
New
Access Control Paradigms

www.wiley.co.uk/go/gollmann 2

Introduction

Internet and the World Wide Web have brought large
many ‘security unaware’ users into direct contact with new
IT applications.

Mobile code from the Internet is running on client
machines.

Electronic commerce promises new business
opportunities.

We are facing considerable change in the way IT systems
are being used; are the old security paradigms still fit or do
we need new policies and new enforcement mechanisms?

www.wiley.co.uk/go/gollmann 3

Objectives

Explore new paradigms for access control.

Explain background and rationale for the move to
code-based access control.

Present stack walking as the main security
enforcement algorithm used in code-based access
control.

Give an introduction to the Java security model
and the .NET security framework.

www.wiley.co.uk/go/gollmann 4

Agenda

Access Control – Origins

Code-based access control

Java and .NET security models

Cookies

SPKI: PKI & access control

Trust Management Systems

Digital Rights Management

www.wiley.co.uk/go/gollmann 5

Access Control – Origins

principal

s o

request
reference objectaccess
monitor

authentication authorisation
ACL

B. Lampson, M. Abadi, M. Burrows, E. Wobber:
Authentication in Distributed Systems: Theory and
Practice, ACM Transactions on Computer Systems, 10(4),
pages 265-310, 1992

www.wiley.co.uk/go/gollmann 6

Identity-based Access Control

Access control based on user identities.

The kind of access control familiar from operating
systems like Unix or Windows.

Do not confuse the ‘identity’ of a person with a
user identity (uid) in an operating systems; a uid is
just a unique identifier that need not correspond to
a real person (e.g. ‘root’).

RBAC = IBAC + one level of indirection.

www.wiley.co.uk/go/gollmann 7

Fact File

This model originated in ‘closed’ organisations
(‘enterprises’) like universities, research labs.
The organisation has authority over its members.
The members (users) can be physically located.
Access control policies refer naturally to user identities:
ACEs associated with known people.
Audit logs point to users who can be held accountable.
Access control seems to require by definition that
identities of persons are verified.
Biometrics: strong identity-based access control?

www.wiley.co.uk/go/gollmann 8

Further Aspects

Access rules are local: no need to search for the rule that
should be applied; the rule is stored as an ACL with the
object.

Enforcement of rules is centralized: reference monitor
does not consult other parties when making a decision.

Simple access operations: read, write, execute; single
subject per rule; no rules based on object content.

Homogeneity: the same organisation defines
organizational and automated security policy.

www.wiley.co.uk/go/gollmann 9

Changes in the Last Decade

The Internet connects us to parties we never met before:
– Their ‘identity’ can hardly figure in our access rules.
– We are not always able to hold them accountable.

Java sandbox: it is not necessary to refer to users when
describing or enforcing access control.
Access controlled at the level of applets, not at the
granularity of read/write/execute.
Instead of asking who made the request, ask what to do
with it.

www.wiley.co.uk/go/gollmann 10

Access Control in an
‘Open’ World

request
referenceaccess
monitor authorisation

Verify
evidenc
e
provide
d

Code id, session
id, privileges,
location, sender
id, …

evidence Associate local
evidence (security
context) with
request

Find relevant
policy, evaluate
whether there is
sufficient
evidence to
grant request

authentication

www.wiley.co.uk/go/gollmann 11

Changes: The Web

Executable content (applets) blurs separation between
program and data.
Computation moved to the client who needs protection
from content providers.
Lesson of the early PC age: floppy disks from arbitrary
sources were the route for computer virus infections.
As computation moves to the client, the client is asked to
make decisions on security policy, and on enforcing
security.
The browser becomes part of the TCB.

www.wiley.co.uk/go/gollmann 12

Changes in the Environment
When organisations collaborate, access control can
be based on more than one policy.
Potential conflicts between policies have to be
addressed.
How to export security identifiers from one system
into another system?
Decisions on access requests may be made by an
entity other than the one enforcing the decision.
How does a user know which credentials to
present?

www.wiley.co.uk/go/gollmann 13

Splitting the Reference Monitor
Policy administration point (PAP): creates a
policy or policy set.

Policy decision point (PDP): evaluates applicable
policy and renders an authorization decision.

Policy enforcement point (PEP): performs access
control, by making decision requests and
enforcing authorization decisions.

Policy information point (PIP): acts as a source of
attribute values.

www.wiley.co.uk/go/gollmann 14

Changes in Mechanisms

Locally stored access rules can be placed in
protected memory segments.
Access rules sent to remote sites need
cryptographic protection.
Locally stored access rights of principals can be
placed in protected memory segments.
Access rights of principals sent to remote sites
need cryptographic protection.
Blurred difference between rules and rights.

www.wiley.co.uk/go/gollmann 15

Code-based Access Control
If we cannot rely on the principal who makes the
request for access control decisions, we can only
look at the request itself.
Requests can be programs, rather than elementary
read/write instructions.
Code-based access control: access control where
permissions are assigned to code.
Major examples: Java security model, .NET
security framework
Check that the caller’s allocated (granted)
permissions match the required permissions.

www.wiley.co.uk/go/gollmann 16

Access Control Parameters

Security attributes associated with code can be:
– site of code origin: local or remote?

– URL of code origin: intranet or Internet?

– code signature: signed by trusted author?

– code identity: approved (‘trusted’) code?

– code proof: code author provides proof of security
properties;

– identity of sender: principal the code comes from;

– …

www.wiley.co.uk/go/gollmann 17

Call Chains

Which privileges should be valid when one method
calls another method?
Example: Method A has access right to resource R,
B does not; A calls B, B requests access to R:
should access be granted?
The conservative answer is ‘no’, but A could
explicitly delegate the access right to B.

A B R

www.wiley.co.uk/go/gollmann 18

Call Chains

Example: Method A has access right to resource R,
B does not; B calls A, A requests access to R:
should access be granted?
Confused deputy problem: an ‘untrusted’ entity
asks a ‘trusted’ entity to do something illegal.
The conservative answer is ‘no’, but A could
explicitly assert its access right.

B A R

www.wiley.co.uk/go/gollmann 19

Enforcing Policies

To compute the current permissions granted to
code we have to know the entire call chain when
making access decisions.

Java VM and .NET CLR use a call stack to
manage executions; information about calling
methods can be found there.

Lazy evaluation: only evaluate granted
permissions when a permission is actually
required to access a resource.

www.wiley.co.uk/go/gollmann 20

Stack Walk

The rights of the final caller are computed as
the intersection of the rights for all entries on
the call stack.

B

A

effective rights =
rights(B) ∩ rights(A) ∩ …

www.wiley.co.uk/go/gollmann 21

Limits of Stack Inspection

Access control makes use of the runtime stack:
– Performance? Common optimizations are disabled.
– Security: What is guaranteed by stack inspection?

Hard to relate to high-level security policies.

Two concerns for programmers:
– Untrusted component may take advantage of my code.
– Permissions may be missing when running my code.

Stack inspection is blind to many control and data flows:
– Parameters, results, mutable data, objects, inheritance, callbacks,

events, exceptions, concurrency…

Each case requires a specific discipline or mechanism.

www.wiley.co.uk/go/gollmann 22

History-Based Access Control

Don’t be lazy, keep track of callers’ rights
proactively (eager evaluation).

Static rights (S) associated with each piece of code at
load time.

Current rights (D) associated with each execution
unit, updated automatically at execute time
(D := D ∩ S).

Controlled modifications of current rights using
“grant” and “accept” programming patterns.

Java Security

www.wiley.co.uk/go/gollmann 24

Java Security
Java: strongly typed object-oriented language;
general purpose programming language.

Java is type safe; the type of a Java object is
indicated by the class tag stored with the object

Static (and dynamic) type checking to examine
whether the arguments an operand may get during
execution are always of the correct type.

Security advantage: no pointers arithmetic; memory
access through pointers is one of the main causes for
security flaws in C or C++.

www.wiley.co.uk/go/gollmann 25

Java – Overview

Java source code is translated into machine independent
byte code (similar to an assembly language) and stored in
class files.

A platform specific virtual machine interprets the byte
code translating it into machine specific instructions.

When running a program, a Class Loader loads any
additional classes required.

The Security Manager enforces the given security policy.

www.wiley.co.uk/go/gollmann 26

The Java Execution Model

Java
Source Code

Compiler
Java

Byte Code

(Web Page) Java Runtime

Security
Manager

Class Loader

Byte Code
Verifier

executable

www.wiley.co.uk/go/gollmann 27

JDK 1.1 Security Model

system resources

Security Manager

full access
to resources

Sandbox
restricted access

local code remote code (applet)

trusted (signed) code (added in version 1.1)

www.wiley.co.uk/go/gollmann 28

Discussion

Basic policy is quite inflexible:
– Local/signed code is unrestricted.
– Applet/unsigned code is restricted to sandbox.

No intermediate level:
– How to give some privileges to a home banking application?

Local/remote is not a precise security indicator:
– Parts of the local file system could reside on other machines;
– Downloaded software becomes “trusted” once it is cached or

installed on the local system.

For more flexible security policies a customized security
manager needed to be implemented.
– Requires security AND programming skills.

www.wiley.co.uk/go/gollmann 29

Java 2 Security Model

Java 2 security model no longer based on the distinction
between local code and applets.
Applets and applications controlled by the same
mechanisms.
The reference monitor of the Java security model performs
fine-grained access control based on security policies and
permissions.
Policy definition separated from policy enforcement.
A single method checkPermissions() handles all security
checks.

www.wiley.co.uk/go/gollmann 30

Byte Code Verifier
Analyses Java class files: performs syntactic
checks, uses theorem provers and data flow
analysis for static type checking.
There is still dynamic type checking at run time
Verification guarantees properties like:
– The class file is in the proper format.

– Stacks will not overflow.

– All operands have arguments of the correct type.

– There will be no data conversion between types.

– All references to other classes are legal.

www.wiley.co.uk/go/gollmann 31

Class Loaders

Protect integrity of the run time environment;
applets are not allowed to create their own Class
Loaders and should not interfere with each other.

Vulnerabilities in a class loader are particularly
security critical as they may be exploited by an
attacker to insert rogue code.

Each Class Loader has its own name space; each
class is labeled with the Class Loader that has
installed it.

www.wiley.co.uk/go/gollmann 32

Security Policies

Security policy: maps a set of properties that characterizes
running code to a set of access permissions granted to the
code.
Code characterized by CodeSource:
– origin (URL)

– digital certificates

Permissions contain target name and a set of actions.
Level of indirection: permissions granted to protection
domains:
– Classes and objects belong to protection domains and ‘inherit’ the

granted permissions.
– Each class belongs to one and only one domain.

www.wiley.co.uk/go/gollmann 33

Security Manager

Security Manager: reference monitor in the JVM;
security checks defined in AccessController class.
– Uniform access decision algorithm for all permissions.

Access (normally) only granted if all methods in
the current sequence of invocations have the
required permissions (‘stack walk’).
Controlled invocation: privileged operations;
doPrivileged() tells the Java runtime to ignore the
status of the caller.

www.wiley.co.uk/go/gollmann 34

Summary
The Java 2 security model is flexible and feature-
rich; it gives a framework but does not prescribe a
fixed security policy.

JAAS (Java Authentication and Authorization
Service) adds user-centric access control.

Sandbox enforces security at the service layer;
security can be undermined by access to the layer
below:
– users running applications other than the web browser.

– attacks by breaking the type system.

.NET Security Framework

www.wiley.co.uk/go/gollmann 36

.NET Components
Common Language Runtime (CLR): common
runtime system for a variety of programming
languages; loads and executes code, performs
security checks (similar to JVM).

C#: Type-safe programming language developed
by Microsoft (similarities to Java; builds to some
extent on experiences gained from using Java.)

MSIL: Microsoft Intermediate Language
(conceptually similar to Java byte code.)

www.wiley.co.uk/go/gollmann 37

Managed Code

Native code: Code compiled to machine language
for a specific hardware platform; not controlled by
the CLR.
Unmanaged code = native code
Managed code: Code compiled to run in the .NET
framework; controlled by the CLR.
Assembly: logical unit of IL code in the .NET
framework, usually a single managed DDL or
EXE file.

www.wiley.co.uk/go/gollmann 38

Access Control Model
Evidence: information about the origin of code.

Authenticate code identity: collect and verify
evidence about a piece of code (an assembly).

Authorize code, not users to access resources;
security policies refer to evidence (about
assemblies).

Enforce authorisation decisions made on individual
pieces of code, such as assemblies.

www.wiley.co.uk/go/gollmann 39

Default Evidence Classes

Application Directory

Hash

Permission Request Evidence: states the permissions an
assembly must have to run.

Publisher

Web Site

Strong Name

URL

Zone: security zone as in Internet Explorer

www.wiley.co.uk/go/gollmann 40

Strong Names

Assemblies are referenced through names.

Strong names: include identity of the publisher
(but no third party certificate!).
– Creates separate name spaces for assembly names.

Assemblies protected by digital signatures:
– Publisher’s public key given in the metadata.

– Digital signature computed and written into assembly
during compilation.

– Provides origin authentication & data integrity.

www.wiley.co.uk/go/gollmann 41

Associating Evidence
Evidence applies to executing code.

Evidence is dynamically calculated when code is
running; e.g. the URL of origin is usually not
known in advance.

Evidence associated with assemblies and with
application domains (app domains).

App domains: ‘mini-processes’ within processes.

‘Management layer’ above assemblies.

www.wiley.co.uk/go/gollmann 42

Application Domains
process

App domain 1

Assembly 1 Assembly 2

App domain 2

Assembly 1 Assembly 2

Assembly 3

www.wiley.co.uk/go/gollmann 43

Providing Evidence
Host-provided evidence:
– Host: an unmanaged entity that initiates the CLR (e.g.

Internet Explorer) or managed code launching other
managed code.

– The kind of evidence mentioned so far.

Assembly provided evidence:
– Provided by an assembly itself.

– Cannot override host-provided evidence.

– Can be any object → application specific access
control.

– Custom code needed to process such evidence.

www.wiley.co.uk/go/gollmann 44

Permissions

Permission: privilege that can be granted to .NET code,
e.g. write to file system
– Code access permissions: standard permissions.
– Identity permissions: indicate that an assembly has a certain piece

of evidence.
– Other permissions: e.g. PrincipalPermission representing a user

identity.
Built-in permissions and permission sets.
Granted by the security policy: takes evidence as input and
returns permissions.
Demanded by .NET assemblies: required permissions to
access resource.

www.wiley.co.uk/go/gollmann 45

Declarative & Imperative Sec.

Declarative security actions: stored in the assembly’s
metadata.
– Can be easily (statically) reviewed on assemblies.

– Occur at the beginning of a method.

– Can be placed at class level.

JIT-time security actions can only be expressed in in
declarative form.

Imperative security actions: stored in IL code.
– More complex security logic possible.

– Necessary with dynamic parameters.

www.wiley.co.uk/go/gollmann 46

Enforcing Policies
Granted permissions of an assembly derived from
evidence by evaluating membership conditions.
Code groups and policy levels for managing
policy specification.
Enforcement: stack walk, goes through the call
stack and checks for required permission.
– No check against the method making the request.

Assert, Deny, PermitOnly: operations that attach
permissions to current stack frame; removed when
returning from that method.

www.wiley.co.uk/go/gollmann 47

Modifying the Stack Walk

Assert: terminates stack walk for a given permission
granting this permission (all frames examined so far also
have the permission.)
– Does not terminate the stack walk if the granted permissions are

insufficient for the request.
– Allows “untrusted” callers to call the method successfully.

Deny: terminates stack walk raising an exception.
– Check at run time; mainly useful for testing.
– Do not put the check for the denied permission in the same method

as the ‘deny’.

PermitOnly: terminates stack walk raising an exception
unless stated permissions are satisfied.

www.wiley.co.uk/go/gollmann 48

Summary
.NET CLR provides code-identity-based access
control.

Stack walk used as the security enforcement
algorithm.

Numerous means available for structuring security
policies.
– Open question: How to best assign permissions to

assemblies?

To use these means in practice you have to study
the details of the .NET framework.

Cookies
SPKI

Trust Management
Digital Rights Management

www.wiley.co.uk/go/gollmann 50

Stateless Protocols

The http protocol (hypertext transfer protocol, RFC 1945)
is stateless by design.
Even http requests coming from the same client are treated
as independent events.
– E.g., if a password is required to access a web page, it would have

to be returned every time you click on this page.

– Solution in http 1.0: browser stores password entered at first
request and automatically includes it in all further replies to the
server.

Transactions consisting of several steps may need to keep
a consistent state between client and server for recovering
to a safe state if a communication failure occurs.

www.wiley.co.uk/go/gollmann 51

Cookies

For this reason, the state of the transaction is
stored by the browser on the client side in a
cookie.
The server can retrieve the cookie to learn the
client’s current state in the transaction.
With cookies, stateful http sessions can be created.
Depending on the duration for which cookies are
kept, the concept of a session can be extended
beyond a single transaction.

www.wiley.co.uk/go/gollmann 52

Cookies

client server

browser

cookies

www.wiley.co.uk/go/gollmann 53

Security Issues?

Cookies cannot violate the integrity of your system; they
are data, not executable code.
Individual cookies do not disclose information to the
server; the server asks the browser to store the cookie.
Usually, cookies are domain specific and servers are only
get access to cookies belonging to their domain; in this
sense, there is also no new confidentiality.
A server can violate client privacy by creating client
profiles, combining information from cookies placed by
different servers or by observing client behaviour over
time.

www.wiley.co.uk/go/gollmann 54

Security Issues

A client may change cookies to gain benefits from the server the
customer is not entitled to.
– Cookie poisoning attack: assume a server uses the cookie to store bonus

points in a loyalty scheme; a client could increase the score to get higher
discounts.

‘Identity theft’: a third party could make an educated guess about a
client’s cookie and use a spoofed cookie to impersonate the client.
Clients can protect themselves by setting up their browsers to control
the placement of cookies:
– Ask for permission before storing a cookie (can easily become a

nuisance), block cookies altogether, deleting the cookies at the end of a
session.

The server could protect itself by encrypting cookies.
To stop spoofing attacks use proper authentication.

www.wiley.co.uk/go/gollmann 55

SPKI

Old paradigm: access rules stored locally in protected
memory.

Decentralized access control: protect integrity of access
rules by cryptographic means; encode rules in digitally
signed certificates.

Identity-based access control can be implemented with
X.509 identity certificates.

SPKI (Simple Public Key Infrastructure, RFC 2692, 2693):
PKI for access control (authorization) that works without
user identities.

www.wiley.co.uk/go/gollmann 56

Local and Global Names

In access control names have essentially only a local
meaning within a security domain, and just serve as
pointers to access rights.
Interaction between domains: we need to refer to names
from other local name spaces; we require globally unique
identifiers for name spaces to avoid confusion about
names.
Public/private key pairs generated at random are unique
with high probability; the public key of an issuer (or its
hash) can serve as the unique identifier for the name space
defined by that issuer.
Name certificates signed with the private key define a
name in the local name space.

www.wiley.co.uk/go/gollmann 57

Access Rights

Access rights are bound directly to public keys through
authorization certificates.
Authorization certificates contain at least an issuer and a
subject, and may also include a delegation bit,
authorizations, and validity conditions.
The issuer sets policy by signing a certificate and thereby
authorizing the subject.
The subject is typically a public key, the hash of a key, or
the name for a key.
The root key for verifying certificate chains is stored in an
ACL.

www.wiley.co.uk/go/gollmann 58

SPKI: Access Control

authorization certificate

public key

ID
certificate
for audit

subject

access
right

Key-centric access control, ID certificates for accountability

www.wiley.co.uk/go/gollmann 59

SPKI Policy

1. Issuer: public key (or “Self”)
2. Subject: public key, name identifying a public

key, hash of an object, …
3. Delegation: TRUE or FALSE
4. Authorization: access rights
5. Validity dates: not-before date and not-after date

Tuples: abstract notation for certificates
or ACL
entries:

www.wiley.co.uk/go/gollmann 60

Tuple Reduction Algorithms

Input: <Issuer1,Subject1,D1,Auth1,Val1>
<Issuer2,Subject2,D2,Auth2,Val2>

IF Subject1 =Issuer2 AND D1 = TRUE
THEN output <Issuer1, Subject2, D2,

 AIntersect(Auth1,Auth2),
 VIntersect(Val1,Val2)>

Evaluates ‘certificate chains’.
Authorisations and validity periods can
only be reduced.

www.wiley.co.uk/go/gollmann 61

SPKI – Evaluation

SPKI Certificate Theory is recommended reading
on names, access control, etc.
Oriented towards access control and away from
global CA hierarchies; separation of concerns:
– ID certificates for accountability

– Attribute and authorisation certificates for access
control: certificates ≈ distributed storage of ACLs

SPKI standardizes (prescribes?) policy decisions:
e.g. only permissions held by delegator can be
delegated; does not support separation of duties.

www.wiley.co.uk/go/gollmann 62

Trust Management

Traditionally, access rules can be found in a well
defined place: ACL in a parent directory

Traditionally, a subject presents its credentials and
the reference monitor decides on the basis of the
input it has received, and does not ask third parties
for decisions

In open environments, we frequently encounter
situations involving third parties

www.wiley.co.uk/go/gollmann 63

Example

Service Level Agreement between telecom providers X
and Y that gives customers from X access to the services
offered by Y.
– Y will not get a list of all subscribers from X.

– X issues its subscribers with certificates and gives Y the required
verification key.

– Subscribers from X request services from Y by presenting their
certificates.

– Provider Y calls back X to perform an on-line status check on the
certificates, ‘deferring’ this check to X.

– The reply from X is input to Y’s decision.

www.wiley.co.uk/go/gollmann 64

Trust Management

A unified approach to specifying and interpreting security
policies, credentials, and relationships introduced in
PolicyMaker
– M. Blaze, J. Feigenbaum, J. Lacy: Decentralized Trust

Management, 1996 IEEE Symposium on Security & Privacy.

Generalize rules: instead of ACLs, use a programming
language to express assertions.

Assertion: bind a public key to a predicate on actions.
– Authorizes an action if a digitally signed request to perform this

action can be verified with the public key given in the assertion
and if the action satisfies the predicate.

www.wiley.co.uk/go/gollmann 65

Trust Management

Credentials can directly authorize actions, there is no need
to authenticate a user (like in SPKI).

Distribute authority: assertions can be local (‘policies’) or
be signed by another authority (‘credentials’).

Trust management engine (compliance checker) answers
question:

“Does the set C of credentials prove that the request r
complies with the local security policy P?”

Trade-off between expressiveness of the language and
complexity of the compliance checker.

www.wiley.co.uk/go/gollmann 66

Digital Rights Management

Digital Rights Management (DRM): enforce vendor
policies on a customer machine.
Departure from ‘old’ access control paradigm:
– Policies enforced on a system are no longer set by the owner but

by an external party.

– The adversary is no longer an external party trying to subvert the
system but an owner trying to bypass the policy.

– Security goal: integrity of the access control system, as interpreted
by the external party.

Trusted Platform Modules could provide ‘truthful’ reports
about the hardware and software configuration of a target
machine.

