
Software Security

www.wiley.co.uk/go/gollmann 2

Secure Software
Software is secure if it can handle intentionally
malformed input; the attacker picks (the
probability distribution of) the inputs.

Secure software: protect the integrity of the
runtime system.

Secure software ≠ software with security features.

Networking software is a popular target:

– intended to receive external input.

– involves low level manipulations of buffers.

www.wiley.co.uk/go/gollmann 3

Security & Reliability

Reliability deals with accidental failures: failures
are assumed to occur according to some given
probability distribution.

The probabilities for failures is given first, then
protection mechanisms are constructed.

To make software more reliable, it is tested
against typical usage patterns: “It does not matter
how many bugs there are, it matters how often
they are triggered”.

www.wiley.co.uk/go/gollmann 4

Security & Reliability

In security, the defender has to move first; the attacker
then picks inputs that exploit weak defences.

To make software more secure, it has to be tested against
“untypical” usage patterns (but there are typical attack
patterns).

On a stand-alone PC, you are in control of the software
components sending inputs to each other.

On the Internet, hostile parties provide input:

Do not “trust” your inputs.

www.wiley.co.uk/go/gollmann 5

Agenda

Malware

Dangers of abstraction

Input validation

Integers

Buffer overflows

Scripting languages

Race conditions

Defences: Prevention – Detection – Reaction

www.wiley.co.uk/go/gollmann 6

Malware

Malware: software that has a malicious purpose.
Computer virus: self-replicating code attached to some
other piece of code; a virus infects a program by inserting
itself into the program code.
Worm: replicating but not infecting program; most
reported virus attacks would be better described as worm
attacks.
Trojan horse: program with hidden side effects, not
intended by the user executing the program.
Logic bomb: program that is only executed when a
specific trigger condition is met.

www.wiley.co.uk/go/gollmann 7

Preliminaries

When writing code, programmers use elementary
concepts like character, variable, array, integer,
data & program, address (resource locator),
atomic transaction, …
These concepts have abstract meanings.
For example, integers are an infinite set with
operations ‘add’, ‘multiply’, ‘less or equal’, …
To execute a program, we need concrete
implementations of these concepts.

www.wiley.co.uk/go/gollmann 8

Benefits of Abstraction

Abstraction (hiding ‘unnecessary’ detail) is an
extremely valuable method for understanding
complex systems.
We don’t have to know the inner details of a
computer to be able to use it.
We can write software using high level languages
and graphical methods.
Anthropomorphic images explain what computers
do (send mail, sign document).

www.wiley.co.uk/go/gollmann 9

Dangers of Abstraction

Software security problems typically arise when
concrete implementation and the abstract intuition
diverge.

We will explore a few examples:
– Address (location)

– Character

– Integer

– Variable (buffer overflows)

– Atomic transaction

www.wiley.co.uk/go/gollmann 10

Input Validation

An application wants to give users access only to files in
directory A/B/C/.
Users enter filename as input; full file name constructed
as A/B/C/input.
Attack: use ../ a few times to step up to root directory
first; e.g. get password file with input /../../../../
etc/passwd.
Countermeasure: input validation, filter out ../ (but as
you will see in a moment, life is not that easy).
Do not trust your inputs.

www.wiley.co.uk/go/gollmann 11

Unicode Characters
UTF-8 encoding of Unicode characters [RFC 2279]
Multi-byte UTF-8 formats: a character has more than one
representation
Example: “/”
 format binary hex

1 byte 0xxx xxxx 0010 1111 2F
2 byte 110x xxxx 1100 0000 C0

10xx xxxx 1010 1111 AF
3 byte 1110 xxxx 1110 0000 E0

10xx xxxx 1000 0000 80
10xx xxxx 1010 1111 AF

www.wiley.co.uk/go/gollmann 12

Exploit “Unicode bug”
Vulnerability in Microsoft IIS; URL starting with
{IPaddress}/scripts/..%c0%af../winnt/system32/

Translated to directory C:\winnt\system32
– The /scripts/ directory is usually C:\inetpub\scripts

– Because %c0%af is the 2 byte UTF-8 encoding of /

– ..%c0%af../ becomes ../../

– ../../ steps up two levels in the directory

IIS did not filter illegal Unicode representations that
use multi-byte UTF-8 formats for single byte
characters.

www.wiley.co.uk/go/gollmann 13

Double Decode
Consider URL starting with {addr.}/scripts/..%25%
32%66../winnt/system32/

This URL is decoded to {addr.}/scripts/..%
2f../winnt/system32/
– Convert %25%32%66 to Unicode:

00100101 00110010 01100110 → %2f (= /)

If the URL is decoded a second time, it gets
translated to directory C:\winnt\system32

Characters change their meaning “by the act of
observation”.

www.wiley.co.uk/go/gollmann 14

Programming with Integers

In mathematics integers form an infinite set.

On a computer systems, integers are represented
in binary.

The representation of an integer is a binary string
of fixed length (precision), so there is only a finite
number of “integers”.

Programming languages: signed & unsigned
integers, short & long (& long long) integers, …

www.wiley.co.uk/go/gollmann 15

What Will Happen Here?

int i = 1;
while (i > 0)
{
i = i * 2;
}

www.wiley.co.uk/go/gollmann 16

Computing With Integers

Unsigned 8-bit integers
 255 + 1 = 0 16 ∗ 17 = 16

 0 – 1 = 255

Signed 8-bit integers
127 + 1 = -128 -128/-1 = -1

In mathematics: a + b ≥ a for b ≥ 0

As you can see, such obvious “facts” are no longer
true.

www.wiley.co.uk/go/gollmann 17

Two’s Complement

Signed integers are usually represented as 2’s complement
numbers.
The most significant bit (sign bit) indicates the sign of the
integer:
– If sign bit is zero, the number is positive.
– If sign bit is one, the number is negative.

Positive numbers are given in normal binary
representation.
Negative numbers are represented as the binary number
that when added to a positive number of the same
magnitude equals zero.

www.wiley.co.uk/go/gollmann 18

Two’s Complement
Calculating the 2’s complement representation of -n:
First, invert the binary equivalent of n by changing all ones
to zeroes and all zeroes to ones:
– For 8-bit integers, this step computes 255-n

Then add one to the intermediate result:
– For 8-bit integers, this step computes 255-n+1= 256-n

– 256 corresponds to the carry bit.

decimal binary

 17 0001 0001
Step 1: 255-17 1110 1110
Step 2: add 1 0000
0001
Result: 256-17 1110 1111

www.wiley.co.uk/go/gollmann 19

Integer Overflows

Integer overflows can lead to buffer overflows

Example (OS kernel system-call handler):char buf[128];
combine(char *s1, size_t len1,

 char *s2, size_t len2)
{
if (len1 + len2 + 1 <= sizeof(buf)) {
strncpy(buf, s1, len1);
strncat(buf, s2, len2);
}
}

Example from Markus Kuhn’s lecture notes

www.wiley.co.uk/go/gollmann 20

Integer Overflows

The programmer has tried to check the string lengths to
make a buffer overflow impossible.
Assume that len1 < sizeof(buf).
On a 32-bit system, an attacker can set

len2 = 0xffffffff

and strncat will be executed because

len1 + 0xffffffff + 1 == len1
 < sizeof(buf)

www.wiley.co.uk/go/gollmann 21

Array

You are given an array starting at
memory location 0xBBBB (on a
16-bit machine)
Array elements are single words.
Which index do you write to so
that memory location 0x8000 is
overwritten?
You also must check lower bounds
for array indices.

base0xBBBB

0x8000

0xD445

32768

-15291
48059

www.wiley.co.uk/go/gollmann 22

Canonicalization

Canonicalization: the process that determines how
various equivalent forms of a name are resolved to
a single standard name.
The single standard name is also known as the
canonical name.
In general, an issue whenever an object has
different but equivalent representations;
– Example: XML documents

Canonicalization must be idempotent.

www.wiley.co.uk/go/gollmann 23

Napster File Filtering

Napster was ordered by court to block access to
certain songs.

Napster implemented a filter that blocked
downloads based on the name of the song.

Napster users found a way around by using
variations of the name of songs.

This is a particularly difficult problem because the
users decide which names are equivalent.

www.wiley.co.uk/go/gollmann 24

Case-sensitive?
Security mechanism is case sensitive:
– MYFILE is different from MyFile

File system is case-insensitive:
– MYFILE is the same as MyFile

Permissions are defined for one version of the
name only:
– Attacker requests access to another version.

– The security mechanism grants the request.

– The file system gives access to the resource that should
have been protected.

Vulnerability in Apache web server with HFS+

www.wiley.co.uk/go/gollmann 25

Directory Traversal

An application may try to keep users in a specific
directory.
Attack: walk out of the directory using ../; attack may try
to hide “..” by using alternative UTF-8 encodings.
Relative file names: system starts from a list of predefined
directories to look for the file.
Attack: put malicious code in a directory that is searched
before the directory used by the application being attacked.
Don’t filter for patterns, filter for results.

www.wiley.co.uk/go/gollmann 26

Variables

Buffer: concrete implementation of a variable.
If the value assigned to a variable exceeds the size of the
allocated buffer, memory locations not allocated to this
variable are overwritten.
If the memory location overwritten had been allocated to
some other variable, the value of that other variable can be
changed.
Depending on circumstances, an attacker could change the
value of a protected variable A by assigning a deliberately
malformed value to some other variable B.

www.wiley.co.uk/go/gollmann 27

Buffer overruns
Unintentional buffer overruns crash software, and
have been a focus for reliability testing.
Intentional buffer overruns are a concern if an
attacker can modify security relevant data.
Attractive targets are return addresses (specify the
next piece of code to be executed) and security
settings.
In languages like C or C++ the programmer
allocates and de-allocates memory.
Type-safe languages like Java guarantee that
memory management is ‘error-free’.

www.wiley.co.uk/go/gollmann 28

Buffer overrun (1980s)

Login in one version of Digital’s VMS operating
system: to log in to a particular machine, enter

username/DEVICE =<machine>

The length of the argument ‘machine’ was not
checked; a device name of more than 132 bytes
overwrote the privilege mask of the process
started by login; users could thus set their own
privileges.

www.wiley.co.uk/go/gollmann 29

System Stack

Function call: stack frame containing function
arguments, return address, statically allocated
buffers pushed on the stack.

When the call returns, execution continues at the
return address specified.

Stack usually starts at the top of memory and
grows downwards.

Layout of stack frames is reasonably predictable.

www.wiley.co.uk/go/gollmann 30

Stack & Heap
Stack: contains return address, local
variables and function arguments;
relatively easy to decide in advance
where a particular buffer will be
placed on the stack.

Heap: dynamically allocated
memory; more difficult but by no
means impossible to decide in
advance where a particular buffer
will be placed on the heap.

stack

heap

memory

0000

FFFF

www.wiley.co.uk/go/gollmann 31

Stack Frame – Layout

argument n
.
.
.

argument 1

local
variables

saved EBP

saved EIP

extended instruction
pointer (return

address)

extended base
pointer

(reference point for
relative addressing)
a.k.a. frame pointer

www.wiley.co.uk/go/gollmann 32

Stack-based Overflows

Find a buffer on the runtime stack of a privileged program
that can overflow the return address.
Overwrite the return address with the start address of the
code you want to execute.
Your code is now privileged too.

value1

my_address

value2

return
address

buffer for
variable

A

write to A:

value1|
value2|
my_addres
s

www.wiley.co.uk/go/gollmann 33

Code Example

Declare a local short string variable

char buffer[80];

use the standard C library routine call

gets(buffer);

to read a single text line from standard input and save it into buffer.

Works fine for normal-length lines, but corrupts the stack if the input
is longer than 79 characters.

Attacker loads malicious code into buffer and redirects return address
to start of attack code.

www.wiley.co.uk/go/gollmann 34

How to Create an Exploit?

Use a specially crafted input to overwrite the return
address and jump to the attack code.
Where to put the attack code (‘shellcode’)?
The shellcode could be put on the stack (as part of the
malicious input).
To guess location, the attacker guesses the distance
between return address and address of the input containing
the shellcode.
Landing pad: NOP (no operation) instructions at start of
shellcode to compensate for variations in the location the
code is found.

www.wiley.co.uk/go/gollmann 35

Defence: Non-executable Stack

Stops attack code from being executed from the stack.

Memory management unit configured to disable code
execution on the stack.

Not trivial to implement if existing O/S routines are
executing code on the stack.

General issue – backwards compatibility: security
measures may break existing code.

Attackers may find ways of circumventing this protection
mechanism.

www.wiley.co.uk/go/gollmann 36

Detection – Compiler

Detect attempts at overwriting the return address.
Place a check value (‘canary’) in the memory
location just below the return address.
Before returning, check that the canary has not
been changed.
Stackguard: random canaries.
– Alternatives: null canary, terminator canary

Source code has to be recompiled to insert placing
and checking of the canary.

www.wiley.co.uk/go/gollmann 37

Canaries

check value

value1

my_address

value2 ≠ check value

return
address

buffer for
variable

A

write to A:

value1|
value2|
my_addres
s

to A

canary

attack
detecte

d

www.wiley.co.uk/go/gollmann 38

Heap Overruns

More difficult to determine how to overwrite a specific
buffer.

More difficult to determine which other buffers will be
overwritten in the process; if you are an attacker, you may
not want to crash the system before you have taken over.

Even attacks that do not succeed all the time are a threat.

Can overwrite filenames and function pointers, and mess
up memory management.

www.wiley.co.uk/go/gollmann 39

Type Safety – Java

Type safety (memory safety): programs cannot access
memory in inappropriate ways.

Each Java object has a class; only certain operations are
allowed to manipulate objects of that class.

Every object in memory is labelled with a class tag.

When a Java program has a reference to an object, it has
internally a pointer to the memory address storing the
object.

The pointer can be thought of as tagged with a type that
says what kind of object the pointer is pointing to.

www.wiley.co.uk/go/gollmann 40

Type Confusion

Dynamic type checking: check the class tag when
access is requested.
Static type checking: check all possible executions
of the program to see whether a type violation
could occur.
If there is a mistake in the type checking
procedure, a malicious applet might be able to
launch a type confusion attack by creating two
pointers to the same object-with incompatible type
tags.

www.wiley.co.uk/go/gollmann 41

Type Confusion
Assume the attacker manages to let two pointers point to
the same location

T t = the pointer tagged T;
U u = the pointer tagged U;
t.x = System.getSecurity();
MyObject m = u.x;

class T {
SecurityManager x;

}

class U {
MyObject x;

}

class definitions

malicious applet

www.wiley.co.uk/go/gollmann 42

Type Confusion

…

v type V

u type U

t type T

object 2

object 1

Reference Table

memory

www.wiley.co.uk/go/gollmann 43

Type Confusion

The SecurityManager field can now also be manipulated
from MyObject.

We sketch a type confusion attack in Netscape Navigator
3.0β5 (discovered by Drew Dean), fixed in version 3.0β6.

Source: Gary McGraw & Edward W. Felten: Java
Security, John Wiley & Sons, 1997.

www.wiley.co.uk/go/gollmann 44

Netscape Vulnerability
Java allows a program that uses type T also to use
type array of T.
Array types are defined by the VM for internal use;
their name begins with the character [.
A programmer defined classname is not allowed to
start with this character.
Hence, there should be no danger of conflict.
However, a Java byte code file could declare its own
name to be a special array types name, thus
redefining one of Java’s array types.

www.wiley.co.uk/go/gollmann 45

Unix rlogin
Unix login command:
– login [[-p] [-h<host>] [[-f]<user>]

– -f option “forces” log in: user is not asked for password

Unix rlogin command for remote login:
– rlogin [-l<user>] <machine>

– The rlogin daemon sends a login request for <user> to <machine>

Attack (some versions of Linux, AIX):
– % rlogin -l -froot <machine>

Results in forced login as root at the designated machine
– % login -froot <machine>

www.wiley.co.uk/go/gollmann 46

Unix rlogin
Problem: Composition of two commands.

Each command on its own is not vulnerable.

However, rlogin does not check whether the
“username” has special properties when passed to
login.

This is a bit like the double decode problem with
UTF8-encoded Unicode characters.

www.wiley.co.uk/go/gollmann 47

Scripting

In scripting languages, executables can be passed as
arguments.

Example: A CGI script to send file to clientaddress:

cat file | mail clientaddress

With the “mail address” to@me | rm -rf / as input the
server executes

cat file | mail to@me | rm -rf /

After mailing the file to@me, all files the script has
permission to delete are deleted.

www.wiley.co.uk/go/gollmann 48

Unescaping

Escape characters: escape out of the current
execution context:

‘Unescaping’: make input non-executable by
commenting out escape characters.

For example, neutralize the escape character ‘;’ in
“string1;string2” is by the comment ‘\...\’

“string1 \;string2\”

Escape characters are system specific.

www.wiley.co.uk/go/gollmann 49

SQL Inserts
Example query from SQL database:
string sql = "SELECT * FROM client WHERE name= ’" + name + "’ "

Intention: insert legal user name like ‘Bob’ into query.

Attack enter ‘user name’: Bob’ OR 1=1 --
The SQL command becomes SELECT *
FROM client WHERE name = Bob’ OR 1=1--

Because 1=1 is TRUE, name = Bob OR 1=1 is TRUE, and the entire
client database is selected; -- is a comment erasing anything that would
follow.

www.wiley.co.uk/go/gollmann 50

Race conditions

Multiple computations access shared data in a way
that their results depend on the sequence of
accesses.
– Multiple processes accessing the same variable.

– Multiple threads in multi-threaded processes (as in Java
servlets).

An attacker can try to change a value after it has
been checked but before it is being used.
TOCTTOU (time-to-check-to-time-of use) is a
well-known security issue.

www.wiley.co.uk/go/gollmann 51

Example – CTSS (1960s)

Password file shown as message of the day.

Every user had a unique home directory.

When a user invoked the editor, a scratch file with
fixed name SCRATCH was created in this
directory .

Innovation: Several users may work concurrently
system manager.

www.wiley.co.uk/go/gollmann 52

Race Conditions

M-o-D Passwd

hello EsxT9

hello

M-o-D Passwd

hello EsxT9

EsxT9

M-o-D Passwd

EsxT9 EsxT9

EsxT9

User1
edits M-o-D

User2
edits passwd

User1
saves M-o-D

The abstraction ‘atomic transaction’ has been broken.

www.wiley.co.uk/go/gollmann 53

Broken Abstractions
Treating the problems presented individually, would
amount to penetrate-and-patch at a meta-level.

We looking for general patterns in insecure software, we
see that familiar programming abstractions like variable,
array, integer, data & code, address, or atomic transaction
are being implemented in a way that breaks the
abstraction.

Software security problems can be addressed
– in the processor architecture,

– in the programming language we are using,

– in the coding discipline we adhere to,

– through checks added at compile time (e.g. canaries),

– and during software development and deployment.

www.wiley.co.uk/go/gollmann 54

Prevention – Hardware

Hardware features can stop buffer overflow attacks from
overwrite control information.
For example, a secure return address stack (SRAS) could
protect the return address.
Separate register for the return address in Intel’s Itanium
processor.
With protection mechanisms at the hardware layer there is
no need to rewrite or recompile programs; only some
processor instructions have to be modified.
Drawback: existing software, e.g. code that uses multi-
threading, may work no longer.

www.wiley.co.uk/go/gollmann 55

Prevention – Type Safety

Type safety guarantees absence of untrapped
errors by static checks and by runtime checks.

The precise meaning of type safety depends on the
definition of error.

Examples: Java, Ada, C#, Perl, Python, etc.

Languages needn’t be typed to be safe: LISP

Type safety is difficult to prove completely.

www.wiley.co.uk/go/gollmann 56

Prevention – Safer Functions
C is infamous for its unsafe string handling
functions: strcpy, sprintf, gets, …

Example: strcpy

char *strcpy(char *strDest,
const char *strSource);

– Exception if source or destination buffer are null.

– Undefined if strings are not null-terminated.

– No check whether the destination buffer is large
enough.

www.wiley.co.uk/go/gollmann 57

Prevention – Safer Functions

Replace unsafe string functions by functions where the
number of bytes/characters to be handled are specified:

strncpy, _snprintf, fgets, …
Example: strncpy

char *strncpy(char *strDest, const
char *strSource, size_t count);
You still have to get the byte count right.
– Easy if data structure used only within a function.
– More difficult for shared data structures.

www.wiley.co.uk/go/gollmann 58

Detection – Code Inspection

Code inspection is tedious: we need automation.
K. Ashcraft & D. Engler: Using Programmer-Written
Compiler Extensions to Catch Security Holes, IEEE
Symposium on Security &Privacy 2002.
Meta-compilation for C source code; ‘expert system’
incorporating rules for known issues: untrustworthy
sources → sanitizing checks → trust sinks; raises alarm if
untrustworthy input gets to sink without proper checks.
Code analysis to learn new design rules: Where is the sink
that belongs to the check we see?
Microsoft has internal code inspection tools.

www.wiley.co.uk/go/gollmann 59

Detection – Testing
White box testing: tester has access to source code.
Black-box testing when source code is not available.
You do not need source code to observe how memory is
used or to test how inputs are checked.
Example: syntax testing of protocols based on formal
interface specification, valid cases, anomalies.
Applied to SNMP implementations: vulnerabilities in trap
handling and request handling found
http://www.cert.org/advisories/CA-2002-03.html
– Found by Oulu University Secure Programming Group

http://www.ee.oulu.fi/research/ouspg/

www.wiley.co.uk/go/gollmann 60

Mitigation – Least Privilege

Limit privileges required to run code; if code running with few
privileges is compromised, the damage is limited.
Do not give users more access rights than necessary; do not activate
options not needed.
Example – debug option in Unix sendmail: when switched on at the
destination, mail messages can contain commands that will be
executed on the destination system.
Useful for system managers but need not be switched on all the time;
exploited by the Internet Worm of 1988.
In the past, software was shipped in open configurations (generous
access permissions, all features activated); users had to harden their
systems by removing features and restricting access rights.
Today, software often shipped in locked-down configurations; users
have to activate the features they want to use.

www.wiley.co.uk/go/gollmann 61

Reaction – Keeping Up-to-date

Information sources : CERT advisories, BugTraq at
www.securityfocus.com, security bulletins from software
vendors.
Hacking tools use attack scripts that automatically search
for and exploit known type of vulnerabilities.
Analysis tools following the same ideas will cover most
real attacks.
Patching vulnerable systems is not easy: you have to get
the patches to the users and avoid introducing new
vulnerabilities through the patches.

www.wiley.co.uk/go/gollmann 62

Intrusion Patterns

patch
released

n
u
m

b
e
r

o
f

in
tr

u
si

o
n
s

Timedisclosure attack scripts
released

W. Arbaugh, B. Fithen, J. McHugh: Windows of
Vulnerability:
A Case Study Analysis, IEEE Computer, 12/2000

www.wiley.co.uk/go/gollmann 63

Summary

Many of the problems listed may look trivial.
There is no silver bullet:
– Code-inspection: better at catching known problems,

may raise false alarms.

– Black-box testing: better at catching known problems.
– Type safety: guarantees from an abstract (partial)

model need not carry over to the real system.

Experience in high-level programming languages
may be a disadvantage when writing low level
network routines.

