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Introduction

Bell-LaPadula model designed to capture a specific 
‘military’ security policy. 

At one time treated as ‘the model of security’. 

However, security requirements dependent on the 
application; many applications do not need multi-level 
security.

We will now look at models for ‘commercial’ integrity 
policies.

We will also examine some theoretical foundations of 
access control.
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Agenda

Biba model
Chinese Wall model
Clark Wilson Model
Harrison-Ruzo-Ullman model
– Reminder: Turing machines& decidability, NP-

completeness

Information flow models
Enforcement monitors
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Biba Model
Integrity policies prohibit the corruption of ‘clean’ high 
level entities by ‘dirty’ low level entities. 
– Clean and dirty shorthand for high integrity and low integrity.  
– Concrete meaning of integrity levels is application dependent. 

Subjects and objects labelled with elements from a lattice 
(L, ) of integrity levels by functions fS:S  L and fO:O  L.

Information may only flow downwards in the integrity 
lattice; only information flows caused directly by access 
operations considered. 
Biba model: state machine model similar to BLP; no single 
high-level integrity policy. 
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Biba With Static Integrity Levels

Simple Integrity Property (no write-up): If subject s 
can modify (alter) object o, then fS(s)   fO(o). 

Integrity -Property: If subject s can read (observe) 
object o, then s can have write access to some other 
object o’ only if  fO(o)   fO(o’). 

Invoke Property: A ‘dirty’ subject s1 must not touch 
a ‘clean’ object indirectly by invoking s2: Subject s1 

can invoke subject s2 only if fS(s1)   fS(s2).
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Biba: Dynamic Integrity Levels

Low watermark policies automatically adjust levels 
(as in the Chinese Wall model):

Subject Low Watermark Policy: Subject s can read 
(observe) an object o at any integrity level. The 
new integrity level of s is g.l.b.(fS(s),fO(o)).

Object Low Watermark Policy: Subject s can 
modify (alter) an object o at any integrity level. The 
new integrity level of o is g.l.b.(fS(s),fO(o)).
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Biba for Protection Rings

Ring Property: A ‘dirty’ subject s1 may invoke a ‘clean’ 
tool s2 to touch a ‘clean’ object: 

Subject s1 can read objects at all integrity levels, modify 

objects o with fS(s1)   fO(o), and invoke a subject s2 only if  

fS(s1)   fS(s2).

The ring property is the opposite of the invoke property!

Captures integrity protection in operating systems based on 
protection rings. 
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Chinese Wall Model

In financial institutions analysts deal with a number 
of clients and have to avoid conflicts of interest. 
Components:
– subjects: analysts
– objects: data item for a single client
– company datasets: y:O  C gives for each object its 

company dataset 
– conflict of interest classes: companies that are 

competitors;  x: O  P(C) gives for each object o the 
companies with a conflict of interest on o

– ‘labels’: company dataset + conflict of interest class
– sanitized information: no access restrictions
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Chinese Wall Model – Policies
Simple Security Property: Access is only granted if 
the object requested
– is in the same company dataset as an object already 

accessed by that subject;
– does not belong to any of the conflict of interest classes 

of objects already accessed by that subject.
Formally:
– N = (Nso)s S,o O , Boolean matrix, Nso = true if s has 

accessed o;
– ss-property: subject s gets access to object o only if for 

all objects o’ with Nso’ = true, y(o) = y(o’) or y(o)  x(o’).
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Chinese Wall:  - Property

Indirect information flow: A and B are competitors having accounts 
with the same Bank. 

Analyst_A, dealing with A and the Bank, updates the Bank portfolio 
with sensitive information about A. 

Analyst_B, dealing with B and the Bank, now has access to 
information about a competitor.

conflict
of interest
class

read

A

B

Bank

Analyst_A

Analyst_B

read

write

write
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Chinese Wall:  - Property

 - Property: A subject s is permitted write access to 
an object only if s has no read access to any object o’, 
which is in a different company dataset and is 
unsanitized.
– subject s gets write access to object o only if s has no read 

access to an object o’ with y(o)  y(o’) or x(o’)  {} 

Access rights of subjects change dynamically with 
every access operation.
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Chinese Wall:  - Property
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Clark-Wilson Model

Addresses security requirements of commercial 
applications. ‘Military’ and ‘commercial’ are 
shorthand for different ways of using computers.
Emphasis on integrity
– internal consistency: properties of the internal state of a 

system
– external consistency: relation of the internal state of a 

system to the outside world.

Mechanisms for maintaining integrity: well-formed 
transactions & separation of duties.
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Clark-Wilson: Access Control
Subjects & objects are ‘labeled’ with programs.
Programs serve as intermediate layer between subjects 
and objects.
Access control:
– define access operations (transformation procedures) that 

can be performed on each data item (data types). 
– define the access operations that can be performed by 

subjects (roles).

Note the difference between a general purpose 
operating system (BLP) and an application oriented IT 
system (Clark-Wilson).
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Access Control in CW
user

TP

Log
CDI

CDIa CDIb

UDI

authentication
authorization

append must be validated

integrity checks,
permissions checked
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CW: Certification Rules
Five certification rules suggest how one should check that 
the security policy is consistent with the application 
requirements.

– CR1: IVPs (initial verification procedures) must ensure that all 
CDIs (constrained data items) are in a valid state when the IVP is 
run.

– CR2: TPs (transformation procedures) must be certified to be valid, 
i.e. valid CDIs must always be  transformed into valid CDIs. Each 
TP is certified to access a specific set of CDIs.

– CR3: Access rules must satisfy any separation of duties 
requirements.

– CR4: All TPs must write to an append-only log.
– CR5: Any TP that takes an UDI (unconstrained data item) as input 

must either convert the UDI into a CDI or reject the UDI and 
perform no transformation at all.
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CW: Enforcement Rules
Describe mechanisms within the computer system 
that should enforce the security policy: 

– ER1: For each TP maintain and protect the list of entries 
(CDIa,CDIb,...) giving the CDIs the TP is certified to 
access.

– ER2: For each user maintain and protect the list of entries  
(TP1, TP2,...)} specifying the TPs user can execute.

– ER3: The system must authenticate each user requesting to 
execute a TP.

– ER4: Only subjects that may certify an access rule for a TP 
may modify the respective list; this subject must not have 
execute rights on that TP.



Interlude: 
Turing Machines & 

Decidability 
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Reminder
Is it better to have a very expressive policy language 
or a simple language where it is easier to check the 
impact of policy decisions?

In an expressive language, it is easier to capture the 
intended policy (what we think we want) but more 
difficult to verify that the policy actually does what 
it is supposed to do. 

In a simple language we may not be able to capture 
our intentions precisely, but there are efficient 
means to check what the policy does
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How Difficult Can It Get?

Mathematical complexity theory provides a formal 
framework for stating the complexity of problems.

In this framework we can give precise meanings to 
“easy”, “difficult”, or “impossible”.

Having precise definitions does not imply that 
those definitions are “correct” and you are entitled 
to disagree with the mapping from informal terms 
to formal definitions.
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How Difficult Will It Get?

It should not be necessary to understand the details 
of the formal models to be able to follow this 
lecture.

Once you start looking deeper into security you are 
likely to come across the concepts that will be 
presented so it helps if you can appreciate their 
meaning.

It helps to know if you are dealing with a problem 
that is impossible to solve.
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Turing Machines
Turing machine: abstract model of a computer.
Finite set of “control” states that includes an initial 
state q0 and a final state qF .

Infinite read/write tape with a read/write head.
Finite set of tape symbols.
State transition function that takes the current state 
and tape symbol under the read/write-head and 
computes.
– the next state, 
– the movement of the read/write head, 
– the symbol to be written to the tape (if any).
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Turing Machines

……
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Turing Machines

“Application”: define a formal language; all words 
that can be recognized by the Turing machine 
belong to the language.

Words are strings of tape symbols.

To recognize a word w, load it on the tape, start the 
machine in its initial state q0, and wait if it gets into 
its final state qF.

When the machine gets into its final state it halts.
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Will the Machine Halt?

By definition, for words in the language the TM 
will halt; for words not in the language, the TM 
will loop forever.

Can we decide whether the TM will halt?

If we can construct a second TM that recognizes 
the complement of the original language (halts 
exactly on inputs where the first TM loops) we run 
both TMs in parallel and know the answer once one 
of them halts.
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Decidability

Languages where we can recognize the complement are 
decidable.
Otherwise, the language is undecidable.
Can we decide whether a TM will halt?
Construct a universal Turing machine (UTM): 
– Input: description of a TM and an input word; 
– UTM simulates the TM on its tape and halts if the TM halts on the 

given input.

Question: Can we build another TM that recognizes the 
complement of the language defined by the UTM?
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Undecidability
The Halting Problem: Given an arbitrary Turing 
machine and an arbitrary input word, will the 
Turing machine halt?

Theorem (Turing): The halting problem is 
undecidable.

Undecidable problems are “impossible” to solve; 
there cannot exist an algorithm that solves all 
instances of the problem.

There may well be algorithms that solve all 
relevant instances of the problem.
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“Easy” Problems
Languages where membership can be decided in 
polynomial time (in the size of the problem 
instance) fall into a class called P.

Problems that correspond to languages in P are the 
“easy” problems in (theoretical) computer science

In theoretical cryptography, “easy” algorithms are 
modelled as polynomial-time TMs. 

Attraction: The combination of polynomial-time 
TMs is again a polynomial-time TM.
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“Easy” Problems

It is still possible that such “easy” problems are 
difficult to solve in practice, e.g. if the problem 
instances are very large or if the polynomial that 
bounds execution time has a high degree.

Example for an easy problem: given a plaintext m, 
a ciphertext c, and a (guessed) key k, check 
whether c = ek(m).

Notation: ek(m) - encryption of m under key k.
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Non-deterministic TMs

Non-deterministic Turing machines: several 
instances of the TM are running in parallel.

The class NP: languages where membership can be 
decided in polynomial-time by a non-deterministic 
TM.

Problems that correspond to languages in NP but 
not in P are the “difficult” problems; a brute-force 
approach that tries all possible solutions will 
eventually find the correct one.
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Difficult Problems

Example for a (potentially) difficult problem: given 
a plaintext m, a ciphertext c, find a key k so that c = 
ek(m).

Making this check for each guessed key is easy, a 
brute-force attack searching through the entire key 
space is “difficult”.

In practice, difficult problems may be easy to solve 
if problem instances are not too large or have some 
benign characteristics.
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NP-Completeness

A problem in NP is NP-complete if an algorithm for its 
solution could be “easily” adapted to solve any other 
problem in NP.

NP-complete problems are the “most difficult” problems in 
NP.

The travelling salesman problem is, for example, NP-
complete.

Even NP-complete problems can have instances that are 
easy to solve.

P = NP? Still an open problem.
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Access Control

Scenario: security policy given as access control matrix; 
beyond read/write operations there are also operations for 
changing access rights (discretionary access control) and 
for creating new subjects and objects.

Question: Given a policy, can we answer the question 
“Will this particular principal ever be allowed to access 
this resource?”

Access rights can change so we have to do more than 
simply check the current access control matrix.



www.wiley.com/go/gollmann 34

Harrison-Ruzo-Ullman Model

Harrison-Ruzzo-Ullman model (HRU, 1976): defines 
authorisation systems where we can explore answers to our 
question. 

Components of the HRU model: 

– set of subjects S

– set of objects O

– set of access rights R

– access matrix  M = (Mso)s S,o O : entry Mso is a subset of R 

defining the rights subject s has on object o
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Primitive Operations in HRU

Six primitive operations for 
manipulating  subjects, objects, 
and the access matrix:

– enter r into  Mso 

– delete r from Mso

– create subject s

– delete subject s

– create object o

– delete object o  

Commands in HRU model 
(examples):

command create_file(s,f)
create f
enter o  into Ms,f

enter r into Ms,f

enter w into Ms,f

end 

command grant_read(s,p,f)
if o in Ms,f

then enter r in Mp,f

end 
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HRU Policies

Policy management question: Is this subject 
allowed to access this object?

The HRU access matrix describes the state of the 
system; commands effect changes in the access 
matrix. 

HRU can model policies for allocating access right; 
to verify compliance with a given policy, you have 
to check that no undesirable access rights can be 
granted.
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‘Leaking’ of Rights in HRU

An access matrix  M is said to leak the right r if 
there exists a command c that adds r into a position 
of the  access matrix that previously did not contain 
r. 

M is safe with respect to the right r if no sequence 
of commands can transform M into a state that 
leaks r.

Do not expect the meaning of  ‘leak’ and ‘safe’ 
to match your own intuition.
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Safety Properties of HRU
The safety problem cannot be tackled in its full 
generality. 

Theorem. Given an access matrix M, a right r, and 
a set of commands, verifying the safety of M with 
respect to r is undecidable.

There does not exist a general algorithm that 
answers our policy question for all instances of the 
HRU model.

For restricted models, the chances of success are 
better.



www.wiley.com/go/gollmann 39

Restricted Models

Mono-operational commands contain a single operation:

Theorem. Given a mono-operational authorisation system, 
an access matrix M, and a right r, verifying the safety of M 
with respect to r is decidable.

With two operations per command, the safety problem is 
undecidable. 

Limiting the size of the authorisation system also makes 
the safety problem tractable.

Theorem. The safety problem for arbitrary authorisation 
systems is decidable if the number of subjects is finite.
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HRU – Summary

Do not memorize the details of HRU.

Do not memorize the individual undecidability theorems 
for the HRU variants.

Remember the important message: The more expressive 
the security model, the more difficult it is to verify 
security.

You don’t have to know the basics of computational 
complexity theory for this course but it helps to appreciate 
the challenges in formally verifying security.
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Information Flow Models

Similar framework as BLP: objects are labeled with security 
classes (form a lattice), information may flow upwards only.

Information flow described in terms of conditional entropy 
(equivocation  information theory)

Information flows from x to y if we learn something about x by 
observing y: 
– explicit information flow:  y:= x

– implicit information flow: IF x=0 THEN y:=1

– covert channels

Proving security is undecidable.
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Non-interference Models
A group of users, using a certain set of commands, is 
non-interfering with another group of users if what 
the first group does with those commands has no 
effect on what the second group of users can see.
Take a state machine where low users only see 
outputs relating to their own inputs. High users are 
non-interfering with low users if the low users see 
the same no matter whether the high users had been 
providing inputs or not.
Active research area in formal methods.



Execution Monitors 
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Security Policies (again)

Three classes of security policies: 

Access control: restricts what operations principals 
can perform on objects.

Information flow: restricts what principals can infer 
about objects from observing system behaviour.

Availability: restrict principals from denying others 
the use of a resource.
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Execution Monitoring

The practicality of a security policy depends on 
whether it is enforceable and at what cost. 

Execution Monitoring (EM): enforcement 
mechanisms that monitor execution steps of a target 
system and terminate the target’s execution if it is 
about to violate the security policy being enforced. 

EM includes security kernels, reference monitors, 
firewalls, most other operating system, …
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Beyond EM

Enforcement mechanisms that use more information 
than is available only from observing the steps of a 
target’s execution only are outside EM. 
Information provided to an EM mechanism is 
insufficient to predict future steps the target might 
take, alternative possible executions, or all possible 
target executions. 
Compilers and theorem-provers that analyze a static 
representation of a target to deduce information 
about all of its possible executions are not EM 
mechanisms. 



www.wiley.com/go/gollmann 47

Beyond EM

Mechanisms that modify a target before executing 
it are also outside EM.
The modified target must be equivalent to the 
original, except for aborting executions that violate 
the security policy of interest. 
A definition of equivalence is thus required to 
analyze this class of mechanisms.
In-line reference monitors and reflection techniques 
fall in this category.
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Executions & Properties

We are interested in the executions of a target system.

Executions are sequences of steps, e.g. machine 
instructions.

We use Ψ  to denote the set of all executions, finite and 
infinite, of our target system

Let σ  [ ..i ] denote the first i steps of σ .

A set Γ  of executions is called a property if membership of 
an element is determined by the element alone, not by 
other elements.
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EM & Properties
A security policy must be a property to have an 
enforcement mechanism in EM.
Not every security policy is a property. 
Some security policies cannot be defined as a 
predicate on individual executions. 
Information flow policies: information flows from 
“high” to “low” if a low user can somehow detect 
actions by a high user.
We have to compare executions where the high 
user is active with executions where the high user 
is inactive. 
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EM & Properties

Not every property is EM enforceable. 

Enforcement mechanisms in EM cannot look into 
the future when making decisions on an execution.

Consider an execution that reaches a state that 
satisfies the security policy but goes through 
“insecure” states

An EM has to prohibit such an insecure prefix of a 
secure execution.
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Safety & Liveness
In the HRU model, we were talking about “safe” access 
matrices.

In discussions about security you may find further 
references to safety & liveness.

Safety properties: nothing bad can happen.

Liveness properties: something good will happen 
eventually.

A property Γ  is called a safety property if we have for every 
finite or infinite execution σ

σ∉Γ ⇒∃i :∀τ∈Ψ :σ [ . . i ]τ∉Γ  .
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EM & Safety

Non EM-Enforceable Security Policies: If the set of 
executions for a security policy is not a safety 
property, then that policy does not have an 
enforcement mechanism from EM.

EM enforcement mechanisms enforce security 
policies that are safety properties. 

It is not the case that all safety properties have EM 
enforcement mechanisms.
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Safety & Security Policies
Access control defines safety properties: partial executions 
that end with attempting an unacceptable operation will be 
prohibited.
Information flow does not define sets that are properties; 
so information flow cannot be a safety property and in turn 
cannot be enforced by EM.
Availability is not a safety property: any partial execution 
can be extended in a way that allows a principal to access 
the resource. 
Availability defined in respect to a Maximum Waiting 
Time (MWT) is a safety property; once an execution has 
waited beyond MWT, any extension will also wait beyond 
MWT.
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The 3rd Design Principle
If you design complex systems that can only be described 
by complex models, finding proofs of security becomes 
difficult. 
In the worst case (undecidability), no universal algorithm 
exists that verifies security in all cases. 
If you want verifiable security properties, you are better off 
with a security model of limited complexity.
Such a model may not describe all desirable security 
properties, but you may gain efficient methods for verifying 
‘security’.
In turn, you are advised to design simple  systems that can 
be adequately described in the simple model. 
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The more expressive a security 
model is, both with respect to 
the security  properties and the 
systems it can describe, the 
more difficult it is usually to 
verify security properties.
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Summary

The theoretical foundations for access control are relevant 
in practice.

It helps to know in which complexity class your policy 
language and enforcement algorithm put you in.

Powerful description languages may leave you with 
undecidable enforcement problems.

Much of current efforts on policy languages in ‘trust 
management’ and web services access control revolves 
around these issues.
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