
Improving the Granularity of Access Control
for Windows 2000

MICHAEL M. SWIFT and ANNE HOPKINS
University of Washington
and
PETER BRUNDRETT, CLIFF VAN DYKE, PRAERIT GARG,
SHANNON CHAN, MARIO GOERTZEL, and GREGORY JENSENWORTH
Microsoft Corporation

This article presents the mechanisms in Windows 2000 that enable fine-grained and centrally
managed access control for both operating system components and applications. These features
were added during the transition from Windows NT 4.0 to support the Active Directory, a new
feature in Windows 2000, and to protect computers connected to the Internet. While the access
control mechanisms in Windows NT are suitable for file systems and applications with simple
requirements, they fall short of the needs of applications with complex data objects. Our goal was
to use operating system access control mechanisms to protect a large object hierarchy with many
types of objects, each with many data properties. We also wanted to reduce the exposure of users
to untrustworthy or exploited programs.

We introduced three extensions to support these goals. First, we extended the entries in access
control lists to provide an unlimited number of access rights for a single object and to allow grouping
those rights for efficiency. Second, we extended the entries to specify precisely how access control
lists are assigned to each distinct type of object, instead of treating all types identically. Finally,
we extended the data structure identifying users’ identity to the operating system to allow users
to restrict the set of objects a program may access. These changes allow a single access control
mechanism to be used to protect both system and application resources, as well as protect users
from each other and users from their programs, simplifying both program development and system
management.

Categories and Subject Descriptors: D.4.6 [Operating Systems]: Security and Protection—
access controls; K.6.5 [Management of Computing and Information Systems]: Security and
Protection—invasive software

General Terms: Design, Performance, Security

Additional Key Words and Phrases: Access control lists, active directory, Microsoft Windows 2000,
Windows NT

This work was originally published in Proceedings of the 6th ACM Symposium on Access Control
Models and Technologies (SACMAT ‘01) (Chantilly, Va., May). ACM, New York, 2001.
Authors’ present addresses: M. M. Swift, Department of Computer Science and Engineering, Uni-
versity of Washington, Box 352350, Seattle, WA 98195-2350; email: mikesw@cs.washington.edu;
A. Hopkins, Computing and Communications, University of Washington, Box 354841, Seattle,
WA 98195; email: annehop@cac.washington.edu; P. Brundrett, C. Van Dyke, P. Garg, S. Chan,
M. Goertzel, and G. Jensenworth, Microsoft, Inc., 1 Microsoft Way, Redmond, WA 98052; email:
{petebr,cliffv;praeritg;shannonc;mariogo;greg jen}@Microsoft.com.
Permission to make digital /hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post on servers,
or to redistribute to lists requires prior specific permission and/or a fee.
C© 2002 ACM 1094-9224/02/1100-0398 $5.00

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002, Pages 398–437.

Improving Granularity of Windows 2000 Access Control • 399

1. INTRODUCTION

One goal of Windows NT 4.0 operating system was to provide a secure platform
for applications by providing general support for authentication, access control,
and auditing. However, the addition of the Active Directory in Windows 2000,
the follow-on operating system to Windows NT, and the increasing frequency
of security attacks on trusted applications demonstrated several limitations
of Windows NT access control. The Active Directory, a hierarchical directory
service [Iseminger 2000], requires access control at a finer granularity and with
more centralized control than can be supported by the mechanisms in Window
NT. The security attacks demonstrated that users could not prevent untrusted
code from accessing their data. This article presents the changes made to the
Windows NT access control mechanisms to address these limitations.

The increasing integration of applications, when several independent pro-
grams cooperate and share data, drives the need for new access control mech-
anisms. There are many situations where data from one application must
be available to another application, although not always with the same ac-
cess rights. For example, an electronic mail server may access a user account
database for determining valid e-mail addresses, but should not be able to
modify the address. This increased sharing between applications has led to
centralized repositories of application data, such as the configuration registry
in Windows NT and Windows 95, and directories services such as Novell NDS
and Microsoft’s Active Directory. These centralized repositories of data require
fine-grained protection to restrict each application to only its required access.
For example, a mail server may need to modify mail routing information on a
user object, but should not be able to set users’ passwords.

In many operating systems, access control mechanisms are separate for each
application, such as permissions in the file system and configuration files for
user applications. Windows NT integrates many security services that were
formerly provided by applications, such as authentication and access control. As
a result, Windows NT has a single access control mechanism that is used by all
system components, including kernel objects, user interface objects, and the file
system. The access control mechanism is also intended for use by applications,
such as web servers or mail servers. This approach benefits both administrators
and developers by requiring that they learn only a single set of mechanisms,
enables a common user interface for access control, and reduces the amount of
security-critical code in applications.

The major access control mechanism in Windows NT is the access control
list (ACL), which for each object specifies the operations users may perform.
The access control lists in Windows NT 4.0 were designed for services, such as
the file system, with only a few types of objects and with only a small number
of operations. However, the Active Directory stores data for many different
uses, such as logon and authorization, electronic mail, and security policy. It
contains hundreds of types of data objects, ranging from user account data to
network printer configuration data, and every object has many properties, such
as user name and password or printer description. Depending on the needs of
the application, the properties on a single object may be protected separately,

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

400 • M. M. Swift et al.

so some are accessible to all users while other properties are accessible only
to administrators. While implementing the directory service, we discovered
two limitations of the access control mechanisms in Windows NT: the access
control lists cannot distinguish between large numbers of operations on a single
object or large numbers of types of objects, and cannot propagate access control
changes through a tree of objects.

The solution in Windows 2000 to both limitations is to annotate ACLs with
additional information, such as whether entries apply to all objects or just a
particular type of object. For example, access control lists in Windows 2000
specify which types of objects may be created and deleted, rather than granting
the right to create all types of objects. Access control lists also specify which
types of objects inherit access control from a container, instead of inheriting the
same access control onto all objects. As a result, access control lists can precisely
specify users’ access to a specific object as well as propagate that access to all
objects of the same type.

Another limitation of the access control mechanisms in Windows NT is that
they were not designed to protect the users from their programs. The mech-
anisms assume that users are in control of the code they execute, and pro-
vide no features to ensure that programs don’t accidentally corrupt or misuse
users’ data. Unfortunately, it has become increasingly common for users’ ap-
plications to turn malicious. For example, bugs in trusted applications, such
as web browsers and e-mail clients, cause damage by inadvertently exposing
all the files on a computer to an attacker [CERT Coordination Center 1995].
Downloaded ActiveX controls [Denning 1997], while not as trustworthy as other
applications, are only authenticated with digital signatures and currently must
be trusted with the full rights of the user.

Using restricted contexts, Windows 2000 enables programs to run with lim-
ited authority and access only a subset of the resources available to a user. For
example, downloaded code can be limited to accessing the user interface but not
the file system or network. With proper configuration, a user can implement
the policy of least privilege [Saltzer and Schroeder 1975], in which programs
are only granted access to the resources necessary for their execution.

This article presents the access control mechanisms in Windows 2000, with
an explanation of the trade-offs that were made in their design. As background,
in Section 2, we describe the access control mechanisms in Windows NT, and
the design of the Active Directory in Windows 2000. We then explain why new
access control mechanisms are needed. This is followed by a description of the
extensions to support large numbers of rights for an object in Section 3 and
improvements for centralizing management of access control in Section 4. In
Section 5, we describe changes to limit the rights of untrusted code. In Section 6,
we discuss previous work on these problems and then conclude in Section 7.

2. BACKGROUND

To explain the access control extensions in Windows 2000, we first describe
access control in Windows NT 4.0. The access control mechanisms in Windows
2000 are an evolutionary step from the structures and mechanisms in Windows

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 401

Fig. 1. An example of a simplified access token in Windows NT, containing user and group iden-
tities and privileges.

NT, both to maintain compatibility with existing applications and to minimize
the changes to the operating system code. We then describe the Active Directory
and its security requirements.

2.1 Access Control Mechanisms in Windows NT 4.0

The security mechanisms of both Windows NT and Windows 2000 are built
around discretionary access control, in which the owner of an object may specify
who may access the object. These operating systems do not support mandatory
access control, in which the system imposes a policy on all object accesses. Both
operating systems distinguish objects, entities being accessed, from subjects, the
active entities performing accesses. Access control in both operating systems is
based on access control lists, which, for each object, specify the access granted
to different subjects.

2.1.1 Subjects. A subject in Windows NT is represented by an access token,
which is a kernel data structure storing a user’s identity, group memberships,
and privileges. Users may be organized into groups, such as all users that work
on a project together. Users and groups are both security principals, which are
the entities that may be granted or denied access to an object. Security identi-
fiers (SIDs) are variable-length byte strings that represent security principals.
The operating system also supports a small number of standard privileges,
which are represented as 64-bit numbers and have two purposes. First, privi-
leges grant administrative access to a large set of objects, such as all files for
backup/restore of disks or all drivers for system management. Second, privi-
leges secure operations that have no specific object, such as shutting down the
system or changing the system clock. Privileges may be granted to either users
or groups, and the set of privileges granted to a security principal is stored in
a policy database. Access tokens, shown in Figure 1, are constructed during
log-on by a trusted authentication service, which is responsible for authenti-
cating the user and determining which user identifier, group identifiers, and
privileges should be in the access token.

Every process in the operating system has an access token, and threads in
a process may have a separate access token. If a thread has an access token,
then that token is used for access control on operations made by the thread. If
a thread has no access token, then the token from its owning process is used in-
stead. Each process is either explicitly assigned an access token during creation
(which requires the SeAssignPrimaryToken privilege) or copies the token from

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

402 • M. M. Swift et al.

Fig. 2. An example access control list (ACL) on a directory with two entries (ACEs).

its creator. After a process starts, its access token may not be replaced, and the
only change possible to its access token is to enable or disable privileges. For
example, it is impossible to add or remove groups or change the user identity
in an access token. Programs may replace the access token of a thread, though,
which allows programs to impersonate users and perform specific actions with
their identity. For example, a file server may assign the access token of its client
to the thread processing the client’s requests, so that calls to the file system to
access the user’s files will receive proper access control. For interprocess com-
munication, the operating system kernel copies the access token between the
client and server. For network communication, the authentication protocol is
responsible for carrying client identities to the server, where a new access to-
ken is constructed. The token of a process that is impersonating is not used
for access control, so a program run by a nonprivileged user may enhance its
access to a resource by impersonating the access token of a user who is granted
more rights to the resource. As a result, administrators must take care not
authenticate to programs run by nonprivileged users.

2.1.2 Access Control. Windows NT provides a single major access control
mechanism for all system resources that need access control, such as files, user
interface objects, and kernel objects. Each object requiring protection is as-
signed a security descriptor, which stores all of its security state: the owner,
group (used for emulating the Unix owning group field), access control list
(ACL), and auditing information. The operating system provides a standard
representation of access control lists for use by both system services and ap-
plications, removing the need for each application to implement its own access
control algorithms and structures.

An access control list is a container for access control entries (ACEs), which
determine which access rights should be granted or denied to specific se-
curity principals. An ACL may contain an arbitrary number of ACEs for
different users or groups of users. The two types of ACEs in Windows NT
are ACCESS ALLOWED ACEs, which grant a principal access, and
ACCESS DENIED ACEs, which deny access. A sample ACL with two access
control entries is shown in Figure 2. The ACE type field controls whether the

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 403

Fig. 3. The algorithm for determining access control in Windows NT 4.0. The routine is simplified
for clarification.

ACE grants or denies access and the flags control whether it is copied onto the
ACL of new objects. The remainder of the ACE contains the security identi-
fier of the principal it grants or denies access and an access mask, which is a
bit-field specifying the access rights. Windows NT allows just sixteen bits to be
defined by the implementor of an object for specific access rights. In addition
to controlling access to objects, rights in access control entries on containers
may apply to the objects within the container. For example, the access rights on
directories in a file system are: list directory, add file, add subdirectory, delete
child, traverse, read attributes, and write attributes.

Windows NT places the responsibility for performing access control for both
system components and applications on the security reference monitor in the
operating system’s kernel. The reference monitor concept, first described in
Anderson [1972], ensures that the access control algorithms are applied uni-
formly for all applications and system services. Applications protecting their
own objects typically call the AccessCheck routine when an object is first ac-
cessed or opened. Subsequent accesses to the object that require only rights
granted by a previous call to AccessCheck need not be checked (which may
cause time-of-check to time-of-use errors). The AccessCheck routine passes the
ACL, requested access rights, and the subject’s access token into the security
reference monitor. The entries from the ACL are evaluated in order, and each
entry’s SID is compared against the user and group SIDs in the subject’s access
token. If the SID is found, then the access rights in the ACE are either granted
or denied, according to the type of ACE. Once a right has been denied, it may
not be granted later by another ACE. Similarly, once a right has been granted,
it may not be denied later. This algorithm is shown in Figure 3.

Interleaving allow and deny ACEs enables Windows NT to emulate Unix file
system ACLs [Ritchie and Thompson 1974], in which only one entry in the list
is ever used to grant a user access. For example, an ACL containing an entry
granting a group access to a file followed by an entry denying the group all other

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

404 • M. M. Swift et al.

Table I. Flags in the Access Control Entry That Control Inheritance.

INHERIT ONLY ACE ACE is only used for inheritance; it is not applied to this
object

NO PROPAGATE INHERIT ACE is inherited onto sub-objects, but no further
OBJECT INHERIT ACE ACE is inherited onto sub-objects
CONTAINER INHERIT ACE ACE is inherited onto sub-containers

accesses ensures that a member of that group receives the granted accesses and
no more. The second ACE denies all other accesses and halts further evaluation
of the ACL. While the security reference monitor supports any ordering of ACEs,
the convention in Windows NT 4.0 is to place ACEs denying access before ACEs
granting access, so that deny entries take precedence.1

2.1.3 Assigning Access Control. Access control lists in Windows NT are
commonly assigned by copying entries from the ACL on the container of
an object. For example, when a file is created in a directory, access con-
trol entries from the directory’s ACL are inherited and copied onto the
ACL of the new file. Inheritance flags in each ACE, shown in Table I,
select which entries are copied onto the ACL, and these flags distin-
guish between entries that are copied onto files and onto directories, be-
cause they support different operations, such as reading data versus listing
files. The OBJECT INHERIT ACE flag causes an entry to be copied
from directories onto entities that are not containers (e.g., files) and the
CONTAINER INHERIT ACE causes an entry to be copied onto entities that
may contain other objects (e.g., directories). The INHERIT ONLY ACE marks
entries on a directory that are not used for granting access to the directory but
are instead intended only for inheritance. This flag is removed when the ACE is
inherited. Finally, the NO PROPAGATE INHERIT flag limits the inheritance
by removing all inheritance flags after the ACE has been copied. As a result, an
entry marked NO PROPAGATE INHERIT and CONTAINER INHERIT ACE
will be copied into the ACL of a new directory but not to any directories below
it. This inheritance algorithm is shown in Figure 4.

Windows NT 4.0 includes two special mechanisms to allow slight variation in
ACLs between different objects within the container. First, an inheritable ACE
may contain the special identity CREATOR OWNER. When an entry with this
SID is inherited, the principal in the resulting ACE is replaced with the creator
of the object. As a result, an ACE on a container can specify that the creators
of objects within the container be granted specific rights. Second, inheritable
ACEs may contain generic rights which are replaced during inheritance with
rights specific to the object being created. For example, the ACL on a directory
could contain an ACE granting generic read access. When this entry is inher-
ited, the generic read access right is replaced with a set of rights, specific to the
type of object created (either a file or a directory in this case), corresponding
to read access. This mechanism allows read access to be interpreted as a set

1The Windows NT 4.0 ACL editor does not support deny entries at all (the tool does not correctly
display ACLs with deny entries), which simplifies the user interface.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 405

Fig. 4. Algorithm for inheriting ACEs from a parent container onto a child object or container.
The algorithm is simplified and does not include processing the NO PROPAGATE INHERIT flag,
the CREATOR OWNER identity, or generic rights.

of finer-grained access rights, such as “read data” and “read attributes” for a
file.

ACLs are inherited only when objects are created, so changes to an ACL
apply only to new objects in a container but not to existing objects. System
management tools simulate ACL inheritance onto existing files by reapplying
inheritance on all the objects under a directory. However, if the user chang-
ing access control on a directory does not have permission to modify the ACL
on an object lower in the tree, then inheritance is not applied to that ob-
ject. Furthermore, there are no rules specifying how to merge existing ACLs
with changes inherited from a parent, so the Windows NT ACL editor dis-
cards the ACL on an object and create a new ACL consisting only of inherited
entries.

Two separate mechanisms in Windows NT grant users permission to modify
ACLs. First, access may be explicitly granted with the WRITE DAC (write
discretionary access control) access right. This right grants the permission
to add or remove ACEs from the ACL. Second, the owner of an object is au-
tomatically granted the right to read and modify the access control list of
the object, and can therefore always manage the object’s ACL. The owner
is initially set to the creator of an object, but it may be reset by use of the
SeTakeOwnershipPrivilege privilege. This privilege allows a user to change
the owner field of a security descriptor to their own identity, after which
she may change the ACL. Because this privilege is normally granted to ad-
ministrators, it is impossible to prevent administrators from accessing an
object.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

406 • M. M. Swift et al.

Fig. 5. An example hierarchy in the Active Directory, showing multiple levels of containers with
objects. Each object has a set of properties, as demonstrated by the properties on the object under
the Marketing container.

2.2 Active Directory

Despite the rich support for access control in Windows NT, the Active Directory
requires additional capabilities. The Active Directory is the central point for sys-
tem and application management in Windows 2000 and stores many types of in-
formation [Iseminger 2000]. The data in the Active Directory are arranged as a
hierarchy (single rooted tree) of typed objects, and each type has a common set of
data properties and behaviors. Many objects are used for multiple applications.
For example, user account objects are used for authentication by the Kerberos
protocol as well as by the Exchange mail server for e-mail delivery. As a result,
a single object must be manageable by multiple sets of administrators. There
are properties that are common to many types of objects, in particular meta-
data about the object, such as its type and its name, as well as properties that
are unique to a single type. Finally, the Active Directory may be dynamically
extended both by adding new object types and by adding new data properties
to existing object types. For example, a web publishing application could store
the default web page for each user as a new property on user account objects.

The hierarchical structure of the Active Directory serves several purposes.
First, it groups objects with similar management properties, such user account
objects of people in one department of a company. Containers also group objects
with similar types, such as applications’ configuration data. Despite presenting
data as a hierarchy, the Active Directory internally stores data in a flat database
and maintains indexes over the full name of each object as well as other impor-
tant properties. Figure 5 shows a sample directory layout with many contain-
ers, each with many objects. Each object has a collection of properties, such as
a name and password for a user.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 407

Table II. Definition of Terms Concerning Access Control and the Active Directory

Term Definition
ACE (access control entry) Entry in an ACL that specifies, for a security principal, the access

granted or denied to an object.
ACL (access control list) List specifying, for an object, access granted or denied to a subject,

containing access control entries (ACEs).
Access Token Kernel data structure containing identity and privilege information

about a user active on a system.
Container An application or system element that may have other elements

with ACLs below it or contained within it, such as a directory in the
file system.

Delegation Granting another subject the permission to perform acts on one’s
behalf, either by modifying access control lists or modifying the
subject of access control.

GUID (globally unique
identifier)

A 128-bit number used for identifying object types in the Active
Directory.

Impersonation Performing an action with the identity of another subject.
Inheritance The process of selecting access control entries on the ACL of a con-

tainer to copy onto the ACLs of objects within the container.
Object An application or system element that may be secured with an ACL

and that does not have any elements with ACLs below it or con-
tained within it, such as a file in the file system. Also a generic term
describing any resource protected by an ACL, including containers.

Object Type The description of the properties and behavior of a group of objects
in the Active Directory, such as all objects representing users.

Privilege System-wide right for a user to perform an operation, such as load
a driver or backup a file.

Property A name and value pair on an object in the Active Directory.
Property set A group of name and value pairs with common access control policy

in the Active Directory.
Security Descriptor Container for security information about an object, including ACL,

auditing information, and object’s owner.
Security Principal A user or group, identified by a security identifier (SID).
SID (security identifier) Variable length byte string identifying users and groups.
Subject An entity that performs operations, such as a program running on

behalf of a user.

Table II presents definitions of terms relating to the Active Directory and
access control in Windows NT and 2000.

2.3 Limitations of Windows NT Access Control

The Windows NT access control structures and mechanisms are powerful and
flexible, and can emulate other forms of access control lists, such as Unix file
system ACLs [Ritchie and Thompson 1974] and DCE ACLs [Mackey and Salz
1993]. They may also be used to secure applications, such as databases or web
servers. However, access control lists in Windows NT are optimized for appli-
cations with only a small number of types that are not extensible, such as files
and directories in a file system. The mechanisms have several limitations with
respect to Windows 2000 and the Active Directory:

(1) Access masks are only sixteen bits, so a single ACL can only control sixteen
different access rights.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

408 • M. M. Swift et al.

(2) Inheritance does not distinguish between objects with different access
rights, and ACLs cannot be propagated to a tree of objects if some of the
objects have ACLs that are not inherited.

(3) There is no mechanism for restricting the rights of a program other than
disabling privileges.

The first two flaws arise in the context of the Active Directory because of
its many object types and many properties on each object type. Managing the
Active Directory requires that access control must be administrable from the
top of the directory hierarchy, so that an administrator may delegate control by
granting other administrators access to all instances of a type of object.

The third flaw was exposed by the growing number of Windows NT systems
connected to the Internet, which resulted in security exploits of network appli-
cations such as web browsers and e-mail clients. As a partial solution, programs
must be prevented from unnecessary access to user and system resources. This
flaw, as well as the difficulty of supporting the Active Directory, forced us to
update the access control mechanisms for Windows 2000.

2.4 Goals for Windows 2000 Access Control

Our goal as designers of access control in Windows 2000 was primarily to rectify
the limitations of Windows NT 4.0. We wanted to allow ACLs to control access
over an arbitrary, extendable, number of rights, so that a single ACL could
protect an entry in the Active Directory that has many properties. We also
wanted to allow administrators to set access control at a single point in the
Active Directory, and let that policy flow to all appropriate objects below that
point. Finally, we wanted to allow users to be able to safely download programs
from the Internet and execute them, knowing that the programs could not
damage their system or misuse their data. In the following sections, we first
present our solution for extending the number of rights in an access control
entry, followed by improvements to the access control inheritance mechanisms,
and finally our mechanism for restricting the rights of a program.

3. TYPE-SPECIFIC ACCESS CONTROL

The access control entries in Windows NT 4.0 are unable to protect objects in
the Active Directory because access masks are limited to only sixteen sepa-
rate access rights. The directory service requires an access right to create each
type of object and to access each property on an object, so the set of sixteen
rights limits both the number of object types and the number of properties with
different access control on an object. In addition, the Active Directory supports
adding both new object types and new properties to existing objects, so the set of
access rights for an object may be dynamically extended. For example, it would
be impossible to add a new property to a user object with unique access control
needs once the sixteen available rights have been used for other properties.

We considered storing a separate ACL for each property on an object. How-
ever, the existing ACL data structure is a simple container, so there is no need
to duplicate the ACL itself. In addition, existing routines for managing ACLs in

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 409

Fig. 6. Example object-type-specific ACE granting administrators access to the log-on script path.
This ACE is inherited onto user account objects. The new fields are shown in boldface.

Windows NT are not equipped to manage multiple ACLs on a single object. It is
also difficult to share access control entries between different properties when
each property has a separate ACL. Another possibility we considered was to ex-
tend the access mask format so that more than sixteen bits are used to represent
rights. However, we believe it is difficult to manage a bit field when properties
are added or removed from an object. The solution we chose for Windows 2000
was to create a new access control entry format with a field that specifies the
property on the object, or, in the case of creating and deleting child objects in
a container, the type of object to which the ACE applies. To reduce the cost of
protecting objects with many properties, we allow groups of properties to be
protected with a single entry. This combination allows a small access control
list to protect objects with simple needs while still allowing the full flexibility
of protecting every property separately.

3.1 Object Types in ACEs

The new ACE format introduced in Windows 2000 adds two fields to each entry.
The first new field, named ObjectType, identifies the scope of the access control
entry. For directory service entries, the field identifies either the property or,
for access rights on containers, the type of child object to which the entry ap-
plies. Other applications may use the fields for other purposes. The second new
field, InheritedObjectType, controls which types of objects inherit the ACE and
will be discussed in Section 4. Both fields are represented as GUIDs [Leach
and Salz 1998], which are 16-byte values used by DCOM [Eddon and Eddon
1998] and the Active Directory to identify object types. An example of the new
ACCESS ALLOWED OBJECT ACE structure is shown in Figure 6.

The ObjectType field extends the set of rights available for an object by creat-
ing many sets of rights, each with a different GUID. Applications must supply
an object-type GUID to the new AccessCheckByType routine to select the ACEs
to evaluate. Only ACEs with a matching object type and those with no object
type are evaluated. In addition, applications may extend the set of rights avail-
able at any time by creating new object-type GUIDs for use in access control
entries. Object-type GUIDs have two uses within the Active Directory. First,
every property on every type of object is assigned a GUID. The Active Direc-
tory protects properties with ACEs specifying the GUID of the property and
the granted access, read or write. Second, every type of object is assigned a
GUID, which is used for the right to create and delete objects in a container.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

410 • M. M. Swift et al.

The Active Directory grants the right to create a specific type of object within a
container with an ACE specifying the desired object type and the create child
access right. Because the same rights apply to all properties and all object
types, ACEs with no object-type GUID are interpreted as applying to either all
properties, in the case of read and write, or all object types, in the case of create
and delete child. These semantics are particular to the Active Directory, which
has very regular objects, and other applications may choose to not use ACEs
without object types, but for the Active Directory, it is very concise to grant
an administrator access to every property on an object or to create any type of
object.

3.2 Property Sets

Specifying individual properties in ACEs provides fine-grained access control at
the cost of greatly increasing the number of entries in an ACL. In Windows NT, a
single access right often grants access to multiple operations or data properties,
such as all the attributes on a file. In addition, a single ACE could grant access
to any subset of the available access rights. With object-type specific ACEs,
though, a separate entry is needed for each distinct property, which greatly
increases the number of ACEs required. The number of calls to check access also
increases when multiple properties are accessed, because each property must be
checked separately. To counter both of these potential costs, we introduced a new
access check routine, AccessCheckByTypeResultList, which checks for access to
multiple properties in a single operation and returns a separate result for each
property. In addition, this routine allows properties to be grouped into property
sets, so that ACLs only need a single ACE to grant access to all properties in the
set. Property sets are identified by a GUID, and access to a property is granted
if the access is granted to its property set.

Property sets are not visible within the structure of an access control entry;
ACEs do not specify whether the object-type GUID refers to an object type (in
the case of object creation), a property set or a property. Instead, the hierar-
chy is passed into AccessCheckByTypeResultList. This routine takes a list of
property GUIDs and their containing property set GUIDs. The list must be
in depth-first order, with each property set followed by the desired properties
within it. The hierarchy allows ACEs granting and denying access to be cor-
rectly interpreted, so that a separate access check result can be returned for
each property requested. The code for checking access with a single property
is shown in Figure 7. The data structure supplying the list of properties and
property sets forces properties to only belong to a single property set, because
properties must follow their owning property set in the list of GUIDs.

An example of such a list is shown in Figure 8. The list specifies which ACEs
should be evaluated, and each level specifies that an ACE granting access at
that level also grants access to GUIDs following it at a higher level. Level 0
has no GUID, meaning that ACEs without GUIDs should be interpreted as
applying to all properties and property sets. Similarly, ACEs granting access to
property set GUIDs at Level 1 also grant access to all the properties at Level 2
in that property set. While the Active Directory only uses two levels, properties

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 411

Fig. 7. The algorithm for checking access to a single property with object-type GUIDs. The changes
from Windows NT 4.0 are shown in italics. The GUIDs for the property and property set are
represented as a set for simplicity.

Fig. 8. A multi-level list of object-type GUIDs used for an access check. The level indicates the
scope of the GUID, either the whole object, a property set, or a property. Access to a property is
controlled by ACEs with the GUIDs for its property set or with no GUID.

and property sets, the AccessCheckByTypeResultList routine supports up to
five levels of nesting. Property sets enable compact ACLs for the common case
when only a few different types of access are needed while allowing the complete
flexibility of specifying access control separately on each property.

3.3 Example

Figure 9 demonstrates how object types and ACEs are used and shows an ACL
on a user object in the Active Directory. The first ACE grants administrators
full control over all the properties of the user. The second ACE grants group
administrators read and write access to the user’s public information, such as
her phone number. The third ACE grants the user herself access to change

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

412 • M. M. Swift et al.

Fig. 9. A sample ACL for a user object using object-type specific access control entries.

the password on the account. For access rights that correspond to executing a
procedure and not accessing data, the Active Directory defines the right control.
In this case, the Active Directory understands that a password change protocol
is allowed to change a user’s password if it can prove knowledge of the user’s
previous password. This ACL demonstrates the space saving of property sets,
because many additional entries would be required to specify access separately
for each property in the “public” property set.

3.4 Discussion

The primary purpose of type-specific ACEs is to allow applications to both have
a large set of access rights as well as to dynamically extend their set of rights.
Hierarchically grouping access rights into property sets simplifies management
by allowing administrators to grant access to a single property set instead of
separately granting access to all the properties within it. In addition, property
sets simplify extending types, because no changes to access control lists are
needed when a property is added to or removed from an existing property set.
Property sets also lessen the memory and performance impact of a large set
of similar rights by allowing many rights to be coalesced into a single access
control entry. Finally, property sets simplify the user interface by allowing the
display of a smaller number of property sets rather than (potentially) hundreds
of individual properties.

We found that properties and property sets simplify debugging of access con-
trol problems, because there is a clear mapping between access control entries
and rights to an object. Previously, in Windows NT, a single access right fre-
quently controlled access to many properties, and there was no mechanism to
determine which right controlled which properties. As a result, the user in-
terface tools were hard-coded with names for access rights instead of the list
of properties actually protected. By formalizing the mapping, object-type spe-
cific access control entries specify exactly which properties may be accessed.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 413

The tools also no longer rely on a fixed mapping between rights and properties,
because they may query the directory service for the names of properties and
the members of property sets listed in an ACL.

Despite the fine-grained control offered by per-property access control, there
has been some customer resistance to specifying access rights on individual
properties. In particular, administrators find it difficult to manage a large num-
ber of properties individually, so access control changes are usually applied at
the property set level. It is not yet clear whether the fine granularity of protect-
ing individual properties is necessary if property sets are well chosen.

If there is an inexact match between property sets and administrative needs,
then the property set mechanism breaks down and ACLs can become bloated
with entries for individual properties. For example, this can occur when up-
grading Windows NT 4.0 servers to Windows 2000. The access control lists
protecting user account objects in the Windows NT 4.0 directory service are
converted into ACLs with type-specific ACEs. Each access right for a user ob-
ject in Windows NT 4.0 grants access to many properties, and these groups of
properties do not map perfectly onto property sets in Windows 2000. Rather
than converting an access right in Windows NT 4.0 into an access right to a
Windows 2000 property set, the upgrade process converts it instead into a se-
quence of ACEs granting access to each property. The resulting access control
lists can be many times longer than those on user account objects created na-
tively in Windows 2000. For example, the ACL on a user account upgraded from
Windows NT 4.0 may contain more than 30 ACEs granting access to specific
properties.

There has been some feedback from developers indicating that allowing a
property to be a member of multiple property sets would simplify administra-
tion and shrink the size of access control lists. For example, some properties
may logically belong to multiple property sets, such as an e-mail address field
on a user that may be part of both a contact information property set and an
e-mail property set. This change, though, would make it difficult to understand
when access is granted, and is probably better solved through property-specific
ACEs.

The primary drawback of storing object-type information in access control
entries is the increased cost of both storing access control lists and performing
access checks when there are many properties on an object and access to many
properties is being requested. For example, it is not uncommon for ACLs in the
Active Directory to be more than 1600 bytes, and for users to request access
to ten or more properties. In Windows 2000, the NTFS file system reduces the
storage cost by only storing one instance of each unique ACL. Objects in the
file system reference the specific ACL rather than storing a separate copy. In
Windows .NET Server 2003, the successor to Windows 2000 Server, we added
these optimizations to the Active Directory. Another potential improvement
for evaluating ACLs is to cluster the ACEs in an ACL that grant access to a
particular property to reduce the number of entries that must be inspected.

Despite these drawbacks, type-specific access control is crucial to the Active
Directory. This extension allows the Active Directory to use common operating
system functionality, so that a single permissions editor may be used for both

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

414 • M. M. Swift et al.

it and the rest of the operating system. In addition, it shares the reference
monitor and security infrastructure, which minimizes the amount of new code
that must be trusted. The additional features allow administrators to grant
access to only the properties needed for a job function or application instead of
all those controlled by a more general access right. At the same time, property
sets preserve fine-grained control while optimizing for the common case where
many properties share the same access control. Finally, identifying properties
by GUIDs simplifies adding and removing properties from an object by leaving
ACEs for other properties unchanged.

4. INHERITANCE CONTROL

Windows NT assigns access control to new objects primarily through inher-
itance of access control entries from the ACLs on containers. There are two
major limitations to the inheritance mechanisms in Windows NT:

(1) It is impossible to specify that different access control lists be inherited onto
different types of objects within a container.

(2) It is difficult to propagate changes to ACLs through a tree of objects, because
inheritance rules cannot be reapplied without erasing any modified ACLs
lower in the tree.

Both problems arise in the Active Directory, because of its many types of
objects and the many different administrators of these objects. One of the goals
for the Active Directory is to allow delegation of administration, so that one
user can grant another user control over a subset of the objects in the directory
service, such as all printers or user accounts for a department. Administrators
must therefore be able to change permissions at one place in the directory and
let the effects propagate down either to all objects or only those of the appropri-
ate type. Using the access control inheritance mechanism from Windows NT,
which was designed with a file system in mind, all objects within a container
inherit the same access control. Furthermore, changes to access control at the
root of a tree overwrite all changes lower in the tree. Consider a directory ser-
vice with user and printer objects and a separate container for each department
in a company. Using inheritance to grant a printer operator access to all the
printers in one department requires that the administrator also grant access
to all the user account objects, which is unnecessary. Thus, changes to the ACL
inheritance mechanism were needed to support the Active Directory. The file
system also benefits from inheritance changes, because changes to ACLs are
common there as well.

We considered several solutions for each problem. One solution for support-
ing multiple object types, similar to the design of ACLs in DCE [Mackey and
Salz 1993], is to store multiple ACLs on a container, one for each object type.
However, as with storing an ACL for each property, that approach may be in-
efficient when many ACEs are common to all child objects because the entries
must be duplicated in each ACL. As discussed in Section 3, the routines for ma-
nipulating access control data in Windows NT do not support multiple ACLs on
a single object, so significant changes would be needed for managing multiple

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 415

ACLs. Storing ACLs for the various types of objects in a separate database is
another option. However, this solution alone does not allow hierarchical propa-
gation of access rights. Instead, we chose to let applications annotate each ACE
with the type of object that should inherit the ACE. When an object is created,
only those ACEs with its type or no type are inherited onto the new object. A
single ACL can then propagate different ACLs onto each type of object created
below it.

To allow the granting of rights to a tree of objects, we considered dynamic
inheritance: if an access right is not granted on an object, then access is checked
on all parent containers until the right is granted or the root is reached. This
approach is taken by the NDS directory service [Cadjan and Harris 1999].
However, we believe that the access control mechanism should not assume that,
because objects are named in a hierarchy, they are also stored and accessed in
a hierarchy. For example, files in NFS are accessed by file identifier, not by
path [Callaghan et al. 1995]. Similarly, the Active Directory stores data in a
flat database with an index over the full name of each object, so there is no
convenient opportunity to access all the ancestors of an object. Furthermore,
reading and writing an object is a common operation, while changes to ACLs
are infrequent, so the performance of propagating ACL changes is not critical
relative to the speed of an access check. Taking these conditions into account,
our implementation uses static inheritance, in which inheritance is reapplied
only when ACLs change and a new ACL is written to each object. Only a single
ACL must be evaluated for most access checks. To propagate changes correctly,
we annotate ACEs with a flag indicating whether they were inherited so that
the locally applied ACEs can be identified and preserved when inheritance is
reapplied. In addition, the inheritance mechanism for ACLs is idempotent, so
that it can be reapplied after a failure.

4.1 TYPE-SPECIFIC INHERITANCE

Similar to type-specific access control, Windows 2000 allows type-specific inher-
itance. Applications with multiple types of objects mark ACEs with a new field,
InheritedObjectType, which specifies the type of object that inherits the ACE.
When an object is created, those ACEs without an inherited object type or with
a matching inherited object type are copied into its ACL. Similarly, when an
access control change is propagated, just the matching entries for each type of
object are copied onto the objects in a container. Inheritance still distinguishes
between containers and objects, because containers must be able to propagate
access control to their children and therefore copy all inheritable ACEs. Objects,
in contrast, only require ACEs that apply to the object itself. In Windows XP,
the successor to Windows 2000, type-specific inheritance is extended to support
multiple inheritance, so that an object may inherit the access control entries
for multiple object types. Multiple inheritance allows new specialized types,
such as “web-users,” which share the properties and inherit the access control
of normal users in addition to ACEs only needed for web-users. Figure 10 shows
pseudo-code for the inheritance algorithm.

In order to scale to a large number of objects, we take advantage of the fact
that not all object types require a variety of different ACLs. The Active Directory

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

416 • M. M. Swift et al.

Fig. 10. Algorithm for type-specific inheritance. The changes from Windows NT 4.0 are shown
in italics. The first change removes inherited ACEs, to ensure that inheritance is idempotent.
The second change marks all inherited ACEs, so they can be removed in the future. The remain-
ing changes verify that the InheritedObjectGuid matches either the type of the object receiving
access control, or is empty. The algorithm is simplified and does not include processing of the
NO PROPAGATE INHERIT flag.

implements a database of default ACLs that are placed on all objects when
they are created. Only objects with ACLs that vary in different portions of the
directory hierarchy require type-specific inheritance, which modifies the default
ACL. Thus, for object types that only need a single ACL for each instance of
the object, the default database supplies the ACL. For object types that have
more varied access control, inheritance allows variation in ACLs. Thus, the
combination of default ACLs and type-specific inheritance allows scalability to
a large number of object types.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 417

Fig. 11. ACLs on a container and two objects within the container. The ACEs on the ‘\Research’
container are inheritable onto different object types, so the two child objects receive a different set
of ACEs.

Figure 11 shows an example of type-specific inheritance. In this example,
the Research container has ACEs that are to be inherited onto all objects, User
objects, and Printer objects. The user Jane inherits the ACEs with no inherited
object type and with a User object type. Similarly, the HPLaser printer inherits
the first ACE and the Printer ACE. This example demonstrates how a single
ACL can inherit different ACEs onto different types of objects.

4.2 Static Inheritance

Dynamic inheritance, in which permissions for an object may be set on any
container above the object, presents a simple and intuitive model of access
control at the cost of checking access on many containers whenever an object is
accessed. The Active Directory emulates dynamic inheritance by precomputing
the access control for an object when ACLs are changed rather than when access
is requested. The difference is in implementation; the resulting permissions
are the same. The primary difficulty in this illusion is merging ACEs applied
locally to an ACL with the entries inherited from its parent. In addition, it must
be possible to limit inheritance so that portions of a hierarchy, such as those
containing private information, can override inheritance.

Windows 2000 enables modifications to access control lists to propagate down
a tree by annotating ACEs with inheritance information. The algorithm for in-
heriting access control in Windows 2000 is idempotent, so that if the propaga-
tion of inheritance aborts due to a system failure, inheritance can be applied
again with identical results. The inheritance mechanism is static, because in-
heritance is only evaluated when an ACL changes rather than during every
access request. The resulting access for a principal is the same as if inheritance
were dynamic and an object’s ancestors were checked for access.

The ACL data structures in Windows 2000 annotate each access control en-
try with a flag indicating whether or not it was inherited. Each ACE that was
inherited has the INHERITED ACE flag set in its header. These ACEs are re-
moved before reapplying inheritance, leaving only the entries added directly to
the ACL. As a result, reapplying inheritance does not overwrite locally specified
access control entries.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

418 • M. M. Swift et al.

Inheritance onto an object or container may be disabled, to provide both local
control and more restrictive access control for portions of the tree. For exam-
ple, normal users are generally able to browse all the objects in the directory.
However, an organization may want to exempt the acquisition department’s ob-
jects, because the names of the objects may reveal privileged information. The
SE DACL PROTECTED flag, which is stored on security descriptors, prevents
any ACE from being inherited onto an ACL. The ability to set this flag, although
not stored in an ACL, is granted by the same access right, WRITE DAC, that
controls the right to modify the ACL itself. An administrator may therefore cre-
ate a more secure portion of the hierarchy by preventing inheritance of access
rights.

In addition to adding these flags, the ordering rules for ACEs changed for
Windows 2000. In Windows NT 4.0, it is recommended that ACEs denying
access be placed first in an ACL, so that deny ACEs have precedence over allow
ACEs. However, to follow the discretionary access control model, which allows
the owner of an object control over who may access the object, we chose to grant
administrators of a subtree the ability to override all inherited permissions,
which results in interleaving grant and deny ACEs from each container on
a single ACE. In addition, this rule provides a closer simulation of dynamic
access control, in which access is checked by walking up the hierarchy of parent
containers. The alternative of placing all ACEs denying access first prevents
the administrator of an object from overriding an inherited ACE that denies
access. Similarly, placing inherited ACEs first prevents the owner of an object
from controlling the resulting access. Therefore, in Windows 2000, all locally
added ACEs are placed first, followed by inherited entries. If the entries are
inherited from containers at several levels in the tree, then the ACEs from
closer containers will be ordered before ACEs from more distant containers.
The administrator of an object retains full control over the ACL on the object,
because she can either protect the object from inherited access control, or add
explicit ACEs to the beginning of the ACL that are evaluated before (and hence
override) inherited entries.

The implementation of inheritance in the Active Directory is significantly
different than in the file system. In the file system, the management tools, such
as the Windows Explorer, implement inheritance. When an ACL is changed,
these tools walk the file system and write new ACLs on to every effected file or
directory. If the user running the management tool does not have permission
to modify the ACL on an object, then inheritance stops, even if the object does
not explicitly block inheritance. Whether an ACL may be changed depends
on the user running the management tool, which is confusing because it does
not simulate the effect of dynamic inheritance. The Active Directory, however,
propagates ACL changes itself rather than relying on a management tool. A
user with permission to modify the ACL on a container implicitly has permission
to modify the inheritable ACEs on all objects underneath that container, unless
inheritance is explicitly blocked. As a result, changes to the ACLs at the root
of a tree propagate completely, independent of the rights of the user who made
the changes. It was our goal that the file system in Windows 2000 would also
implement inheritance itself, but schedule pressures prevented that change.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 419

Fig. 12. Dynamic inheritance. The entries on the Departments container are automatically inher-
ited to the Research container during access. Adding a new entry requires updating a single ACL,
as shown by the addition of a single ACE to grant Backup access. The ACLs referenced during an
access check on the Research container are dashed.

Fig. 13. An example of reapplying inheritance. On the left are shown containers in a directory
service, and on the right are the result ACLs after the bold-faced entry was added to the ACL on the
“Departments” container. The ACLs referenced during an access check on the Research container
are dashed.

4.3 Example

To demonstrate the desired effect of inheritance, Figure 12 shows an exam-
ple of how dynamic inheritance can be applied to the directory service. In this
example, the “Acquisitions” container overrides the inherited permissions by re-
moving the access of administrators and instead grants access to the user “Jane
User.” The other container, “Research,” augments the inherited permissions by
additionally granting the “Developers” group read access. When a new ACE is
added to the “Departments” container, the change is effective for the “Research”
container, while the “Acquisitions” container is protected from inheritance.

Compared to dynamic inheritance, static inheritance results in changing
more ACLs when access control changes, and also results in larger ACLs.
Figure 13 shows the same example from above with static inheritance. The
resulting access is the same, but the access control lists in this case are longer
because information is duplicated on both the container and the child ACL.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

420 • M. M. Swift et al.

However, there benefit comes during an access check: with static inheritance,
only the ACL on the object itself must be inspected. With dynamic inheritance,
as shown in Figure 12, multiple ACLs must be inspected.

4.4 Semantics of Inheritance

Static inheritance allows complex access control policies to be expressed,
such as specifying where certain types of objects may be created. To bet-
ter specify exactly what policies may be expressed, we present a formal de-
scription of inheritance. Rules (1) and (2) below give the semantics of the
OBJECT INHERIT FLAG in conjunction with object types. The first rule en-
sures that all objects with a matching type inherit the ACE, and that the ACE
is used for access control (INHERIT ONLY is turned off). The second rule en-
sures that all containers inherit all OBJECT INHERIT ACEs as well, but do
not use it for access control (INHERIT ONLY is turned on).

∀containers C, ∀objects O, ∀ACEs A in ACL on C |
A.OBJECT INHERIT = TRUE ∧ C ∈ ancestors(O)
∧ (O.type = A.inheritedObjectType ∨ A.inheritedObjectType = NULL)

⇒ O inherits A, A.INHERIT ONLY← FALSE

(1)

∀containers C, C′, ∀ACEs A in ACL on C |
A.OBJECT INHERIT = TRUE ∧ C ∈ ancestors(C′)

⇒ C′ inherits A, A.INHERIT ONLY← TRUE
(2)

Similarly, the rules for the CONTAINER INHERIT flag are given below. ACEs
with CONTAINER INHERIT are inherited to all containers and only those
with a matching type use it for access control (Rule (3)). On other containers,
the ACE is marked as INHERIT ONLY (Rule (4)).

∀containers C, ∀containers C′, ∀ACEs A in ACL on C |
A.CONTAINER INHERIT = TRUE ∧ C ∈ ancestors(C′)
∧ (C′.type = A.inheritedObjectType ∨ A.inheritedObjectType = NULL)

⇒ C′ inherits A, A.INHERIT ONLY← FALSE

(3)

∀containers C, ∀containers C′, ∀ACEs A in ACL on C |
A.CONTAINER INHERIT = TRUE ∧ C ∈ ancestors(C′)
∧ (C′.type 6= A.inheritedObjectType ∧ A.inheritedObjectType 6= NULL)

⇒ C′ inherits A, A.INHERIT ONLY← TRUE

(4)

The fifth and sixth rules order the ACEs in an ACL. By Rule (5), if two ACEs
are ordered on a container and the ACEs are inherited to a child object or
container, then the ACEs must be in the same order in both ACLs. By Rule (6),
if one container is an ancestor of another, then the ancestor’s ACEs will appear
later in any ACL that inherits from both containers. This rule requires that
containers be organized as a hierarchy, so that no container has more than one
parent.

∀A, A′ ACEs in ACL on container C, ∀objects, containers X |
C ∈ ancestors(X) ∧ A precedes A′ in ACL on C ∧ X has A, A′ in ACL

⇒ A precedes A′ in ACL on X
(5)

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 421

Fig. 14. Complex policies expressed with static and type-specific inheritance. The combination
of the two mechanisms allows administrators to direct where certain objects can and cannot be
created.

∀A, A′ noninherited ACEs, ∀objects, containers X , ∃ containers C, C′ |
A in ACL on container C ∧ A′ in ACL on C′

∧C ∈ ancestors(C′) ∧ C′ ∈ ancestors(X) ∧ X has A, A′ in ACL
⇒ A′ precedes A in ACL on X

(6)

The rules above ignore the possibility of a protected ACL. The seventh rule,
shown below, limits the scope of the previous rules for objects and containers
flagged with SE DACL PROTECTED. This rule ensures that none of the ACEs
in a protected ACL are inherited.

∀object,container X , ∀ACEs A in ACL on X , ∀containers C |
X.SE DACL PROTECTED = TRUE

⇒ ¬(C ∈ ancestors(X) ∧ A in ACL on C)
(7)

These rules ensure that access control decisions can be propagate fully through
a tree of objects, stopped only by a protected ACL.

Figure 14 shows an ACL that takes advantage of both type-specific inheri-
tance and static inheritance to express a complex policy. The first ACE depends
on the first rule for inheriting onto objects and grants users the permission to
set their own homepage for the World Wide Web. The PRINCIPAL SELF SID in
this ACE represents the user whose object is being protected, and is similar to
the CREATOR OWNER SID used for inheritance (Section 2.1.3). The service

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

422 • M. M. Swift et al.

calling AccessCheckByTypeResultList can supply an arbitrary SID to replace
the PRINCIPAL SELF SID, unlike the CREATOR OWNER SID, which is re-
placed during inheritance with an object’s creator (because the creator’s identity
is stored with the object, in the security descriptor). The Active Directory passes
in the SID of the object being protected, such as the SID of the user for user
account objects and the SID of the group for group account objects. This mech-
anism allows an administrator to grant a user permission to modify portions
of her own account object but not other users’ account objects, and for group
members to remove themselves from the group.

The second ACE depends on Rule (4) for container inheritance, and allows
server applications, such as a database or a web server, to create RPC endpoints
in any container of type “RPC Services.” The key technique here is to create a
container type for a specific type of object, and then use a type-specific ACE
to grant access to create the object within the container. Finally, the third and
fourth ACEs in Figure 14 restrict the type of container in which a user account
object may be created. These ACEs depend on the fifth rule, which ensures that
the order of the two ACEs is maintained whenever both ACEs are inherited. The
third entry grants administrators the right to create users in Organizational
Units and the final entry denies everyone the right to create a user in every type
of container, due to the NULL inherited object type. Because these two ACEs
are evaluated in order and inherited in order, a member of the administrators
group will always be granted access to create a user in an organizational unit,
but all other types of containers only the ACE denying permission to create
users will be inherited, preventing everyone from creating users.

4.5 Discussion

Type-specific inheritance and static inheritance allow centralized management
by propagating changes through a hierarchy of objects, so that access control
changes are only made in one place. These features support delegation by al-
lowing an administrator to grant access to a single type of object, or even a
single property on a single type of object. In addition, that access is propagated
both to existing objects and to new objects when they are created. Portions of
the tree may also be more protected and block inheritance of rights from above.
This approach provides the major benefit of dynamic inheritance, which is cen-
tralized administration but lowers the cost at access time because ACLs along
the whole path do not need to be evaluated.

In our experience, the new inheritance mechanisms are typically used for
making global changes to the Active Directory, as they would to a file system,
rather than to delegate access to particular object types. For example, admin-
istrators are currently wary of granting access to create printers and manage
all printer objects by placing an access control entry at the root of the directory
tree. Instead, they prefer to change the ACLs at each container with a printer.
This again is a form of organizational resistance to distributing responsibil-
ity for objects in the directory and may change as more applications use it to
store data. There has also been resistance by administrators to dividing the ad-
ministration of an object between multiple individuals. For example, security

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 423

administrators have been hesitant to allow e-mail administrators the permis-
sion to modify any portion of a user object, even if the property relates only
to e-mail. However, this resistance may be an artifact from familiarity with
Windows NT 4.0, in which each application stored its information separately.
As more applications use the Active Directory, shared access to objects and split
administration may become more common.

Similar to type-specific access control, static inheritance also simplifies both
debugging and managing access control because the ACL on an object is usu-
ally the sole determinant of access to that object. Only a single ACL must be
inspected to determine the access granted to a user instead of examining the
ACLs from all the containers above an object. The user interface in Windows
XP even displays the name of the object from which an ACE was inherited.
In addition, compared to Windows NT, the explicit marking of inherited ACEs
makes it easier to understand the source of each ACE in an ACL.

The user interaction with ACLs in Windows 2000, while benefiting from ex-
plicit marking of inherited ACEs, is complicated by the use of privileges and
object ownership to grant access. The Novell Corporation, in a critique of the
Active Directory [Novell Inc. 2000], complained of two issues. First, the privilege
to take ownership of an object allows administrators to take complete control
over all objects, because an administrator may change any object’s ACL. The
user interface, though, does not display this ability. Second, protecting ACLs
from inheritance does not completely restrict access to those objects because
the ability to take ownership overrides the protection provided by ACLs. As a
result, it is impossible to prevent any portion of the Active Directory from be-
ing accessed by a user with the SeTakeOwnershipPrivilege privilege. However,
as designers, we agreed that it was important to grant some level of admin-
istrator access to the complete directory, to allow the organization to reclaim
control of objects when a user departs or is unavailable [Microsoft Corp. 2000].
This approach, though, requires limiting the use of the take ownership privi-
lege. Granting the right to manage access control through a privilege, though,
complicates the user interface because the permissions editor displays only the
contents of the ACL instead of the true permissions granted to the object.

Allowing owners to modify the ACL on an object also reduces the ability to re-
strict who can create certain object types. For example, organizations commonly
want only security administrators to create user account objects. However, if a
user can create any type of container, then that user, as owner of the container,
may modify the ACL to grant herself the right to create new user account ob-
jects. The Active Directory avoids this limitation by storing, for each type of
object, a list of container types that may contain the object. If creation of those
containers is similarly controlled, then administrators can limit the creation
of any type of object. User account objects, for example, may only be created
within organizational unit containers, so limiting the right to create organiza-
tion units also limits the right to create users. The need for these restrictions
is due to the semantics of the directory service, where objects are accessed by
queries rather than strictly by name. For example, a user account object may
be used for authentication independent of where it is created. For applications
where the location of an object is more significant, such as in a file system,

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

424 • M. M. Swift et al.

the restriction on creating specific object types may not be needed. In addition,
an application may implement a similar restriction without a separate list of
valid container types by ensuring, with careful use of access control entries that
unprivileged users are only allowed to create objects, and not containers.

The Active Directory further complicates static inheritance because the dis-
tinction between containers and objects is not fixed. Every object type has a
property, Container, which indicates whether the object may be a container
and have other objects below it. This flag may change value, so an object type
that is initially not a container may later become a container. Rather than incur
the complexity of updating ACLs when an object type is changed, the Active
Directory instead treats all objects as containers, causing even larger ACLs.

Compared to Windows NT, this inheritance mechanism increases the cost of
access control in space, time, and complexity. The inherited ACE information for
each object type is duplicated in the ACL of every container, so it may require
much more space to store. However, the Active Directory in Windows .NET
Server, the follow-on operating system to Windows 2000 Server, stores ACLs
in a shared table so that duplicate ACLs can be merged and only a single copy
of each unique ACL is required. The use of a table of default ACLs greatly
reduces the size of access control lists because not all object types require ACEs
on containers.

The larger ACLs also make access check operations on containers more ex-
pensive [Microsoft Knowledge Base 2000], because every ACE, whether or not
it impacts an access control decision, must be read and inspected. Although the
speed of access checks has not been a problem in the Active Directory, caching
the result of an access check can lower the cost of access control by not evalu-
ating the same ACL multiple times.

Finally, applying inheritance statically requires that some piece of code walk
the tree of objects and reapply inheritance. This reapplication must be resumed
if the machine crashes, and for certain applications, such as the Active Directory,
the reapplication must be transactional. The process is much more complex
than dynamically applying inheritance during an access check, but is on a
less frequent code path. Once implemented, static inheritance can provide the
manageability benefits of dynamic inheritance with lower runtime costs.

5. PROTECTION FROM UNTRUSTED CODE

Fine-grained access control allows administrators to control which users may
have access to an object, but it does not let users choose which programs may
have access. The third major access control concern in designing Windows 2000
was preventing misbehaving programs from causing damage. One alternative,
used by Tron [Berman et al. 1995] and Janus [Goldberg et al. 1996], is to aug-
ment the operating system with additional checks on the parameters of system
calls. While such a mechanism could have worked in Windows 2000, the oper-
ating system already protects all its internal objects with ACLs and privileges.
In addition, Windows 2000 has more than two hundred system calls, so trap-
ping each one and verifying parameters separately is difficult. We believe that
given the opportunity to modify the operating system, it is better to extend the

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 425

existing operating system access control mechanisms rather than add a new
set of mechanisms. It is easier to understand and administer a system with
one set of mechanisms than one using different mechanisms for different ac-
cess control purposes. Finally, multiple access control mechanisms protecting
the same objects may cause confusing results or interact poorly, because it is
difficult to predict program behavior.

Our solution, restricted contexts, is based on three goals:

(1) Untrusted code should have no greater access to resources than the user
running the code.

(2) Users should be able to restrict programs to accessing specific objects or
classes of objects.

(3) No separate security model, beyond the operating system’s protection and
access control model, should be needed for restricting code.

These goals suggest that untrusted code should use operating systems pro-
tection mechanisms by running in a separate process and address space with its
own access token, and access control on objects should limit the code to a subset
of the objects accessible to the user. Restricted contexts apply a second access
check after users are granted access to the resource, to check the permissions
of the running program as well. With extensions to existing authentication
mechanisms, restricted contexts can also be applied across network connec-
tions to allow the use of network file systems. Finally, restricted contexts can
be applied to uses other than untrusted code, such as for delegating authority
between mutually trusting applications.

5.1 Restricted Contexts

Windows 2000 allows users to create a limited version of their access token,
called a restricted token, which may access only a subset of the objects that
the user may normally access. A process running with a restricted token is a
restricted context, and its access rights are limited through three independent
mechanisms. First, users may remove privileges so that the restricted context is
limited to only access resources protected by access control lists. Second, users
may disable groups, so that access granted to those groups does not apply to
the restricted context. However, the groups must still be checked against ACEs
denying access, so instead of removing the groups from the access token com-
pletely, they are instead marked USE FOR DENY ONLY. Finally, and most
powerfully, users may add a list of restricted SIDs, which represent the identity
and access rights of the program being run and are used during access checks.
Both the user’s normal identities and the restricted SIDs must be granted ac-
cess to an object. If either set of identities is denied access, then the access
check fails. Restricted contexts can implement simple security policies, such as
disabling administrative rights and privileges for most programs, as well as
more restrictive policies such as limiting a program to accessing only a single
file. This is accomplished by creating a restricted SID for the program and then
setting an ACL that grants access to that SID on the desired file. When the
program is run with the restricted SID in its restrictions, access checks on all

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

426 • M. M. Swift et al.

Fig. 15. The algorithm for checking access with a restricted token.

Fig. 16. A restricted token. In this token, the Service Operators group SID has been disabled so it
can only be used to deny access, and all privileges have been removed. In addition, the StockTicker
SID has been added to the Restricted SIDs field, so that SID must be granted access to any objects
accessed by this token.

objects except that file will fail, because no other ACL in the system grants
access to the program. Figure 15 shows the algorithm for checking access with
a restricted token.

There are two broad approaches for choosing the restricted SIDs for a pro-
gram. First, each program or class of similar programs may be assigned a differ-
ent SID. The resources needed by those programs must grant that specific SID
the required access. The second approach is to treat restricted SIDs as privi-
leges protecting a class of resources, such as user interface objects or scratch file
space, so that programs receive SIDs for each resource class they are allowed
to access. The ACL on instances of a resource must grant access to the SID for
that resource. The first approach provides tighter control, because restricted
programs are only allowed to access specific objects. The second approach,
though, simplifies administration by removing the need to identify every re-
source needed by a program. The two approaches may be combined, so that
some resources are accessible through SIDs identifying the program while oth-
ers are accessible through resources class SIDs. In addition to SIDs that are
only used as restrictions, normal SIDs, such as the user’s or a group’s, may also
be used in restrictions.

Figure 16 shows an example of a restricted context, and Figure 17 shows
how it is used for an access check. The example access token has two restricted

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 427

Fig. 17. This example shows three ACLs accessed by the restricted context in Figure 16.

SIDs, “StockTicker,” representing a downloadable stock-ticker application, and
“Restricted Windows,” granting access to the windowing system. In addition,
all the privileges have been removed and one group, “Service Operators” has
been disabled. The three ACLs shown in Figure 17 demonstrate the effect of
restricted SIDs. In the first ACL, the restricted context is allowed read access,
because both “Jane User” and “StockTicker” are granted access. With the second
ACL, access is denied even though “StockTicker” is granted access because
the “Service Operators” SID in the unrestricted portion of the token may only
be used to deny but not to grant access. Similarly, the third ACL grants the
restricted context no access, because there is no ACE granting “StockTicker”
any access. As a result, the restricted context is granted access to only a subset
of the resources available to the user. It is important to note that a restricted
token cannot be used on a single thread to execute untrusted code, because that
thread can access any process-wide resources, such as handles to open files, or
stop impersonating and then run with an unrestricted token.

Restricted contexts can be used to implement the policy of least privilege
[Saltzer and Schroeder 1975], which states that a program should have only
the privileges necessary to perform its job and no more. Least privilege re-
quires that the operating system know the set of resources a program requires,
and then launch the program in a restricted context with access to just those
resources. While Windows 2000 does not have a mechanism to describe the
resources required by a program, it does provide the enforcement mechanism
to limit resource access. With a proper policy in place, many common applica-
tion exploits, such as macro viruses [CERT Coordination Center 1995], can be
prevented because the application has no access to unrelated or unnecessary
resources.

5.2 Applying Restrictions to Operating System Resources

Limiting access by placing restricted SIDs in access control lists works well
for files. The file system stores ACLs persistently, so policy does not need to be
specified each time the system restarts. Users also have tools to manipulate
file system ACLs. Most importantly, the access rights on files (read, write, and
execute) are the same rights that users want to limit for untrusted code. For

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

428 • M. M. Swift et al.

these same reasons, though, many other system resources are difficult to protect
with restricted SIDs:

(1) Users do not control many objects internal to the operating system, so they
may not have permission to modify the ACLs on those objects.

(2) The operating system creates the ACL on many nonpersistent objects, such
as user interface objects, at boot time and users do not have an opportunity
to store a new ACL on these objects.

(3) The access rights for an operating system resource may be at the wrong
granularity, such as in the case of network sockets, which do not distinguish
between different endpoints.

Our solution to protecting operating system resources is twofold. First, we
created several standard SIDs that may be used in restrictions to grant access
to broad classes of system resources. The operating system uses these SIDs
when protecting its own objects. For example, the “restricted-network” SID is
used to grant access to network components, and the “restricted-windows” SID
grants access to the user interface. Second, access to resources for which ACLs
do not provide the correct granularity of protection must be denied by the oper-
ating system. In this case, the untrusted application contacts a trusted service
in a separate process to perform the operation. For example, network client
code contacts a trusted service that establishes network connections on its be-
half. The service verifies the client’s identity and checks whether the untrusted
code is allowed to contact the specific endpoint before creating the connection.
Using a separate service violates our goal of enforcing access control with a
single mechanism, but this problem can be reduced if the service itself uses
ACLs to express the security policy. Unfortunately, the system-wide restricted
SIDs for specific resources and the trusted service mechanism were dropped
from Windows 2000. There is, though, a single system-wide restricted SID for
identifying restricted contexts.

5.3 Remote Authentication with Restricted Contexts

Restricted contexts are most useful for local access control but unlike many
sandboxing mechanisms, they may also extend across a network, such as to
a network file server. Restricted contexts do not have access to a user’s pass-
word, private keys for TLS [Dierks and Allen 1999], or Kerberos ticket cache
[Neuman and T’so 1994], because the untrusted code could authenticate itself
as the user and cause a remote server to build an access token without re-
strictions. Windows 2000, through the SSPI interface [Brown 2000] (similar to
GSS-API [Linn 1993]), instead exposes only abstract authentication operations.
This interface generates messages that the caller sends to a remote machine
for authentication, but does not expose any secret data such as passwords. For
example, the Kerberos protocol returns application request messages rather
than tickets. The authentication protocol can include the restrictions in the
authentication messages so that they are carried to remote servers. As long as
the untrusted code is prevented from corrupting the restrictions, a restricted
context may authenticate to any network service.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 429

The Kerberos authentication protocol used in Windows 2000 [Neuman and
T’so 1994] has a field, authorization-data, in its encrypted authentication
messages with which the client can explicitly limit its authority on the server.
When a restricted context attempts to authenticate, the Kerberos code captures
the context’s restrictions and stores them in the authorization-data field of a
ticket. When a server receives the ticket, these restrictions are applied to the
access token before the server application is allowed to impersonate the client.
As a result, applications do not need to be aware that they are running with
restrictions or that they are accessing a remote resource; instead the operat-
ing system manages transmitting the restrictions to the remote server. This
feature was also implemented but not shipped with Windows 2000.

5.4 Limited Delegation with Restricted Contexts

Restricted contexts may also be used for application-level delegation of author-
ity for applications that trust each other. It is common for Internet applications,
such as web servers, to contact services running on other machines while pro-
cessing a request. Windows 2000 normally requires a user’s credentials, in the
form of a password or Kerberos ticket to create an access token for the user. As a
result, if the service wants to use the system access control routines, it must au-
thenticate the client or be given access to an existing copy of the client’s access
token. Applications can access services on the same machine while impersonat-
ing the client, because the access token is copied through the kernel. However,
applications cannot authenticate as the client to a service running on a sepa-
rate machine unless the client’s authentication protocol supports delegation of
credentials and uses the same protocol as the application and server.

Restricted contexts provide an alternate mechanism for applications that
trust each other to distribute the task of authorizing a client. Rather than re-
quiring authentication protocols that support delegation, the application that
authenticates a client instead captures the client’s identity, group memberships,
and privileges. When the application communicates with a remote service, it
supplies those memberships and privileges as restrictions, either in its own pro-
tocol or using an authentication protocol as described in Section 5.3. This abil-
ity for an application to impersonate a client by restricting its own rights with
the client’s rights is called limited delegation. To implement this mechanism,
the service must protect its resources with ACLs that, in addition to granting
clients access, also grants the application full access. An access token for the
application restricted by the client’s identities then receives the client’s correct
access. Because the application receives full access to the server’s resources, the
service must trust the application both with all its resources and to correctly
authenticate clients. However, limited delegation is applied only to the applica-
tions that trust each other, so the client does not need to trust the application
with data outside the scope of the application, such as unrelated file servers.

Figure 18 demonstrates the use of limited delegation. The client authenti-
cates with a web server using standard web authentication protocols, which
causes the web server to build an access token. When the web server contacts a
database using Kerberos authentication, it sends the security identifiers from

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

430 • M. M. Swift et al.

Fig. 18. Limited delegation may be used by multi-tier applications to securely delegate the client’s
authority from the first tier server to later tiers by transmitting the client’s identity as restrictions
on the web server’s identity.

the client’s access token. The ACLs on the database grant the web server full
access to all data and grant the client partial access. Access checks with the re-
stricted token return the client’s true access. This technique allows client iden-
tities to be forwarded between trusting servers without authentication protocol
support for delegation, and without allowing the server to amplify their rights
to those of the client and access resources unrelated to the application. Limited
delegation also allows the use of a different authentication protocol between
the client and the web server than between the web server and the database,
because no client credentials are needed for the second hop.

5.5 Discussion

We do not have much experience with restricted contexts due to their limited
implementation in the shipped version of Windows 2000. However, restricted
contexts as they are implemented do allow users to limit their rights, so they
need not run all programs with the same rights. Users may choose to run a web
browser and mail program in a context without access to work documents. In-
stead of maintaining a separate account for administration, a simple program
launch tool could let users disable their administrative access to the system
when running normal programs and only enable it when running administra-
tive tools. Allowing restricted contexts to be used for network authentication
increases their utility because ordinary applications that need to access net-
work services can be run in restricted contexts. As a result, restricted contexts
are able to both provide safety from untrusted code and protect user data from
attacks by subverted applications.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 431

There is no policy component of restricted contexts in Windows 2000 that
chooses the restrictions for a program. We implemented a policy based on In-
ternet Explorer Zones [Microsoft Corp. 2001], which classify websites into cat-
egories of trust and can also be used to assign policies to each zone. The policy
classified executables by the DNS domain name of their source. This classi-
fication was used to select a restricted identity, which requires trusting DNS
to translate names correctly names to addresses. The policies for code limited
whether code is allowed network access, user interface access, and access to the
user’s data. This feature was dropped before Windows 2000 shipped. Another
possible policy, used by WindowBox [Balfanz and Simon 2000], is to create sev-
eral isolated environments with only limited sharing. Applications with similar
security risks are run in the same environment and can share data freely. How-
ever, WindowBox limits sharing between environments to avoid the spread of
viruses or Trojan horses. The advantage of this mechanism is that it presents
a simple and understandable user interface. Restricted contexts could also be
used in conjunction with the policy language used by MAPbox [Acharya and
Raje 2000], which classifies applications according to their resource usage and
provides parameterized categories of applications.

Beyond policy, there are several issues with restricted contexts that we have
not resolved. We have not determined the correct context for a process execut-
ing code from multiple sources. Intersecting the two contexts may create too
restrictive a context, and the union of the two contexts is not safe. The user
interface for ACL editing also presents problems. Normally, all the SIDs that
may be present on ACLs are stored on in the Active Directory. If users may
fabricate SIDs for restrictions and place them on ACLs, then the ACL editor
must have a mechanism for translating the SIDs into names, such as a separate
database of locally defined SIDs or an external interface for translating SIDs.
Despite these issues the restricted context mechanism remains a powerful tool
for expressing many security policies.

6. RELATED WORK

The problems we faced for Windows 2000 are not unique and have been ad-
dressed by many earlier systems, although not in the same combination. Other
directory services support fine-grained access control, and the inheritance
of ACLs has been addressed in many settings ranging from object-oriented
databases to distributed systems. Restricting the access rights of programs has
also been addressed by many operating systems. In this section, we discuss
relevant systems and their relationship to our design.

6.1 Fine-Grained Access Control

While there have been many access control list implementations in operating
systems, they typically cannot support directory services. Instead, directory ser-
vices implement their own mechanisms in order to support complex objects. The
access control model in Novell’s directory service, NDS 8 [Cadjan and Harris
1999], resembles the model in Windows 2000 due to its similar application do-
main. NDS supports both inheritance of access rights as well as protection of

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

432 • M. M. Swift et al.

individual properties. NDS differs from the Active Directory by implementing
dynamic inheritance, in which access rights on containers are evaluated during
access rather than propagating the rights to individual objects. Furthermore,
NDS does not support grouping properties into property sets, and does not sup-
port the inheritance of rights for specific properties. Instead, only rights for
all properties at once may be inherited. NDS’s inherited rights filters, which
block the inheritance of specific rights (such as read all properties) instead of
all rights, are more flexible than Windows 2000’s mechanism that blocks all
inheritance.

The access control mechanism in DCE [Mackey and Salz 1993] also sup-
ports directory services. DCE stores many separate ACLs to expand the rights
available for an object, while Windows 2000 incorporates the additional rights
into a single list. Also, DCE stores two separate ACLs for inheritance, one for
newly created objects and one for containers, rather than distinguishing be-
tween many different types of objects within a single ACL.

The Netscape Directory Server [Sun Microsystems 2001] uses ACL rules
rather than explicit ACLs on objects. The rules contain a target, which is an
LDAP search rule [Yeong et al. 1995], permissions, such as read and write, and
a bind rule, which indicates the clients to which the ACL applies. This format
is more expressive than the ACLs in Windows 2000, because the target field
may specify not only a single object or tree of objects but also arbitrary sets
of objects based on their properties. However, these rules are specific to LDAP
and cannot be used for other applications, and are therefore not as general as
ACLs in Windows 2000.

The access control list support from other operating systems, such as Sun’s
Solaris [Winsor 2001] and Linux [Grunbacher 2001] is not as flexible as that in
Windows 2000 in that they are designed exclusively for file system use. Both the
Solaris and Linux ACL mechanisms store a single default ACL on directories
for all files created within the directory, so they are unable to distinguish be-
tween multiple types of objects. In addition, the ACLs do not store inheritance
information, so changes cannot be propagated through a tree without losing ex-
isting ACLs. Security-Enhanced Linux [Loscocco and Smalley 2001b] enhances
ACLs with a class identifier, to allow different rights for different types of ob-
jects, such as TCP sockets and raw sockets. However, this ACL support neither
expands the number of rights for a single object nor specifies how ACLs are
inherited hierarchically.

6.2 Access Control Inheritance

The issue of inheriting ACLs hierarchically has been addressed in many set-
tings. Twidle and Sloman [1988] discuss the inheritance of rights between do-
mains of objects in a distributed system, and specify, similar to Windows 2000,
that both positive and negative rights in a subdomain should override the in-
herited rights from a parent domain. Moffett et al. [1990] discuss mechanisms
for implementing inheritance statically by combining the inherited access con-
trol entries from parent containers into the ACL for a single object, which is
our choice for Windows 2000. Fernandez et al. [1989] addresses the issue of

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 433

inheritance in an object oriented database, and outlines an inheritance policy
similar to Windows 2000, but implemented dynamically by inspecting the ACLs
of parent objects rather than precomputing the ACL on an object.

WebDAV [Clemm et al. 2001] uses a similar inheritance model to Windows
2000, reflecting Microsoft’s input into its design. In addition to supporting static
inheritance and protecting objects from inheritance, WebDAV does not restrict
objects to a tree structure. Instead, ACLs explicitly reference the source of their
inherited entries.

6.3 Restricting Executables

The problem of restricting executing code has also been addressed by many
other systems, although in a different fashion. Most similar to restricted
tokens are the process access groups of the Andrew distributed system
[Satyanarayanan 1989], in which a child process can be launched with some of
its groups disabled. While the groups were also disabled when accessing net-
work services, the system does not address negative authorizations, in which
users could be denied access based on group membership. Process access groups
also do not allow for finer grained control than existing security groups.

Similar to restricted contexts, Janus [Goldberg et al. 1996], Tron [Berman
et al. 1995], and MAPbox [Acharya and Raje 2000] provide isolation for un-
trusted code by protecting objects in the operating system. However, rather
than protecting the objects directly, they instead trap system calls and inspect
the parameters for access. In addition, Janus provides a language, also used
by MAPbox, to specify security policies. MAPbox enhances Janus by providing
parameterized behavior classes, so that applications with similar needs may
share policies. These approaches use a separate set of security mechanisms
and configuration tools for protecting users from untrusted code than are used
for protecting users from each other, and as a result are not integrated with
the existing operating system security mechanisms. The benefit of these sys-
tems is that they provide a policy for restricting code and are more flexible
than restricted contexts because they see all the parameters to system calls,
rather than just the desired access to an object. The Linux Intrusion Detec-
tion System (LIDS) [Hatch 2001] provides enhanced isolation functionality to
Linux, and allows rights to be granted to programs rather than just users, but
again is not integrated with other operating system protection mechanisms.
The WindowBox project [Balfanz and Simon 2000] provides a policy for isola-
tion by separating applications onto distinct user-visible desktops rather than
just running them in different contexts. However, rather than having a general
mechanism for limiting executable code, WindowBox limits access by tagging
objects with a single SID, and then checking for that SID in an access token.

Several operating systems have been constructed to limit the damage
from exploited programs by providing additional isolation between processes.
Hewlett Packard’s Compartmented Mode Workstation (CMW) [Zhong 1997]
and Domain and Type Enforcement (DTE) in Unix [Walker et al. 1996] provide
isolation between processes and restrict the objects accessible to a process based
on their type. While the security models of these operating systems are more

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

434 • M. M. Swift et al.

powerful than Windows 2000’s, these operating systems also required greater
development effort to achieve that power.

Security-Enhanced Linux [Loscocco and Smalley 2001a] also restricts pro-
grams by labeling objects and provides automatic protection domain changes
when invoking a new program. This operating system, similar to restricted con-
texts, can also restrict program to accessing only a small set of objects, although
it augments the operating system protection with rules in a configuration file
rules instead of storing access control lists on objects. Again, the guarantees
of SELinux are stronger, but the changes to the operating system are greater,
and the operating system is left with multiple mechanisms for expressing ac-
cess control. However, unlike Windows 2000, SELinux, CMW and DTE in Unix
provide better isolation of programs because they have a notion of information
flow [Bell and LaPadula 1976, Denning 1976]. In Windows 2000, a rogue mail
program in a restricted context may save a file that is later accessed from an un-
restricted context where it can cause damage, whereas these operating systems
label objects with their source to fully isolate programs and their outputs.

Restricted contexts are a mechanism that may by used to implement many
security policies, such as role-based access control (RBAC) [Sandhu et al. 1996]
in which users select specific roles when performing job tasks. A user may have
different access rights depending on their role when running a program. Similar
to RBAC, restricted contexts allow programs to be run with different rights
according to their task. However, restricted contexts depend on the existence of
an unrestricted context that has complete access to the user’s resources, while
role-based access control does not.

Restricted contexts are similar to the compound principals from Abadi et al.
[1993], where two principals can be required for access. Compound principals,
though, are used in ACLs to grant access to the combination of two subjects,
such as “Jane User and StockTicker.” Restricted contexts instead subdivide
an existing subject of access control into two, and require that both parts be
granted access separately.

Finally, Mazières and Kaashoek [1997] suggest that operating systems
should support hierarchically named capabilities, in which a user may append
identifiers to her user identifier to create many levels of subidentities. These
capabilities are similar to restricted contexts in that users can create limited
versions of their identity, but programs must specify which single capability is
to be used for each access.

7. CONCLUSION

In this article, we presented the extensions made to the Windows NT 4.0 access
control mechanisms for Windows 2000. These extensions enable the access con-
trol mechanisms of Windows NT, designed primarily for file systems, to apply to
applications with more complex needs, such as a directory service. While many
of the ideas have been seen before in other applications or systems or in slightly
different forms, in Windows 2000 the same implementation of ACLs is used
by all system services and many applications rather than creating a separate
mechanism for each use. The combination of features in Windows 2000’s ACLs

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 435

provides a balance of feasibility, performance, and manageability. In particular,
extending access control entries to specify both a portion of an object for access
checks and a type of object for inheritance allows the existing model, designed
for file systems, to be applied to many other applications. The extended inher-
itance controls enable centralized management of large hierarchies of objects
by allowing inheritance to be reapplied without disrupting previously modified
ACLs. The addition of restricted contexts makes it possible to apply operat-
ing system security mechanisms to isolate misbehaving code by allowing users
to restrict the set of objects accessible to a program. Unfortunately, the im-
provements described in Sections 5.2 and 5.3 (protecting system objects and
remote authentication, respectively) did not make it into the shipped version
of Windows 2000. Overall, these changes greatly improve the scalability and
security of the Windows 2000, while retaining the simplicity of a single, access
control mechanism throughout the operating system.

ACKNOWLEDGMENTS

We would like to thank the other members of the security, directory service, and
DCOM teams at Microsoft, in particular Robert Reichel and Murli Satagopan,
for contributing to the ideas presented here. Robert Grimm was our fabulous
shepherd on an earlier version of this paper and provided comments on several
versions. Steve Gribble and Andrew Whitaker provided valuable feedback on
an early draft of this article. Kedar Dubhashi provided valuable updates on the
changes made for Windows XP.

REFERENCES

ABADI, M., BURROWS, M., LAMPSON, B., AND PLOTKIN, G. 1993. A Calculus for access control in
distributed systems. ACM Trans. Prog. Lang. Syst. 15, 4 (Oct), 706–734.

ACHARYA, A. AND RAJE, M. 2000. MAPbox: Using parameterized behavior classes to confine un-
trusted applications. In Proceedings of the 9th USENIX Security Symposium (Denver, Colo.,
Aug.).

ANDERSON, J. 1972, Computer security technology planning study. Tech. Rep. ESD-TR-73–51.
Vols. I and II. Air Force Electronic Systems Division. NTIS document number AD758206.

BALFANZ, D. AND SIMON, D. 2000. WindowBox: A simple security model for the connected desktop.
In Proceedings of the 4th USENIX Windows Systems Symposium (Seattle Wash., Aug.).

BELL, D. AND LAPADULA, D. 1976. Secure computer systems: Unified exposition and Multics inter-
pretation. Tech. Rep. MTR-2997 Rev. 1 (Mar.). MITRE Corp., Bedford, Mass. Also ADA023588,
National Technical Information Service.

BERMAN, A., BOURASSA, V., AND SELBERG, E. 1995. TRON: Process-specific file protection for the
UNIX operating system. In Proceedings of the 1995 USENIX Winter Technical Conference (New
Orleans, La., Jan.), 165–175.

BROWN, K. 2000. Explore the security support provider interface using the SSPI workbench Util-
ity. MSDN Mag., Aug. Available at http://msdn.microsoft.com/msdnmag/issues/0800/Security/
Security0800.asp.

CADJAN, N AND HARRIS, J. 1999. Administering NDS, corporate edition. McGraw-Hill Professional
Publishing, New York.

CALLAGHAN, B., PAWLOSKI, B., AND STAUBACH, P. 1995. NFS version 3 protocol specification. Request
for Comments RFC 1813, Internet Engineering Task Force.

CERT COORDINATION CENTER, 1995. CERT Advisory CA-2000-16 Microsoft ‘IE Script’/Access/
OBJECT Tag Vulnerability. Aug. Available at http://www.cert.org/advisories/CA-2000-16.html.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

436 • M. M. Swift et al.

CLEMM, G., HOPKINS, A., SEDLAR, E., AND WHITEHEAD, J. 2001. WebDAV access control protocol.
Internet draft draft-ietf-webdav-acl-07, Internet Engineering Task Force, Nov.

DENNING, D. 1976. A lattice model of secure information flow. Commun. ACM 19, 5 (Aug.), 236–
243.

DENNING, A. 1997. ActiveX Controls Inside Out, second edition, Microsoft Press.
DIERKS, T. AND ALLEN, C. 1999. The TLS protocol. Request for Comments RFC 2246, Internet

Engineering Task Force, Jan.
EDDON, G. AND EDDON, H. 1998. Inside distributed COM. Microsoft Press.
FERNANDEZ, E., GUDES, E., AND SONG, H. 1989. A security model for object-oriented databases. In

Proceedings of the IEEE Symposium on Security and Privacy (Oakland, Calif., May), 110–115.
GOLDBERG, I., WAGNER D., THOMAS, R., AND BREWER, E. A. 1996. A secure environment for untrusted

helper applications—Confining the wily hacker. In Proceedings of the 6th USENIX Security Sym-
posium (San Jose, Calif., July).

GRUNBACHER, A. 2001. Extended attributes and ACLs for Linux. Available at http://acl.bestbits.at.
HATCH, B. 2001. An overview of LIDS, part one. Oct. Available at http://www.securityfocus.com/

infocus/1496.
ISEMINGER, D. 2000. Active Directory Services for Microsoft Windows 2000 Technical Reference.

Microsoft Press.
LEACH, P. AND SALZ, R. 1998. UUIDs and GUIDs. Internet Draft draft-leach-uuids-guids-01.txt.

Internet Engineering Task Force, Feb.
LINN, J. 1993. Generic Security Service API. Request For Comments RFC 1508, Internet Engi-

neering Task Force, Sep.
LOSCOCCO, P., AND SMALLEY, S. 2001a. Integrating flexible support for security policies into the

Linux Operating System. In Proceedings of the FREENIX Track: 2001 USENIX Annual Technical
Conference (Boston Mass., June).

LOSCOCCO, P., AND SMALLEY, S. 2001b. Meeting critical security objectives with security-enhanced
Linux. In Proceedings of the 2001 Ottawa Linux Symposium (Ottawa, Ont., Canada, July).

MACKEY, D. AND SALZ, R. 1993. DCE ACL Library—Functional Specification. OSF DCE SIG Re-
quest For Comments 46.0, Oct.

MAZIÉRES, D. AND KAASHOEK, M. F. 1997. Secure applications need flexible operating systems.
In Proceedings of the 6th Workshop on Hot Topics in Operating Systems (Cape Cod, Mass.,
May).

MICROSOFT CORPORATION. 2000. Novell wrong about windows 2000 security hole. Feb. Avail-
able at http://www.microsoft.com/WINDOWS2000/server/evaluation/news/bulletins/novellre-
sponse3.asp.

MICROSOFT CORPORATION. 2001, Internet security, Part 1: The basics. Microsoft Insider. Available
at http://www.microsoft.com/insider/internet/articles/security.htm.

MICROSOFT KNOWLEDGE BASE. 2000. Large numbers of ACEs in ACLs impair directory ser-
vice performance. Available at http://support.microsoft.com/support/kb/articles/q271/8/76.asp,
Sept.

MOFFETT J., SLOMAN, M., AND TWIDLE, K. 1990. Specifying discretionary access control policy for
distributed systems. Comput. Commun. 13, 9 (Nov.), 571–580.

NEUMAN, B. C. AND T’SO, T. 1994. Kerberos: An authentication service for computer networks.
IEEE Commun. 32. 9 (Sept.), 33–38.

NOVELL INC. 2000, The NDS advantage: AD security. Feb. Available at http://www.novell.
com/competitive/nds/security.html.

RITCHIE, D. AND THOMPSON, K. 1974. The UNIX timesharing system. Commun. ACM 17, 7 (July),
365–375.

SALTZER. J. AND SCHROEDER, M. 1975. The protection of information in computer systems. Proc.
IEEE 63, 9 (Sept.), 1278–1308.

SANDHU, R., COYNE, E., FEINSTEIN, H., AND YOUMAN, C. 1996. Role-based access control models.
IEEE Comput. 29, 2 (Feb.), 38–47.

SATYANARAYANAN, M. 1989. Integrating security in a large distributed system. ACM Trans. Com-
put. Syst. 7, 3 (Aug), 247–280.

SUN MICROSYSTEMS INC. 2001. Deployment Guide, Netscape Directory Server version 6.0. Avail-
able at http://enterprise.netscape.com/docs/directory/index.html.

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

Improving Granularity of Windows 2000 Access Control • 437

TWIDLE, K. AND SLOMAN, M. 1988. Domain based configuration and name management for dis-
tributed systems. In Proceedings of the IEEE Workshop on the Future Trends of Distributed
Computer Systems in the 1990s (Hong Kong, Sept.), 7–153.

WALKER, K., STERNE, D., BADGER, M., PETKAC, M., SHERMANN, D., AND OOSTENDORP K. 1996. Confining
Root Programs with Domain and Type Enforcement (DTE). In Proceedings of the 6th USENIX
Security Symposium (San Jose, Calif., July).

WINSOR, J. 2001. Solaris 8 System Administrator’s Guide, Prentice Hall, Englewood Cliffs, N.J.
YEONG, W., HOWES, T., AND KILLE, S. 1995. Lightweight Directory Access Protocol. Request for

Comments RFC 1777, Internet Engineering Task Force, Mar.
ZHONG, Q. 1997. Providing secure environments for untrusted network applications. In Proceed-

ings of the 2nd IEEE International Workshop on Enterprise Security (Cambridge, Mass., June).

Received October 2001; revised February 2002, March 2002, and May 2002; accepted May 2002

ACM Transactions on Information and System Security, Vol. 5, No. 4, November 2002.

