative worst order ratio than LRU, but
is experimentally better as well according to initial testing [5]. It has also been shown that
look-ahead is a signi�cant advantage [5], which is again an intuitively correct result that is
in contrast with the competitive ratio, which does not re�ect that look-ahead can be helpful.
Other problems where the relative worst order ratio has given more correct results are bin
packing [3,4], scheduling [9], and bin coloring [14].

Given these encouraging results, this paper will use the relative worst order ratio to
analyze algorithms for the seat reservation problem. This problem is de�ned in [7] as the
problem of assigning as many passengers as possible, to seats on a train with n seats and
k stations en-route, in an on-line manner. We focus on deterministic algorithms, although
randomized algorithms for this problem have also been studied [7,1]. Three algorithms are
studied: First-Fit, Best-Fit, and Worst-Fit. There are two variants of the seat reservation
problem: the unit price problem and the proportional price problem.

Table 1. Bounds for the competitive ratio.

Unit Price Proportional Price

Any det. alg. 2
k
≤ r ≤ 8

k+5
1

k−1
≤ r ≤ 4+2

√
13

3+2
√

13+k

Worst-Fit 2
k
≤ r ≤ 4

k+1
r = 1

k−1

First-Fit/Best-Fit 2
k
≤ r ≤

2− 1
k−1

k−1
1

k−1
≤ r ≤ 4

k+2

The competitive ratio has been applied to both variants in [7,1,6], and the known results
are summarized in Table 11. Note that the competitive ratio is Θ( 1

k ) for all deterministic al-
gorithms (randomized as well [7]), and thus not bounded below by a constant independent of
k (recall that for a maximization problem, a low competitive ratio implies a bad algorithm).
Given the results so far, the only de�nite conclusion that can be made about the relative
performance of these algorithms is that Worst-Fit is no better than any other deterministic
algorithm for the proportional price problem. Additionally for the unit price problem, given
that First-Fit and Best-Fit have the same bounds on their competitive ratios, and that these

1 All bounds come directly from [7], with the following exceptions: The upper bound on Worst-Fit for unit
price follows from the proof of Theorem 8 in [7]. The upper bound on Worst-Fit for proportional price
follows from the worst-case sequence used in Theorem 8 in [6].
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bounds are asymptotically tight, it seems unlikely that First-Fit and Best-Fit can be separ-
ated. However, it seems hard to draw any other conclusions about the relative performance
of these algorithms. Combined with the pessimistic upper bounds on the competitive ratios,
these very inconclusive results make the seat reservation problem an ideal candidate to study
with the relative worst order ratio.

1.1 Our Results

Using the relative worst order ratio, we are able to di�erentiate all three algorithms, for both
the unit price and the proportional price problems, something that has not been done with the
competitive ratio. We show that for a category of algorithms called Any-Fit, which includes
both First-Fit and Best-Fit, First-Fit is at least as good as any other algorithm. Moreover,
First-Fit is strictly better than Best-Fit with a relative worst order ratio of at least 4

3 for the

unit price problem and at least k+2
6 for the proportional price problem. We also show that

Worst-Fit is at least as bad as any other deterministic algorithm, and is strictly worse than
any Any-Fit algorithm by a ratio of at least 2− 1

k−1 for the unit price problem and exactly
k − 1 for the proportional price problem.

Additionally, we �nd that, for the seat reservation problem, an algorithm's worst order
ratio is bounded from above by the competitive ratio on accommodating sequences for the
algorithm (de�ned below) and bounded below by the competitive ratio on accommodating
sequences for some algorithm. This gives bounds for the worst order ratio of 1

2 ≤ r ≤ 1
2 +

3n−3
2k+6n−(8+2c) , where c ≡ k − 1 (mod 6), for the unit price problem. This is a more useful
estimate of how an algorithm performs than the competitive ratio, which is not bounded
below by a constant.

2 The Seat Reservation Problem: De�nitions and Algorithms

The seat reservation problem was originally studied in [7]. We consider a scenario where a
train with n seats travels on a route passing through k ≥ 2 stations, including the �rst and
the last. The seats are numbered from 1 to n. The start station is station 1 and the end
station is station k. A customer may, any time prior to departure, request a ticket for travel
between stations s and f , where 1 ≤ s < f ≤ k. At that time, the customer is assigned a
single seat number, which cannot be changed. It is the role of the algorithm (ticket agent)
to determine which seat number to assign. The customer may be refused a ticket only in the
case when there is no single seat which is empty for the duration of the request. An algorithm
which obeys this rule is called fair, and all algorithms for this problem must be fair.

The seat reservation problem is, by its very nature, an on-line problem. The algorithm
attempts to maximize income, i.e., the total price of the tickets sold. The performance of an
algorithm will thus clearly depend on the ticket pricing policy. In this paper, we consider two
variants. In the unit price problem, the price of all tickets is the same. In the proportional

price problem, the price of a ticket is directly proportional to the distance traveled. Some of
the results we prove hold for any pricing policy where all tickets have positive cost; we refer
to such results as holding �regardless of pricing policy.�

Before continuing, we introduce some basic notation. We use the notation x = [xs, xf) to
denote an interval x from station xs to station xf, where 1 ≤ xs < xf ≤ k. We say an interval
x is a subinterval of the interval y if ys ≤ xs and xf ≤ yf. Since a request is just an interval,
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we will use the terms interchangibly, depending on what is more natural at the time. The
length of an interval (request) x is simply xs − xf.

The following three algorithms which we will consider are all inspired by Bin Packing
algorithms of the same name.

First-Fit This algorithm will place a request on the �rst seat which is unoccupied for the
length of the journey.

Best-Fit Assume we have an interval x and a seat which is empty for that interval. The
empty space containing x is the maximum length of a request which could be placed on
that seat and which contains x as a subinterval. This algorithm will place a request on a
seat such that the empty space containing that request is minimized. We note that to fully
de�ne the algorithm we must also specify a tie-breaker, that is, what happens when there
is more than one such seat. However, since we would like to keep our results as widely
applicable as possible, we will not assume any speci�c tie-breaker in any of our proofs. Our
results will thus hold for any choice of a tie-breaker for Best-Fit. In some cases, bounds
could be tightened with knowledge of the tie-breaker2. However, these improvements are
minor, and do not change the meaning of the results.

Worst-Fit This algorithm will place a request on a seat such that the empty space containing
that request is maximized. Again, we assume that any tie-breaker may be chosen, and
our results hold for all such choices. In this case, however, knowledge of the tie-breaker
would not help tighten any of our bounds.

Additionally, we will look at the following class of algorithms, also inspired by a class of Bin
Packing algorithms of the same name de�ned by Johnson in [11].

Any-Fit At any given time, we say that a seat is active if at least one request has been
assigned to it, and inactive otherwise. An algorithm which belongs to this class will place
a request on an inactive seat only if it does not �t into any of the active seats.

3 The Relative Worst Order Ratio

In this section, we de�ne the relative worst order ratio and the notion of two algorithms being
comparable (De�nition 2) as in [3], though, for the sake of simplicity, only for maximization
problems, such as the seat reservation problem.

The de�nition of the relative worst order ratio uses AW(I), the performance of an on-line
algorithm A on the �worst permutation� of the sequence I of requests, formally de�ned as
follows:

De�nition 1. Consider an on-line maximization problem P and let I be any request sequence

of length n. If σ is a permutation on n elements, then σ(I) denotes I permuted by σ. Let A
be any algorithm for P . A(I) is the value of running A on I, and AW(I) = minσ A(σ(I)).

De�nition 2. Let S1(c) and S2(c) be statements about algorithms A and B de�ned in the

following way.

S1(c) : There exists a constant b such that AW(I) ≤ c · BW(I) + b for all I.

2 Speci�cally, the relative worst order ratio of First-Fit to Best-Fit can be slightly improved in Theorem 3
and in Theorem 6.
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S2(c) : There exists a constant b such that AW(I) ≥ c · BW(I)− b for all I.
The relative worst order ratio WRA,B of on-line algorithm A to algorithm B is de�ned if

S1(1) or S2(1) holds. In this case, A and B are said to be comparable. If S1(1) holds, then

WRA,B = sup {r | S2(r)}, and if S2(1) holds, then WRA,B = inf {r | S1(r)} .

Note that if S1(1) holds, the supremum involves S2 rather than S1, and vice versa. A ratio
of 1 means that the two algorithms perform identically with respect to this quality measure;
the further away from 1, the greater the di�erence in performance. The ratio is greater than
one if the �rst algorithm is better and less than one if the second algorithm is better. In most
cases, it is convenient to place the better algorithm �rst.

It is easily shown [3] that the relative worst order ratio is a transitive measure, i.e., for
any three algorithms A, B, and C, WRA,B ≤ 1 and WRB,C ≤ 1 implies WRA,C ≤ 1.

4 Worst Order Ratio

Although one of the goals in de�ning the relative worst order ratio was to avoid the inter-
mediate comparison of any on-line algorithm, A, to the optimal o�-line algorithm, OPT, it
is still possible to compare on-line algorithms to OPT. In this case, the measure is called the
worst order ratio [3] and is denoted WRA. This ratio can be used to bound the relative worst
order ratio between two algorithms and in some cases gives tight results. Thus, although it
is generally most interesting to compare on-line algorithms directly to each other, the worst
order ratio can also be interesting.

In this section, we show a connection between the worst order ratio and the competitive
ratio on accommodating sequences3, which is relevant to the seat reservation problem when
the management has made a good guess as to how many seats are necessary for the expected
number of passengers.

A sequence for which all requests can be accepted within n seats is called an accommodat-

ing sequence. For a maximization problem, an algorithm A is c-competitive on accommodating

sequences if, for every accommodating sequence I, A(I) ≥ c ·OPT(I)− b, where b is a �xed
constant for the given problem, and, thus, independent of I. The competitive ratio on accom-

modating sequences A is de�ned as

sup{c | A is c-competitive on accommodating sequences}.

The major result of this section shows that the worst order ratio for any memoryless,
deterministic algorithm for the seat reservation problem, regardless of the pricing policy,
is equal to its competitive ratio on accommodating sequences. An algorithm is memoryless

if it never uses any information about anything but the current request and the current
con�guration (which requests have been placed where) in making a decision about the current
request. In particular, a memoryless algorithm never uses information about the order the
requests came in or about any of the rejected requests. All algorithms considered in this paper
are memoryless.

In the proof showing this connection, it is shown that there is a permutation of a partic-
ular subsequence which will force OPT to accept every item in that subsequence, using the
following lemma:

3 The competitive ratio on accommodating sequences was �rst studied in [7], but called the accommodating

ratio there.
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Lemma 1. Any algorithm A for the seat reservation problem will accept all requests in any

accommodating sequence, I, if the requests in I are in nondecreasing order by left endpoint.

Proof. Consider any request, r = [rs, rf ), in the sequence, I. Since the sequence is accom-
modating, there are at most n requests containing the subinterval [rs, rs+1). Thus, when r
occurs in the sequence, there is some seat which A has left empty from rs to rs+1. Since the
requests in I are in nondecreasing order according to the left endpoint, if the seat is empty
from rs to rs+1, it has nothing placed to the right of rs on that seat, yet. Since any algorithm
for the seat reservation problem is fair, the request will be accepted. Thus, the entire sequence
will be accepted. ut

Theorem 1. Let A be a deterministic algorithm for the seat reservation problem. If A is

memoryless, then A's worst order ratio and its competitive ratio on accommodating sequences

are equal, regardless of the pricing policy. Otherwise, A's worst order ratio is no larger than

its competitive ratio on accommodating sequences and at least the competitive ratio on ac-

commodating sequences of some algorithm.

Proof. We �rst prove that if WRA ≥ c, then A is c-accommodating. Assuming that WRA ≥ c
implies that there exists a constant b such that AW (I) ≥ c · OPTW (I) − b for all input
sequences I. It follows from de�nitions that A(I) ≥ AW (I) and OPTW (I) = OPT(I) for all
accommodating sequences I. Combining these facts, we can say that there exists a constant b
such that A(I) ≥ c ·OPT(I)−b for all accommodating sequences I, so A is c-accommodating.
Therefore, if WRA ≥ c, then A is c-accommodating. Thus, the worst order ratio is at most
as large as the competitive ratio on accommodating sequences.

To prove the other direction, we consider an arbitrary input sequence I and its worst-
case permutation for A, IA. Let Iacc be the subsequence of IA containing all the requests
in IA which are accepted by A. Order the requests in Iacc in nondecreasing order by their
left endpoints. Then, place this ordered sequence at the beginning of a new sequence, IOPT,
followed by those requests remaining in I after removing those also in Iacc, This gives a
permutation of I. Notice that by the above lemma, OPT will be forced to accept all requests
in Iacc when given IOPT. Let the subset of the requests it accepts from IOPT be I ′. In OPT's
worst permutation of I, OPT accepts at most |I ′| requests.

Clearly, I ′ is an accommodating sequence. If A is memoryless, then we can without loss
of generality assume that the items it rejects from a sequence are at the end of that sequence.
Thus if, in a permutation of I ′, the items in Iacc are placed in the same relative order as in
IA, followed by the remaining items from I ′, A will accept only those in Iacc.

If A's competitive ratio on accommodating sequences is c, then for some constant b,

AW (I ′) ≥ c · |I ′| − b

⇒ |Iacc| ≥ c · |I ′| − b

⇒ AW (I) ≥ c · |I ′| − b

⇒ AW (I) ≥ c ·OPTW (I)− b.

Since this holds for any request sequence I, WRA is at least A's competitive ratio on accom-
modating sequences.

If A is not memoryless, it is not obvious that there is an permutation of I ′ which would
cause A to accept only Iacc. However, there is clearly some on-line algorithm, B which
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would accept only Iacc. Following the reasoning above, assuming B's competitive ratio on
accommodating sequences is c,

BW (I ′) ≥ c · |I ′| − b

⇒ AW (I) ≥ c ·OPTW (I)− b.

Since this holds for any request sequence I, WRA is at least B's competitive ratio on accom-
modating sequences. ut

It would be interesting to know if the assumption that the algorithm is memoryless is
necessary in the theorem above. As is, this result is interesting in that it gives a relationship
between the relative worst order ratio and the competitive ratio on accommodating sequences.
The direction showing that the worst order ratio for an algorithm A is no larger than its
competitive ratio on accommodating sequences clearly applies to any maximization problem
(and the opposite inequality for any minimization problem). However, the other direction
does not hold for all problems. In the case of dual bin packing, a problem where most results
have resembled those for the unit price seat reservation problem, WRA = 0 for any fair,
deterministic algorithm A [3], although the competitive ratio on accommodating sequences
is always at least 1

2 [8].

The theorem above, combined with previous work on the competitive ratio on accommod-
ating sequences, immediately gives the following corollaries. The �rst corollary shows that
for k much larger than n, the worst order ratio for any deterministic algorithm for the unit
price problem is close to 1

2 .

Corollary 1. The worst order ratio for any deterministic algorithm for the unit price problem

with n ≥ 3 seats is at least 1
2 and most 1

2 + 3n−3
2k+6n−(8+2c) , where k ≥ 7 and c ≡ k−1 (mod 6).

Proof. This statement holds for the competitive ratio on accommodating sequences [1], so
the result follows from Theorem 1. ut

This result is interesting in that it gives a much more optimistic prediction for the unit
price problem than the competitive ratio, which is not bounded below by a constant. For the
proportional price problem, the competitive ratio on accomodating sequences has not been
shown to be di�erent from the competitive ratio [7]. Thus, if we similarly try to extend the
theorem above to the proportional price problem, we do not get any results that are di�erent
from the competitive ratio.

The results above are also useful when considering the relative worst order ratio. The
next corollary gives bounds on the relative worst order ratios for the algorithms we consider.

Corollary 2. For any two deterministic algorithms A and B, 1
2 ≤ WRA,B ≤ 2 for the unit

price problem, and 1
k−1 ≤WRA,B ≤ k − 1 for the proportional price problem.

Proof. This follows from the above theorem, plus the fact that the competitive ratio on
accommodating sequences for any algorithm is at least 1

2 for the unit price problem and at
least 1

k−1 for the proportional price problem [7]. ut

This result will be applied in the following sections.
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5 The Relative Worst Order Ratio for the Unit Price Problem

In this section, we will investigate the relative worst order ratios of deterministic algorithms
for the unit price problem. Without loss of generality, we will assume within the proofs that
the price of all tickets is simply one unit of pro�t.

All the speci�c algorithms we are exploring make their decisions regardless of the pricing
policy used, so in some cases we can make conclusions about their relative performance for
the proportional price problem while analyzing their relative performance for the unit price
problem. In the cases where we are interested in exactly how well one algorithms does against
another, we will of course have to take into account the pricing policy.

5.1 First-Fit is at Least as Good as Any Any-Fit algorithm.

Our �rst result is based on the fact that given an input sequence and First-Fit's arrangement
of it, an Any-Fit algorithm can be forced to make the exact same seat arrangements by
permuting the sequence in an appropriate way.

Theorem 2. For any Any-Fit algorithm A, WRFF,A ≥ 1, regardless of pricing policy.

Proof. We will consider an arbitrary input sequence I and its worst-case permutation for
First-Fit, IFF. We will show that there exists a permutation of I, IA, such that A(IA) =
FF(IFF). This will imply that FFW(I) = FF(IFF) = A(IA) ≥ AW(I). Since this will hold for
all I, we will have proven the theorem.

Without loss of generality, we will assume that all requests which are rejected by First-Fit
appear last in IFF. Also, we will assume that when A must choose a new seat to activate, it
will choose the seat with the smallest number. This places no e�ective restriction on A since
we could always renumber the seats according to the order in which they would be activated
by A when it would process IA.

Let the height of a request in IFF be the seat it was assigned to by First-Fit, and ∞ if
it was rejected by First-Fit. Let IA be a permutation of I where all the requests appear in
order of non-decreasing height. We prove that A(IA) = FF(IFF) by induction. The induction
hypothesis is that after processing all requests with height up to and including i, A will make
the same seat assignments as First-Fit. For the base case i = 0, no seats have been assigned,
so the inductive hypothesis holds trivially.

For the general case of 1 ≤ i ≤ n, we consider when A encounters the �rst request with
height i. At this point, A has �lled the �rst i− 1 seats exactly as First-Fit, and seats i . . . n
remain inactive. Since this request could not be �t into any of the �rst i−1 seats by First-Fit,
it cannot be �t into any of the �rst i − 1 seats by A. It will therefore be placed in the �rst
available inactive seat, which is seat i.

Now consider when A encounters any other request r with height i. At this point, A has
�lled the �rst i−1 seats with at least the same requests as First-Fit, and now it has activated
other seats as well. Seat i is now active. Again, r cannot �t into any of the �rst i− 1 seats.
Moreover, since the only possible requests to be placed on seat i at this point must have
height i and all requests with the same height must be non-overlapping, A can �t r in seat i.
Since A is an Any-Fit algorithm, it will necessarily assign r to seat i.

For the case of i = ∞, A is not able to accommodate these requests because if it would
then First-Fit would have accommodated them as well. Therefore, A will reject these requests.

ut
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This theorem alone does not separate First-Fit from Best-Fit, but the following theorem
gives us a family of input sequences for which First-Fit will out-perform Best-Fit.

Theorem 3. For the unit price problem with k ≥ 10, 4
3 ≤WRFF,BF ≤ 2.

Proof. The upper bound follows directly from Corollary 2. Since Theorem 2 implies that
WRFF,BF ≥ 1, it is su�cient to �nd a family of sequences In with limn→∞ FFW(In) = ∞,
where there exists a constant b such that for all In, FFW(In) ≥ 4

3BFW(In)− b.
Consider the sequence In beginning with

⌊
n
2

⌋
request tuples [1, 2), [5, k − 4), [k − 1, k),

followed by
⌊

n
2

⌋
request tuples [3, k − 2), [2, 3), [k − 2, k − 1). We then end the sequence

with
⌊

n
2

⌋
request tuples [1, 3), [k − 2, k). Clearly, even in the worst-case ordering, First-Fit

will accommodate all requests, so FFW(In) = 8 ·
⌊

n
2

⌋
. Best-Fit, on the other hand, will

accommodate at most two of the last
⌊

n
2

⌋
tuples given the ordering above (when n is odd),

so BFW(In) ≤ 6 ·
⌊

n
2

⌋
+ 2. The needed ratio follows: FFW(In) ≥ 4

3BFW(In)− 8
3 . ut

It remains an open problem to close the gap between 4
3 and 2, though the relative per-

formance of First-Fit to Best-Fit is established.

5.2 Worst-Fit is at Least as Bad as Any Deterministic Algorithm.

The idea behind Worst-Fit is that it will spread out all the requests as much as possible,
preferring to have many shorter empty intervals over having fewer, but longer, empty intervals,
as Best-Fit would prefer. It turns out that this idea does not work very well, as the following
theorem shows.

Theorem 4. For any deterministic algorithm A, WRA,WF ≥ 1, regardless of pricing policy.

Proof. We will consider an arbitrary input sequence I and its worst-case permutation for A,
IA. We will show that there exists a permutation of I, IWF, for which Worst-Fit will reject
at least all the elements that A rejected. This will imply AW(I) = A(IA) ≥ WF(IWF) ≥
WFW(I). Since this will hold for all I, we will have proven the theorem.

We construct IWF by ordering all the requests A accepted in nondecreasing order of their
start station, followed by all the rejected requests in arbitrary order. Let r be any request
rejected by A. Consider the set of requests S = {s1, s2, . . . , sn}, which are the �rst n elements
in IWF which overlap r. Such a set must exist since r was rejected by A. We claim that no
two requests from S will be placed in the same seat by Worst-Fit. If the claim holds, then it
will imply that r is rejected by Worst-Fit.

We prove the claim by contradiction. Suppose there exist two requests, x, y ∈ S such that
Worst-Fit places them in the same seat. Without loss of generality, we assume Worst-Fit
processes x before y. Since requests appear in nondecreasing order of their start station in
IWF, we have that y lies to the right of x. Now consider the point in time when Worst-Fit
processes y. Since S contains the �rst n requests in IWF overlapping r, and Worst-Fit has
not processed all of them yet, there must be a seat for which the interval r is still empty.
Furthermore, since Worst-Fit hasn't yet processed any requests that lie completely to the
right of r, there exists a free interval on this seat of length s ≥ k − rs into which Worst-Fit
could place y. On the other hand, the free interval on the seat of x has length s′ ≤ k − xf .
Since s > s′, Worst-Fit would not place y on the same seat as x, and therefore we have
reached a contradiction. ut
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Additionally, we can prove an asymptotically tight bound for the relative worst order ratio
of Worst-Fit to both First-Fit and Best-Fit, which is as bad as Worst-Fit can be with respect
to any algorithm. The following proof uses a family of sequences, �rst used in [6], which can
be intuitively seen to cause Worst-Fit to perform very poorly. This idea is formalized with
respect to the relative worst order ratio in the following theorem.

Theorem 5. For any Any-Fit algorithm A for the unit price problem 2− 1
k−1 ≤WRA,WF ≤ 2.

Proof. The upper bound follows directly from Corollary 2. Since Theorem 4 implies that
WRA,WF ≥ 1, to prove the lower bound, it is su�cient to �nd a family of sequences In

with limn→∞AW(In) = ∞, where there exists a constant b such that for all In, AW(In) ≥
(2− 1

k−1)WFW(In)− b.

We construct In as follows. We begin the request sequence with
⌊

n
k−1

⌋
requests for each of

the intervals [1, 2), [2, 3), . . . , [k−1, k). In the case when n is not divisible by k−1, we also give
one additional request for each of the intervals [1, 2), . . . , [(n mod k− 1), (n mod k− 1) + 1).
If n is divisible by k − 1, then these requests are omitted. Then we �nish the sequence with

n−
⌈

n
k−1

⌉
requests for the interval [1, k). Regardless of the ordering, A will accommodate all

requests, so that AW(In) = 2n−
⌈

n
k−1

⌉
. For Worst-Fit, the given ordering is the worst case

ordering, and it will �ll all the available seats with the �rst n requests, while rejecting all
the remaining requests. Therefore, WFW(In) = n. This gives us the needed ratio: AW(In) ≥
(2− 1

k−1)WFW(In)− 1. ut

Corollary 3. 2− 1
k−1 ≤WRFF,WF ≤ 2 and 2− 1

k−1 ≤WRBF,WF ≤ 2.

Thus, we obtain a clear separation between Worst-Fit and First-Fit/Best-Fit, and the
bounds on the ratio are asymptotically tight.

6 The Relative Worst Order Ratio for the Proportional Price Problem.

It turns out that many of the results for the unit price problem can be transfered to the
proportional price problem. Speci�cally, we still have the result that First-Fit is at least
as good as any Any-Fit algorithm, and Worst-Fit is at least as bad as any deterministic
algorithm. One di�erence is that the value of the relative worst order ratio of First-Fit to
Best-Fit is di�erent, as we show in the following theorem.

Theorem 6. For the proportional price problem with k ≥ 6, k+2
6 ≤WRFF,BF ≤ k − 1.

Proof. The upper bound follows directly from Corollary 2. Since Theorem 2 implies that
WRFF,BF ≥ 1, it is su�cient to �nd a family of sequences In with limn→∞ FFW(In) = ∞,
such that for all In, FFW(In) ≥ k+2

6 BFW(In).
We de�ne the family of sequences In only for even n. Consider this sequence beginning

with n
2 request tuples [1, 2), [k−1, k), followed by n

2 request tuples [k−3, k) and [2, 3). Finally,
the sequence concludes with n

2 requests tuples [1, k − 3). First-Fit will be able to place all
the requests regardless of their ordering, so FFW(In) = (k + 2) · (n

2 ). On the other hand,
Best-Fit will not accommodate any of the last n

2 requests when given the ordering above, so
BFW(In) = 6 · (n

2 ). The needed ratio follows. ut
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Unlike for the unit price problem, the relative worst order ratio of First-Fit to Best-
Fit is not bounded by a constant independent of k. However, the gap between the lower
bound and the upper bound increases as k goes to in�nity, meaning that the bounds are not
asymptotically tight. It would be interesting to see if they can be tightened to be so.

The second di�erence between the proportional and unit price problem is the relative
worst order ratio of Worst-Fit to any Any-Fit algorithm. Speci�cally, we have the following
theorem.

Theorem 7. For any Any-Fit algorithm A for the proportional price problem, WRA,WF =
k − 1.

Proof. The upper bound follows directly from Corollary 2. Since Theorem 4 shows that
WRA,WF ≥ 1, it is su�cient to �nd a family of sequences In with limn→∞AW(In) = ∞, such
that for all In, AW(In) ≥ (k − 1)WFW(In).

We will use the same sequence as was used in the proof of Theorem 5, except that we will
de�ne it only for n divisible by k − 1. The algorithms will still accept and reject the same
requests, but the pro�t must be calculated di�erently. WFW(In) = n still holds, but now
AW(In) = n · (k − 1). The resulting ratio for the lower bound follows. ut

Thus, the ratio of Worst-Fit to any Any-Fit algorithm is exact, and is as bad as can be. We
note that in the above proof we consider the same ordering of the sequence for both Worst-
Fit and A, and A behaves exactly as OPT. This means we can also use the same sequence
to prove that the competitive ratio for Worst-Fit is the worst possible among deterministic
algorithms.

7 Concluding Remarks and Open Problems

The relative worst order ratio has already been applied to some problems, and has led to
intuitively and/or experimentally correct results which could not be obtained with the com-
petitive ratio. For the seat reservation problem, applying the relative worst order ratio has
proven very helpful in di�erentiating between various deterministic algorithms that could
not be di�erentiated with the competitive ratio. Moreover, previous work studying the seat
reservation problem with respect to the competitive ratio and the competitive ratio on ac-
commodating sequences has essentially ignored the proportional price problem, since all the
results have been so negative. In contrast, the relative worst order ratio allows us to easily
compare algorithms for the proportional price problem.

With respect to the algorithms described in this paper, the most interesting open problem
is to close the gap between 4

3 and 2 for the ratio of Fist-Fit to Best-Fit. It also remains
interesting to see if the requirement that A is memoryless is necessary in Theorem 1.

The relative worst order ratio has very recently been extended to apply to randomized
algorithms [5]. It is thus interesting to study the quality of randomized algorithms for the
seat reservation problem, which were introduced in [7,1]. Ultimately, the goal is to �nd an
algorithm that is better than the existing ones, as has been done for the paging problem
[5]. In this sense, the most interesting open problem remains to �nd an algorithm that does
better than First-Fit, or show that one does not exist.
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