
Department of Mathematics and Computer Science

University of Southern Denmark, Odense

February 16, 2015

KSL

Exam Project in Compiler Construction, part 3

Kim Skak Larsen

Spring 2015

Introduction

In this note, we describe one part of the exam project that must be solved in connection

with the compiler project, Spring 2015. It is important to read through the entire project

description before starting the work on the project; also the sections on requirements

and how to turn in your solution.

Deadline

Wednesday, March 18, 2015, at 12:00

Correct DIEGO Programs

Among other things, you must turn in a program which must be written in the program-

ming language C. It must be the c99 ANSI standard as specified by the options below.

This excludes C++, in particular. Your programs should be compiled using

gcc -std=c99 -Wall -Wextra -pedantic

The primary new tasks of this part of the project are to construct a weeder and a type

checker. These phases must be combined with the symbol table and the scanner/parser

from the previous parts of the project to form a complete front-end of a DIEGO com-

piler. To test the front-end, a new pretty printer must be constructed which prints a

representation of the abstract syntax tree where all expressions (and subexpressions)

are annotated with their types. This must be the output for correct DIEGO programs.

For incorrect DIEGO programs, the compiler must print an error message, informing

the programmer of at least one error in the program along with its line number and a

reasonable explanation of what the error is.

1

Weeder

There should be a separate weeder phase between the parsing and the type checking

phases. As a minimum, the following must be handled:

• For function definitions, it must be verified that names after the keyswords func

and end are identical.

• It must be verified that all function calls will result in the execution of a return

statement. It is a part of the assignment to detail this requirement and describe

the implemented rules in the report.

Type checking

This part can structurally be organized through the following three (abstract) traversals

of the abstract syntax tree. You can consider whether or not some traversal could

conveniently be merged with one of the other traversals.

1. Collection of variable, type, and function declarations.

2. Calculation of the types of all expressions and subexpressions. One possibil-

ity is to allocate space in the nodes of the abstract syntax tree for saving this

information.

3. Verification of correct usage of all variables, types, and functions.

Prettyprinter

A prettyprinter is here a program which prints the abstract syntax tree with sufficient

indentation and/or parantheses so that the structure of the tree can be verified.

Additionally, the type of all expressions and subexpressions must be indicated in the

print-out. Find a way to do this without making the printed programs completely un-

readable.

Testing

A sufficient collection of programs must be tested such that it is verified, via the pret-

typrinter, that all type information is computed correctly. Additionally, any error mes-

sage should be provoked by some test program.

Turning in

Electronically, you must turn in

2

• All relevant files from the previous parts of the project.

• C-files for the weeder (presumably weed.c with header file).

• C-files for the type checker (presumably typecheck.c with header file).

• a C-program which, using the files above, implements a type annotating pret-

typrinter for DIEGO programs.

• a makefile, connecting all of the above.

Additionally, you must hand in a report with program listings of all of the above, along

with brief descriptions of the most important choices made in the process of creating

the weeder and type checker. You must include a sufficient and documented testing.

See also the standard requirements.

General Requirements and Rules

Here we list general requirement, procedures for turning in, and exam rules.

Exam Rules

This is an exam project. Cooperation beyond what is explicitly permitted will be con-

sidered cheating and will be treated as such. You have a duty to keep your notes private

and protect your files against reading and copying by others. Both parties involved in

a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficient time for solving the

project. Still, we strongly encourage you to plan your work such that you will finish

some days before the deadline.

Solutions that are turned in after the deadline will not be accepted. Downtime on the

system or the printers will not automatically result in an extension; not even if it is

the last hours before the deadline. Neither will own or children’s illness without a

statement from your physician, etc.

The solution

The solution consists of a program, test material, and a report. Thus, we use the term

“report” to mean your description of the solution to the project without the program

listing and listing of test examples and results (other than what may have been merged

into the report as examples, etc.).

All specific requirements posed in the project description must of course be fulfilled.

3

The Report

The report should in the best possible manner account for the entire solution, i.e., it

must contain a description of the most important and relevant decisions that have been

made in the process of developing the solution and reasons must be given where this is

appropriate.

You must also explain how the program has been tested. Test examples or references

to test examples and test runs can and should be included to the extent that this is

meaningful.

Possible omissions, known errors, etc. should be described in the report. It is often a

good idea to do this in a separate section instead of mixing it in with the rest of the

report.

Programs

Files and directories should be named and organized logically. Programs must be well-

structured with appropriately chosen names and indentation and tested sufficiently. The

numbers of characters (including blanks and 4 times the number of tabs) on a program

line is limited to 79. This is important for various tools used for inspecting, evaluating,

and viewing your programs, and it is important for the print-out of parts of your own

program that you will see at the exam.

Programs will often be tested automatically. This makes it extremely important to

respect all interface-like demands, e.g., input/output formats.

Programs that are turned in must compile and run on IMADA’s machines. In particu-

lar, they should be written in the programming language C. It must be the c99 ANSI

standard as specified by the options below. This excludes C++, in particular. Your

programs should be compiled using

gcc -std=c99 -Wall -Wextra -pedantic

In particular, no architecture-dependent option should be added, such as, for instance,

-m32 or -m64.

On the other, when you compile the assembler code that your compiler generates, then

you must use option -m32.

You are very welcome to develop your programs at home, but it is your responsibility.

This includes technical problems at home, lack of access to relevant software, moving

data to IMADA via e-mail, USB keys, etc. and converting to the correct format, e.g.,

between Windows and Linux.

Execution

This section on execution does not apply to part 1, but starts applying gradually through

the project parts until it applies fully at the end. It is included in every project descrip-

4

tion, so you are not surprised at the end.

In the following, we list execution requirements regarding your compiler as well as the

code your compiler produces. In most cases, this is just to conform to default standards

or to choose one among alternatives:

• Your compiler (executable) must be called kitty.

• Behavior of your compiler:

– Your compiler must read from stdin.

– In the final part, only correct assembler code may be written to stdout.

– If the compilation succeeds, the compiler must return zero.

– If an error occurs during compilation, then

∗ nothing should be written to stdout,

∗ an error message should be written to stderr, and

∗ a value different from zero must be returned.

– It is recommended that the beginning of each phase of the compilation is

announced on stderr.

• Behavior of the code your compiler produces:

– Only write statements may write to stdout and it should write its integer

or boolean argument followed by a newline.

– If no error occurs, the code must return zero.

– If an error occurs (that you catch), the code must return a value different

from zero. If you write an error message, it must go to stderr.

Turning In

You must turn in on paper and electronically. The details are given below. All material

that is turned in both on paper and electronically must be identical.

On Paper

You must turn in your

• report,

• a complete program listing,

• representative tests,

• the official front page.

5

You may omit very large test files and results and only turn these in electronically. The

official front page that you find at the end of this document must be filled in, dated, and

signed by the members of the group.

One reasonable way of producing your program listing is to print all your programs

using the following (all on one line):

a2ps -Pd3 --line-numbers=1 --tabsize=4 -g

--header="Printed by group NN" file.c

where NN is your group number. However, there are also ways to include your program

listings as an appendix in your (LATEX) report; see the CC home page.

Procedure for turning in on paper: The material on paper should be turned in at

IMADA’s secretaries’ office. The office may be closed for very short periods of time. If,

for some unexpected reason, the office must be closed for longer periods of time close

to the deadline, an announcement will be made outside the office, giving instructions

as to where you turn in.

Electronically

Electronically, you must turn in

• the report as report.pdf,

• all relevant program and test files,

• a makefile, connecting the program files,

• the compiler as kitty, which should be an executable file.

Procedure for turning in electronically: The procedure for turning in electronically

can be found via the project home page:

http://www.imada.sdu.dk/∼kslarsen/CC/Projekt/

However, it might be good to know already now that you should avoid Danish (and

other non-ascii) characters (such as æ, ø, and å) in your directory and file names (Black-

board does not handle this well). To be safe, also avoid other special characters not

normally occurring in file names.

You may upload your files individually or collect your files into one (archive) file (rec-

ommended) before uploading. If you choose to do the latter, you must use either tar

(optionally also gzip’ed) or zip for this.

6

Department of Mathematics and Computer Science

University of Southern Denmark, Odense

Spring 2015

KSL

CC, Spring 2015

Exam Project, part 3

Group

Date

Name

Birthday

Logins

Signature

Name

Birthday

Logins

Signature

Name

Birthday

Logins

Signature

This report contains a total of pages.
Please write very clearly. Under Logins, give your student (student.sdu.dk) login. If you have an

IMADA login that is different from your student login, give that in parenthesis.

