RFID Security

April 10, 2006

Martin Dam Pedersen
Department of Mathematics and Computer Science
University Of Southern Denmark
Outline

- What is RFID
- RFID usage
- Security threats
- Threat examples
- Protection Schemes for basic and advanced tags
- The future
- Literature
Plenty of information
What is RFID

- **Radio-Frequency IDentification**
 - RFID System
 - Tags
 - Readers
 - Backend servers
RFID System

- **Tag (transponder)**
 - Small chip and antenna
 - Unique serial number
 - Inexpensive (0.075 cents)
 - Cryptography is possible in more advanced (expensive) tags.
 - Symmetric-key
 - Public-key
 - Hashing
RFID System

Tag types

- **passive**(HF, UHF)
 - powered by reader and transmits a response
 - Very small(Chip 0.15mm×0.15mm, Antenna size of a stamp)
 - Read distances ranging from 2mm - 5m

- **semi-passive, active**(small battery)
 - Self powered
 - active tags are fully self powered
 - semi-passive only powers it's circuit
 - size of a coin
 - larger ranges (>10 meters)
RFID Systems

- Reader (transceivers)
 - Read/Write data on tag
 - Communicates with back end system
RFID System

- Backend server
 - Stores information about tags
 - can perform necessary data computations
 - links tag-ids to more rich data
RFID usage

- Replacement of bar codes. EPC(Electronic Product Code) tags combined with Auto-ID gives unique serial numbers to items.
- Animal tracking
- Payment systems
 - Toll-payment at Storebæltsbroen (BroBizz)
 - Stockholm road pricing
- Anti theft
- Anti forgery
RFID usage

- Access control
- Supply chain
 - Inventory Control
 - Logistics
 - Retail shops
- Human implants
- Libraries
- Etc......
Security threats

- Eavesdropping
- Cloning
- Spoofing
- Tracking
- DOS

The consumer privacy problem

Mr. Jones in 2020...

- Replacement hip medical part #850382
- Wig model #4456 (cheap polyester)
- Das Kapital and Communist party handbook
- 1500 Euros in wallet
 Serial numbers: 597387, 389473
- 30 items of lingerie
Threat examples

- Someone checking what's in your bag
- Cloning access control badges gives access to unauthorized personal in buildings/cars.
- Harvesting ID's from store shelves makes it possible to calculate how much is sold from the store.
- Tracking a person's movement, violating the concept of “location privacy”
Protection Schemes for basic tags

- **Killing/Sleeping**
 - using PIN
 - Special device incorporated in shopping bag.
 - If killed it's not usable in “smart” home devices.

- **Collection of id's**
 - Tag is sending a different id at each reader query
 - Reader stores all id's, and can therefore identify the tag.
 - To avoid harvesting id's, slow down responses when queried too quickly
 - Readers can refresh id's
Protection Schemes for basic tags

- Encrypting id, public/private key
 - ID on tag encrypted with the banks public key
 - Bank can decrypt with private key
 - to avoid tracking, re-encrypt periodically by El Gamal which gives a different cipher text.
Protection Schemes for advanced tags

Hash Lock

- Locked tag only transmits metaID.
- Unlocked can do all operations.
- Locking mechanism.
 1) Reader R selects a nonce and computes metaID=hash(key).
 2) R writes metaID to tag T.
 3) T enters locked state.
 4) R stores the pair (metaID, key).
Protection Schemes for advanced tags

- **Hash Lock**

 - unlocking mechanism.

 1) Reader R queries Tag T for its metaID.

 2) R looks up (metaID,key).

 3) R sends key to T.

 4) if (hash(key) == metaID), T unlocks itself

- Spoofing attack is possible, but can be detected.
Protection Schemes for advanced tags

- **Symmetric key tags**
 - \[C = E_k(M) \]

- **Challenge-response protocol**
 1) Tag identifies itself by transmitting T
 2) Reader generates a nonce N and transmits it to the tag
 3) Tag computes and returns \[C = E_k(N) \]
 4) Reader checks that \(C \) indeed is equal to \(E_k(N) \).
Protection Schemes for advanced tags

- Symmetric key tags
 - If implemented in the right way, almost impossible to break.
 - In practice resource constraints leads to bad implementations.
Protection Schemes for advanced tags

- The Digital Signature Transponder (DST) from TI (texas Instruments)
 - Theft protection in cars. Used in SpeedPass™ (payment device to ExxonMobil petrol stations)
 - Performs a challenge-response protocol.
 - \(C = E_k(R) \), where \(R \) is 40 bits, and \(C \) is 24 bits, secret key \(k \) is 40 bits.
 - The short key is vulnerable to brute force attack.
 - TI did not publish the encryption algorithm \(E \), “security by obscurity”.
 - Cracked in 2004 !!
Protection Schemes for advanced tags

- **Man-in-the-middle-attack**
 - Almost any security application of RFID, involves a presumption of physical proximity.
 - Can bypass any cryptographic protocol
 - Phone equipped with a GPS receiver could sign outgoing messages.

![Diagram showing RFID, Leech, Long distance, Ghost, Reader]
The future

- More and more RFID tags in new applications
- D.O.S. becomes a larger problem
- Cheaper tags makes it possible to build in more advanced cryptography for the same money
- Probably don't replace bar codes completely because of the cost (5 cent tag on a 29 cent chocolate bar).
Literature

- Ari Juels, RSA Laboratories: "RFID Security and Privacy: A Research Survey"
- RSAlabs page on rfid: http://www.rsasecurity.com/rsalabs/node.asp?id=2115
- Stephen August Weis: "Security and Privacy in Radio-Frequency Identification Devices"
- http://www.rfidjournal.com/