
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

February 4, 2018
KSL

Exam Project in Compiler Construction, part 2
Kim Skak Larsen

Spring 2018

Introduction

In this note, we describe one part of the exam project that must be solved in connection
with the compiler project, Spring 2018. It is important to read through the entire project
description before starting the work on the project; also the sections on requirements
and how to turn in your solution.

Deadline

Friday, February 23, 2018, at 12:00 (noon)

A scanner and parser in C

Among other things, you must turn in a program which must be written in the program-
ming language C. It must be the c11 ANSI standard as specified by the options below.
This excludes C++, in particular. Your programs should be compiled using

gcc -std=c11 -Wall -Wextra -pedantic

You must construct a scanner using the tool FLEX and a parser using the tool BISON.
Using BISON, you must build an abstract syntax tree. Finally, you must write a pret-
typrinter, which should be used to document that the scanning, parsing, and building of
the syntax tree have been carried out correctly. Here, a prettyprinter is a program which
prints the abstract syntax tree with appropriately chosen indentation and/or sufficiently
many parenthesis to make it possible, preferably easy, to verify the abstract syntax tree.

The language you will work with is called SHERE KHAN, and it is partially defined by
the grammar in Fig. 1 and 2. The figure has been split in two for typographical reasons
only.

The start symbol is 〈body〉, and all terminal symbols are written in bold face.

1

〈function〉 : 〈head〉 〈body〉 〈tail〉
〈head〉 : func id (〈par decl list〉) : 〈type〉
〈tail〉 : end id
〈type〉 : id

| int
| bool
| array of 〈type〉
| record of { 〈var decl list〉 }

〈par decl list〉 : 〈var decl list〉
| ε

〈var decl list〉 : 〈var type〉 , 〈var decl list〉
| 〈var type〉

〈var type〉 : id : 〈type〉
〈body〉 : 〈decl list〉 〈statement list〉
〈decl list〉 : 〈declaration〉 〈decl list〉

| ε
〈declaration〉 : type id = 〈type〉 ;

| 〈function〉
| var 〈var decl list〉 ;

〈statement list〉 : 〈statement〉
| 〈statement〉 〈statement list〉

〈statement〉 : return 〈expression〉 ;
| write 〈expression〉 ;
| allocate 〈variable〉 ;
| allocate 〈variable〉 of length 〈expression〉 ;
| 〈variable〉 = 〈expression〉 ;
| if 〈expression〉 then 〈statement〉
| if 〈expression〉 then 〈statement〉 else 〈statement〉
| while 〈expression〉 do 〈statement〉
| { 〈statement list〉 }

〈variable〉 : id
| 〈variable〉 [〈expression〉]
| 〈variable〉 . id

Figure 1: Grammar for SHERE KHAN, part 1.

2

〈expression〉 : 〈expression〉 op 〈expression〉
| 〈term〉

〈term〉 : 〈variable〉
| id (〈act list〉)
| (〈expression〉)
| ! 〈term〉
| | 〈expression〉 |
| num
| true
| false
| null

〈act list〉 : 〈exp list〉
| ε

〈exp list〉 : 〈expression〉
| 〈expression〉 , 〈exp list〉

Figure 2: Grammar for SHERE KHAN, part 2.

There is more information about the language below. It is part of the assignment to
decide which of these could most conveniently be dealt with in these phases and which
should be postponed until the phases weed, symbol, type checking, and code genera-
tion.

The semantics of the various constructions are mostly obvious, based on usual com-
puter scientific tradition. The few which are not are also discussed below.

Further requirements for Shere Khan programs

The list below is intentionally incomplete. Partly because not all information is relevant
right now and partly because some of the decisions of this nature should be made as a
part of answering the project as a whole. Some information is relevant for this part of
the project, but most have been included to give a sufficient impression of the language.

• id are usual identifiers.

• num are usual integers.

• A function name is repeated after the end which terminates the function defini-
tion. Thus, the two ids after func and end must be identical.

• At a function call, parameters which are simple types are passed as values where-
as composite types (arrays and records) are passed by reference.

• All invocations of a function must result in the execution of a return statement.

3

• write prints the value of 〈expression〉, which can be limited to being an integer
or a boolean, followed by a return. Booleans are printed as the constants, i.e.,
either the four lower-case letter “true” or the five lower-case letters “false”.

• allocate 〈variable〉 of length 〈expression〉 allocates space in memory. This space
is of size 〈expression〉 for an array with the name 〈variable〉, while allocate
〈variable〉 allocates space for a record of 〈variable〉’s type.

• A function definition introduces a new (nested) scope.

• { 〈statement list〉 } is a “compound statement”, which can be used for group-
ing statements such that more than one statement can be executed in a while-
construction, for example.

• op can be +, −, *, /, ==, !=, >, <, >=, <=, &&, | |.

• | 〈expression〉 | can denote the size of an array or the absolute value of an
integer expression.

• Array indices start with 0.

• null is the standard value for a reference variable (array and record).

• # is used as the beginning of a one-line comment. The comment is ended by
newline.

• (* is used as the beginning of a multi-line comment and *) closes the comment.
As the name indicates, such a comments may run over several lines, though it
may also be closed on the same line it is started. These comments can also be
nested.

The Abstract Syntax Tree

Note that the tiny expressions example from the home page gives you the ba-
sic structure of the various files which are involved. However, be sure to understand
and rethink all parts of this little example. Not everything in this little example is ap-
propriate for a real compiler as the one you will be making. In particular, you should
structure your AST using a number of typedefs roughly corresponding to the number
of different left-hand sides in your grammar.

Turning in

Electronically, you must turn in

• a FLEX file.

• a BISON file.

4

• a C-program, which uses the files produced by the definition files above to im-
plement a prettyprinter of SHERE KHAN-programs from an AST, build via the
BISON definition file.

• a makefile, connecting all of the above.

Additionally, you must hand in a report with program listings of all of the above, along
with brief descriptions of the most important choices made in the process; among these,
grammar rewriting or other actions taken to remove conflicts. You must include a
sufficient and documented testing. See also the standard requirements.

General Requirements and Rules

Here we list general requirement, procedures for turning in, and exam rules.

Exam Rules

This is an exam project. Cooperation beyond what is explicitly permitted will be con-
sidered cheating and will be treated as such. You have a duty to keep your notes private
and protect your files against reading and copying by others. Both parties involved in
a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficient time for solving the
project. Still, we strongly encourage you to plan your work such that you will finish
some days before the deadline.

Solutions that are turned in after the deadline will not be accepted. Downtime on the
system or the printers will not automatically result in an extension; not even if it is
the last hours before the deadline. Neither will own or children’s illness without a
statement from your physician, etc.

The solution

The solution consists of a program, test material, and a report. Thus, we use the term
“report” to mean your description of the solution to the project without the program
listing and listing of test examples and results (other than what may have been merged
into the report as examples, etc.).

All specific requirements posed in the project description must of course be fulfilled.

The Report

The report should in the best possible manner account for the entire solution, i.e., it
must contain a description of the most important and relevant decisions that have been

5

made in the process of developing the solution and reasons must be given where this is
appropriate.

You must also explain how the program has been tested. Test examples or references
to test examples and test runs can and should be included to the extent that this is
meaningful.

Possible omissions, known errors, etc. should be described in the report. It is often a
good idea to do this in a separate section instead of mixing it in with the rest of the
report.

Programs

Files and directories should be named and organized logically. Programs must be well-
structured with appropriately chosen names and indentation and tested sufficiently. The
numbers of characters (including blanks and 4 times the number of tabs) on a program
line is limited to 79. This is important for various tools used for inspecting, evaluating,
and viewing your programs, and it is important for the print-out of parts of your own
program that you will see at the exam.

Programs will often be tested automatically. This makes it extremely important to
respect all interface-like demands, e.g., input/output formats.

Programs that are turned in must compile and run on IMADA’s machines. In particu-
lar, they should be written in the programming language C. It must be the c11 ANSI
standard as specified by the options below. This excludes C++, in particular. Your
programs should be compiled using

gcc -std=c11 -Wall -Wextra -pedantic

In particular, no architecture-dependent option should be added, such as, for instance,
-m32 or -m64.

You are very welcome to develop your programs at home, but it is your responsibility.
This includes technical problems at home, lack of access to relevant software, moving
data to IMADA via e-mail, USB keys, etc. and converting to the correct format, e.g.,
between Windows and Linux.

Execution

This section on execution does not apply to part 1, but starts applying gradually through
the project parts until it applies fully at the end. It is included in every project descrip-
tion, so you are not surprised at the end.

In the following, we list execution requirements regarding your compiler as well as the
code your compiler produces. In most cases, this is just to conform to default standards
or to choose one among alternatives:

• Your compiler (executable) must be called compiler.

6

• Behavior of your compiler:

– Your compiler must read from stdin.

– In the final part, only correct assembler code may be written to stdout.

– If the compilation succeeds, the compiler must return zero.

– If an error occurs during compilation, then

∗ nothing should be written to stdout,
∗ an error message should be written to stderr, and
∗ a value different from zero must be returned.

– It is recommended that the beginning of each phase of the compilation is
announced on stderr.

• Behavior of the code your compiler produces:

– The code produced must be X86 Assembly/GAS Syntax, compilable with
gcc -m64.

– Only write statements may write to stdout and it should write its integer
or boolean argument followed by a newline.

– If no error occurs, the code must return zero.

– If an error occurs (that you catch), the code must return a value different
from zero. If you write an error message, it must go to stderr.

Turning In

You must turn in on paper and electronically. The details are given below. All material
that is turned in both on paper and electronically must be identical.

On Paper

You must turn in your

• report,

• a complete program listing,

• representative tests,

• the official front page.

You may omit very large test files and results and only turn these in electronically. The
official front page that you find at the end of this document must be filled in, dated, and
signed by the members of the group.

One reasonable way of producing your program listing is to use the following (all on
one line):

7

a2ps --line-numbers=1 --tabsize=4 -g --header="Group
〈Group number〉" -o 〈Filename〉.ps 〈Filename〉.c

where NN is your group number, and you can convert ps to pdf using ps2pdf. How-
ever, there are also other ways to include your program listings as an appendix in your
(LATEX) report; see the CC home page.

Procedure for turning in on paper: The material on paper should be turned in by
placing it in the lecturer’s letterbox. You are also welcome to give it directly to the
lecturer.

Electronically

Electronically, you must turn in

• the report as report.pdf,

• all relevant program and test files,

• a makefile, connecting the program files,

• the compiler as compiler, which should be an executable file.

Procedure for turning in electronically: The procedure for turning in electronically
can be found via the project home page:

http://www.imada.sdu.dk/∼kslarsen/CC/Projekt/

However, it might be good to know already now that you should avoid Danish (and
other non-ascii) characters (such as æ, ø, and å) in your directory and file names (Black-
board does not handle this well). To be safe, also avoid other special characters not
normally occurring in file names.

You may upload your files individually or collect your files into one (archive) file (rec-
ommended) before uploading. If you choose to do the latter, you must use either tar
(optionally also gzip’ed) or zip for this.

8

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

Spring 2018
KSL

CC, Spring 2018
Exam Project, part 2

Group

Date

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

Name
Birthday
Logins
Signature

This report contains a total of pages.
Please write very clearly. Under Logins, give your student (student.sdu.dk) login. If you have an
IMADA login that is different from your student login, give that in parenthesis.

