
Unix Security

www.wiley.com/go/gollmann 2

Objectives

Understand the security features provided by a
typical operating system.

Introduce the basic Unix security model.

See how general security principles are
implemented in an actual operating system.

This is not a crash course on Unix security
administration.

www.wiley.com/go/gollmann 3

Agenda

Unix security – background

Principals, subjects, objects

Access rules

Security patterns
– Controlled invocation (SUID programs)

– Securing memory and devices

– Importing data

– Finding resources

Wrappers

Managing Unix security

www.wiley.com/go/gollmann 4

Unix Preliminaries

There are several flavours of Unix; each vendor makes its
own enhancements.

Vendor versions differ in the way some security controls
are managed enforced.
– Commands and filenames used in this lecture are indicative of

typical use but may differ from actual systems.

Unix designed originally for small multi-user computers in
a network environment;
later scaled up to commercial servers and down to PCs.

www.wiley.com/go/gollmann 5

Unix Preliminaries

Unix (like the Internet) was developed for friendly
environments like research labs or universities.
Security mechanisms were quite weak and
elementary; improved gradually.
Unix implements discretionary access control with
a granularity of owner, group, other.
There exist “secure” versions of Unix: Trusted
Unix or Secure Unix often indicates support for
multi-level security.

www.wiley.com/go/gollmann 6

Unix Design Philosophy

Security managed by a skilled administrator, not by users.

Command line tools and scripting.

Archaic syntax retained; those who already know it, love it
(saves keystrokes!).

Focus on:
– protecting users from each other.

– protecting against attacks from the network.

Vendor-specific solutions for large system management
and user-administered PCs.

www.wiley.com/go/gollmann 7

Principals
User identifiers (UIDs) and group identifiers (GIDs) are
the principals.
A UID (GID) is a 16-bit number; examples:

0: root
1: bin
2: daemon
8: mail
9: news
261: diego

UID values differ from system to system
Superuser (root) UID is always zero.

www.wiley.com/go/gollmann 8

User Accounts
Information about principals is stored in user accounts and
home directories.
User accounts stored in the /etc/passwd file

% more /etc/passwd

User account format:
username:password:UID:GID:name:homedir:shell

Example:
dieter:RT.QsZEEsxT92:1026:53:Dieter
Gollmann:/home/staff/dieter:/bin/bash

www.wiley.com/go/gollmann 9

User Account Details

User name: up to eight characters long

Password: stored “encrypted” (really a hash)

User ID: user identifier for access control

group ID: user’s primary group

ID string: the user's full name

home directory

Login shell: the program started after successful
log in

www.wiley.com/go/gollmann 10

Example

Some lines from /etc/passwd:

root:7kSSI2k.Df:0:0:root:/root:/bin/bash

mail:x:8:12:mail:/var/spool/mail:
news:x:9:13:news:/var/spool/news:
ace:69geDfelkw:500:103:Alice:/home/ace:/bin/bash
carol:7fkKdefh3d:501:102:Carol:/home/carol:/bin/nologin
al:Hj9XDdw0Pi:503:102::/home/al:/bin/bash

www.wiley.com/go/gollmann 11

Superuser

The superuser is a special privileged principal with UID 0
and usually the user name root.

There are few restrictions on the superuser:
– All security checks are turned off for superuser.

– The superuser can become any other user.

– The superuser can change the system clock.

The superuser cannot write to a read-only file system but
can remount it as writeable.

The superuser cannot decrypt passwords but can reset
them.

www.wiley.com/go/gollmann 12

Groups

Users belong to one or more groups.

The file /etc/group contains a list of all groups; file
entry format:

groupname:password:GID:list of users

Example:

infosecwww:*:209:carol,al

Every user belongs to a primary group; the group ID
(GID) of the primary group is stored in /etc/passwd.

www.wiley.com/go/gollmann 13

Group Membership

System V Unix:
– a user can only be in one group at a time;

– Command to change current group: newgrp

– Users can gain temporary membership in a group where they are
not members if they provide the correct group password.

Berkeley Unix:
– a user can reside in more than one group; there is no need for
newgrp.

www.wiley.com/go/gollmann 14

Groups and Access Control

Collecting users in groups is a convenient basis
for access control decisions.

For example, put all users allowed to access email
in a group called mail or put all operators in a
group operator.

Conflicts in user rights can occur:
– Owner is allowed, group isn’t (and vice versa).

– What happens if the group has access but not the
owner?

www.wiley.com/go/gollmann 15

Subjects

The subjects in Unix are processes; a process has a
process ID (PID).
New processes generated with exec or fork.
Processes have a real UID/GID and an effective
UID/GID.
Real UID/GID: inherited from the parent; typically
UID/GID of the user logged in.
Effective UID/GID: inherited from the parent
process or from the file being executed.
POSIX compliant versions add saved UID/GID.

www.wiley.com/go/gollmann 16

Example
UID GID

Process real effective real effective
/bin/login root root system system

User dieter logs on; the login process verifies the password and
changes its UID and GID:
/bin/login dieter dieter staff staff

The login process executes the user’s login shell:
/bin/bash dieter dieter staff staff

From the shell, the user executes a command, e.g. ls
/bin/ls dieter dieter staff staff

The User executes command su to start a new shell as root:
/bin/bash dieter root staff system

www.wiley.com/go/gollmann 17

Passwords
Users are identified by user name and authenticated
by password.

Passwords stored in /etc/passwd “encrypted”
with the algorithm crypt(3).

crypt(3) is really a one-way function:
a slightly modified DES algorithm repeated 25 times
with the all-zero block as start value and the
password as key.

Salting: password encrypted together with a 12-bit
random “salt” that is stored in the clear.

www.wiley.com/go/gollmann 18

Passwords
When the password field for a user is empty, the
user does not need a password to log in.
To disable a user account, let the password field
starts with an asterisk; applying the one-way
function to a password can never result in an
asterisk.

/etc/passwd is world-readable as many
programs require data from user accounts; makes
password-guessing attacks easy.
Shadow password files: passwords are not stored
in /etc/passwd but in a shadow file that can
only be accessed by root.

www.wiley.com/go/gollmann 19

/etc/shadow
Also used for password aging and automatic
account locking; file entries have nine fields:
– username

– user password

– days since password was changed

– days left before user may change password

– days left before user is forced to change password

– days to “change password” warning

– days left before password is disabled

– days since the account has been disabled

– reserved

www.wiley.com/go/gollmann 20

Objects

Files, directories, memory devices, I/O devices are
uniformly treated as resources.

These resources are the objects of access control.

The resources are organized in a tree-structured file
system.

Each file entry in a directory is a pointer to a data
structure called inode.

www.wiley.com/go/gollmann 21

Inode

Fields in the inode relevant for access control

mode type of file and access rights

uid username of the owner

atime access time

gid owner group

physical location

block count size of file

itime inode alteration time

mtime modification time

www.wiley.com/go/gollmann 22

Information about Objects
Example: directory listing with ls -l
-rw-r--r-- 1 dieter staff 1617 Oct 28 11:01 my.tex

drwx------ 2 dieter staff 512 Oct 25 17:44 ads/

File type: first character
‘-’ file
‘d’ directory ‘s’ socket
‘b’ block device file ‘l’ symbolic link
‘c’ character device file ‘p’ FIFO

File permissions: next nine characters
Link counter: the number of links (i.e. firectory
entries pointing to) the file

www.wiley.com/go/gollmann 23

Information about Objects
-rw-r--r-- 1 dieter staff 1617 Oct 28 11:01 my.tex
drwx------ 2 dieter staff 512 Oct 25 17:44 ads/

Username of the owner: usually the user that has created the
file.
Group: depending on the version of Unix, a newly created file
belongs to its creator’s group or to its directory’s group.
File size, modification time, filename.
Owner and root can change permissions (chmod);
root can change file owner and group (chown).
Filename is stored in the directory, not in inode.

www.wiley.com/go/gollmann 24

File Permissions

Permission bits are grouped in three triples that
define read, write, and execute access for owner,
group, and other.

A ‘-’ indicates that a right is not granted.

rw-r--r-- read and write access for the owner,

read access for group and other.

rwx------ read, write, and execute access for

the owner, no rights to group and other.

www.wiley.com/go/gollmann 25

Binary Representation
3-Bit for user rights
– 1 means accept, 0 means reject

 Read only Read/Write Execute

Treat bits as binary values:
– Read only => 100B => 4

– Read/Write => 110B => 6

– Read/Write/Execute => 111B => 7

001

EWR

011

EWR

111

EWR

www.wiley.com/go/gollmann 26

Octal Representation

The three bit range is 0-7 => octal numbers are sufficient.

Examples:

– rw-r--r-- is equivalent to 644

Owner Read/Write; Group, Any: Read

– rwxrwxrwx is equivalent to 777

Owner, Group, Any: Read/Write/Exec

Three additional bits needed for:
– Set UID to owner’s (SUID).

– Set GID to owning group’s (SGID).

– Sticky bit.

www.wiley.com/go/gollmann 27

4 Character Octal Number

Conversion table:

0040 read by group 4000 set UID on execution
0020 write by group 2000 set GID on execution
0010 execute by group 1000 set sticky bit
0004 read by other 0400 read by owner
0002 write by other 0200 write by owner
0001 execute by other 0100 execute by owner

101

SGU U: SUID

G: SGID

S: Sticky bit

www.wiley.com/go/gollmann 28

File Permissions continued

When ls –l displays a SUID program, the
execute permission of the owner is given as
s instead of x:
-rws--x—x 3 root bin 16384 Nov 16
1996 passwd*

When ls –l displays a SGID program, the
execute permission of the group is given as
S instead of x:
-rwx--S—x 3 root bin 16384 Nov 16
1996 passwd*

www.wiley.com/go/gollmann 29

Permissions for Directories

Every user has a home directory; to put files and
subdirectories into, the correct permissions for the
directory are required.

Read permission: to find which files are in the directory,
e.g. for executing ls.

Write permission: to add files to and remove files from the
directory.

Execute permission: to make the directory the current
directory (cd) and for opening files inside the directory.

www.wiley.com/go/gollmann 30

Permissions for Directories

You can open a file in the directory if you know that the
file exists but you cannot use ls to see what is in the
directory.
To access your own files, you need execute permission in
the directory.
To stop other users from reading your files, you could
either set the access permissions on the files or prevent
access to the directory.
To delete a file, you need write and execute permission for
the directory; you do not need any permission on the file
itself, it can even belong to another user.

www.wiley.com/go/gollmann 31

Sticky Bit

Job queues for printing etc., are often
implemented as a world-writable directories;
anyone can add a file.

Problem: anyone can also delete files.

Sticky bit on a directory allows only the owner of
a file (and to superuser) to delete it.

www.wiley.com/go/gollmann 32

chmod, chown

Access rights can be altered with chmod command:
– chmod 0754 filename

– chmod u+wrx,g+rx,g-w,o+r,o-wx filename

Ownership can be altered with the chown command:
– chown nOwner:nGroup filename

www.wiley.com/go/gollmann 33

Permissions: Order of Checking
Access control uses the effective UID/GID:
– If the subject’s UID owns the file, the permission bits

for owner decide whether access is granted.
– If the subject’s UID does not own the file but its GID

does, the permission bits for group decide whether
access is granted.

– If the subject’s UID and GID do not own the file, the
permission bits for other (also called world) decide
whether access is granted.

Permission bits can give the owner less access
than is given to the other users; the owner can
always change the permissions.

www.wiley.com/go/gollmann 34

Default Permissions
Unix utilities typically use default permissions
666 when creating a new file and permissions 777
when creating a new program.
Permissions can be further adjusted by the umask:
a three-digit octal number specifying the rights
that should be withheld.
The actual default permission is derived by
masking the given default permissions with the
umask: compute the logical AND of the bits in the
default permission and of the inverse of the bits in
the umask.

www.wiley.com/go/gollmann 35

Default Permissions
Example: default permission 666, umask 077

Invert 077: result 700

The owner of the file has read and write access, all
other access is denied.

umask 777 denies every access, umask 000 does not
add any further restrictions .

0666
0700
0600

www.wiley.com/go/gollmann 36

Sensible umask Settings

022: all permissions for the owner, read and
execute permission for group and other.

027: all permissions for the owner, read and
execute for group and no permission for other.

037: all permissions for the owner, read
permission for group, no permissions for other.

077: all permissions for the owner, no permissions
for group and other.

www.wiley.com/go/gollmann 37

Security Patterns

We will discuss how some general security
principles manifest themselves in Unix.
Controlled invocation: SUID programs.
Physical and logical representation of objects:
deleting files.
Access to the layer below: protecting devices.
Searchpath
Importing data from outside: mounting
filesystems.

www.wiley.com/go/gollmann 38

Controlled Invocation
Superuser privilege is required to execute certain
operating system functions.
Example: only processes running as root can listen
at the “trusted ports” 0 – 1023.
Solution adopted in Unix: SUID (set userID)
programs and SGID (set groupID) programs.
SUID (SGID) programs run with the effective user
ID or group ID of their owner or group, giving
controlled access to files not normally accessible to
other users.

www.wiley.com/go/gollmann 39

SUID to Root
When root is the owner of a SUID program, a user
executing this program will get superuser status
during execution.
Important SUID programs:
/bin/passwd change password

/bin/login login program

/bin/at batch job submission

/bin/su change UID program

As the user has the program owner’s privileges when
running a SUID program, the program should only
do what the owner intended

www.wiley.com/go/gollmann 40

SUID Dangers

By tricking a SUID program owned by root to do
unintended things, an attacker can act as the root.
All user input (including command line arguments
and environment variables) must be processed
with extreme care.
Programs should have SUID status only if it is
really necessary.
The integrity of SUID programs must be
monitored (tripwire).

www.wiley.com/go/gollmann 41

Applying Controlled Invocation

Sensitive resources, like a web server, can be
protected by combining ownership, permission bits,
and SUID programs:

Create a new UID that owns the resource and all
programs that need access to the resource.

Only the owner gets access permission to the
resource.

Define all the programs that access the resource as
SUID programs.

www.wiley.com/go/gollmann 42

Managing Security

Beware of overprotection; if you deny users direct
access to a file they need to perform their job, you
have to provide indirect access through SUID
programs.
A flawed SUID program may give users more
opportunities for access than wisely chosen
permission bits.
This is particularly true if the owner of the SUID
program is a privileged user like root.

www.wiley.com/go/gollmann 43

Deleting Files

General issue: logical vs physical memory
Unix has two ways of copying files.

cp creates an identical but independent copy
owned by the user running cp .

ln creates a new filename with a pointer to the
original file and increases the link counter of the
original file; the new file shares its contents with
the original.
If the original is deleted (with rm or rmdir) it
disappears from its parent directory but the
contents of the file and its copy still exist.

www.wiley.com/go/gollmann 44

Deleting Files

So, users may think that they have deleted a file
whereas it still exists in another directory, and
they still own it.

Further issue: if a process has opened a file which
then is deleted by its owner, the file remains in
existence until that process closes the file.

www.wiley.com/go/gollmann 45

Deleting Files
Once a file has been deleted the memory allocated
to this file becomes available again.

Until these memory locations are written to again,
they still contain the file’s contents.

To avoid such memory residues, the file can be
wiped by overwriting its contents with a pattern
appropriate for the storage medium before deleting
it.

But advanced file systems (e.g. defragmenter) may
move files around and leave copies.

www.wiley.com/go/gollmann 46

Protection of Devices

General issue: logical and physical memory
Unix treats devices like files; access to memory or to a
printer is controlled like access to a file by setting
permission bits.
Devices commonly found in directory /dev:

/dev/console console terminal

/dev/kmem kernel memory map device
(image of the virtual memory)

/dev/tty terminal

/dev/hd0 hard disk

www.wiley.com/go/gollmann 47

Access to the Layer Below
Attackers can bypass the controls set on files and
directories if they can get access to the memory
devices holding these files.

If the read or write permission bit for other is set
on a memory device, an attacker can browse
through memory or modify data in memory
without being affected by the permissions defined
for files.

Almost all devices should therefore be unreadable
and unwritable by “other”.

www.wiley.com/go/gollmann 48

Example
The process status command ps displays
information about memory usage and thus requires
access permissions for the memory devices.

Defining ps as a SUID to root program allows ps
to acquire the necessary permissions but a
compromise of ps would leave an attacker with
root privileges.

Better solution: let group mem own the memory
devices and define ps as a SGID program.

www.wiley.com/go/gollmann 49

Terminal Devices

When a user logs in, a terminal file is allocated to
the user who becomes owner of the file for the
session.
It is convenient to give “other” read and write
permission to this file so that the user can receive
messages from other parties.
This introduces vulnerabilities: other parties are
now able to monitor the entire traffic to and from
the terminal, potentially including the user’s
password.

www.wiley.com/go/gollmann 50

Terminal Devices

Other parties can send commands to the user’s
terminal.
For example, reprogram a function key, and have
these commands executed by the unwitting user.
In some systems, intelligent terminals execute
some commands automatically; an attacker can
then submit commands using the privileges of
another user.

www.wiley.com/go/gollmann 51

Changing the Root of the Filesystem

Access control can be implemented by constraining suspect
processes to a sandbox environment; access to objects
outside the sandbox is prevented.
The change root command chroot restricts the available
part of the filesystem:

chroot <directory> <command>

Changes the apparent filesystem root directory from / to
directory when command executes.
Only files below the new root are thereafter accessible.

www.wiley.com/go/gollmann 52

Changing the Root of the Filesystem

If you employ this strategy, make sure that user
programs find all system files they need.

System files are ‘expected’ to be in directories like
/bin, /dev, /etc, /tmp, or /usr

New directories of the same names have to be
created under the new root and populated with the
files the user will need by copying or linking to
the respective files in the original directories.

www.wiley.com/go/gollmann 53

Mounting Filesystems
General issue: When importing objects from another
security domain into your system, access control
attributes of these objects must be redefined.

The Unix filesystem is built by linking together
filesystems held on different physical devices under
a single root / with the mount command.

Remote filesystems (NFS) can be mounted from
other network nodes.

Users could be allowed to mount a filesystem from
their own floppy disk (automount).

www.wiley.com/go/gollmann 54

Mounting Filesystems

The mounted filesystems could have dangerous
settings, for example SUID to root programs
sitting in an attacker’s directory.

Once the filesystem has been mounted, the
attacker can obtain superuser status by running
such a program.

www.wiley.com/go/gollmann 55

The mount Command
mount [-r] [-o options] device directory

-r flag specifies read-only mount.
Options:

nosuid: turns off the SUID and SGID bits on the
mounted filesystem.

noexec: no binaries can be executed from the mounted
filesystem.

nodev: no block or character special devices can be
accessed from the filesystem.
Different versions of Unix implement different options for
mount.

www.wiley.com/go/gollmann 56

Mounting Filesystems

General issue: scoping of identifiers

NFS server trusts the client to enforce access
control on the mounted filesystem.

UIDs and GIDs on two Unix systems (from
different vendors) may be assigned differently.

The client may misinterpret the UID or GUID even
if it tries to enforce access control.

Problem: UID and GID are local identifiers; only
globally unique identifiers should be used across
network.

www.wiley.com/go/gollmann 57

Environment Variables

Environment variables: kept by the shell, normally used to
configure the behaviour of utility programs
Inherited by default from a process’ parent.
A program executing another program can set the
environment variables for the program called to arbitrary
values.
Danger: the invoker of setuid/setgid programs is in control
of the environment variables they are given.
Usually inherited, so this also applies transitively.
Not all environment variables are documented!
Inheriting things you do not want can become a security
problem.

www.wiley.com/go/gollmann 58

Examples

PATH # The search path for shell commands (bash)
TERM # The terminal type (bash and csh)
DISPLAY # X11 - the name of your display
LD_LIBRARY_PATH

Path to search for object and shared libraries
HOSTNAME # Name of this UNIX host
PRINTER # Default printer (lpr)
HOME # The path to your home directory (bash)
PS1 # The default prompt for bash
path # The search path for shell commands (csh)
term # The terminal type (csh)
prompt # The default prompt for csh
home # The path to your home directory (csh)

www.wiley.com/go/gollmann 59

Searchpath

General principle: execution of programs taken
from a ‘wrong’ location.

Users can run a program by typing its name
without specifying the full pathname that gives the
location of the program within the filesystem.

The shell searches for the program following the
searchpath specified by the PATH environment
variable in the .profile file in the user’s home
directory.

www.wiley.com/go/gollmann 60

Searchpath
A typical searchpath:

PATH=.:\$HOME/bin:/usr/ucb:/bin:
/usr/bin:/usr/local:/usr/new: /
usr/hosts

Directories in the searchpath are separated by ‘:’;
the first entry ‘.’ is the current directory.

When a directory is found that contains a program
with the name specified, the search stops and that
program will be executed.

www.wiley.com/go/gollmann 61

Searchpath
To insert a Trojan horse, give it the same name as
an existing program and put it in a directory that is
searched before the directory containing the
original program.

As a defence, call programs by their full pathname,
e.g. /bin/su instead of su.

Make sure that the current directory is not in the
searchpath of programs executed by root

(ls -a lists all files in your home directory,
more .profile shows your profile).

www.wiley.com/go/gollmann 62

Network Services (telnet, ftp)
inetd daemon listens to incoming network connections
When a connection is made, inetd starts the requested server
program and then returns to listening for further
connections.
Configuration file maps port numbers to programs
Entries in the configuration file have the format:
service type protocol waitflag userid executable command-

line
Example: entry for telnet
telnet stream tcp nowait root /usr/bin/in.telnetd in.telnet

www.wiley.com/go/gollmann 63

Telnet Wrapper

When inetd receives a request for a service, it
consults the configuration file and creates a new
process that runs the executable specified.

Name of new process changed to the name given
in the command-line field.

Usually, the name of the executable and the name
given in command-line are the same.

www.wiley.com/go/gollmann 64

Telnet Wrapper
This redundancy can be used for a nice trick:

Point inetd daemon to a wrapper program.

Use the name of the process to remember the
name of the original executable; return to this
executable after running the wrapper.

Example: change configuration file entry for
telnet to
telnet stream tcp nowait root /usr/bin/tcpd in.telnetd

Program executed is now the TCP wrapper
executable /usr/bin/tcpd.

www.wiley.com/go/gollmann 65

Telnet Wrapper

Wrapper performs access control, logging, ...
– Original application: IP address filtering.

Wrapper knows the directory it is in (/usr/bin)
and its own name (in.telnetd) so it can call the
original server program
(/usr/bin/in.telnetd)

Users see no difference and receive the same
service as before.

www.wiley.com/go/gollmann 66

Design Principle

Add another level of indirection.

The TCP wrapper performing security controls is
inserted between the inetd daemon and the server
program.

More information on Wietse Venema’s home
page.

www.wiley.com/go/gollmann 67

Management Issues

Brief overview of several issues relevant for managing
Unix systems
Protecting the root account
Networking: trusted hosts
Auditing
Keeping up-to-date

www.wiley.com/go/gollmann 68

Root Account
The root account is used by the operating system
for essential tasks like login, recording the audit
log, or access to I/O devices.
The root account is required for performing
certain system administration tasks.
Superusers are also a major weakness of Unix; an
attacker achieving superuser status effectively
takes over the entire system.
Separate the duties of the systems manager; e.g.
let special users like uucp or daemon deal with
networking; if a special users is compromised, not
all is lost.

www.wiley.com/go/gollmann 69

Superuser
Systems manager should not use root as their
personal account.
Change to root from a user account using /
bin/su; the O/S will not refer to a version of su
that has been put in some other directory.
Record all su attempts in the audit log with the
user who issued the command.

/etc/passwd and /etc/group have to be
write protected; an attacker who can edit /
etc/passwd can become superuser by changing
its UID to 0.

www.wiley.com/go/gollmann 70

Trusted Hosts

Users from a trusted host can login without
password authentication; they only need to have
the same user name on both hosts.
Trusted hosts of a machine are specified in /
etc/hosts.equiv.
User names must be synchronized between the
hosts.
Trusted hosts of a user are specified in the .
rhosts file in the user’s home directory.

www.wiley.com/go/gollmann 71

Trusted Hosts Limitations

When the number of hosts grows, synchronizing
hosts.equiv files and user names becomes
tedious.

Vendor-specific tools to distribute configuration
files.

User can either access all hosts in the system or
nothing; exceptions difficult to configure.

www.wiley.com/go/gollmann 72

Audit Logs

/usr/adm/lastlog records the last time a

user has logged in; displayed with finger

/var/adm/utmp records accounting

information used by the who command.

/var/adm/wtmp records every time a user logs

in or logs out; displayed with the last command.

/var/adm/acct records all executed

commands; displayed with lastcomm

www.wiley.com/go/gollmann 73

Keeping Up-to-date
Remember: security is a moving target.

New vulnerabilities keep being detected.

Security patches have to be developed, distributed,
and installed.

Tools for assessing the security of a given systems
configuration exist.

Systems managers have to keep up-to-date with
current threats.

CERT advisories and the like: www.cert.org,
www.sans.org, www.securityfocus.com

www.wiley.com/go/gollmann 74

Summary

Unix served as a case study to see how core
security primitives can be implemented.

Illustrate a number of general security issues.

Also relevant, but not covered yet: network
security, software security.

For practical security, it does not suffice to have a
“secure” operating system; the system also has to
be managed securely.

