
Department of Mathematics and Computer Science
University of Southern Denmark, Odense

February 5, 2007
KSL

DM18 – Exam Project, part 1
Kim Skak Larsen

Spring 2007

Introduction

In this note, we describe one part of the exam project which must be solved in con-
nection with DM18, Spring 2007. It is important to read through the entire project
description before starting the work on the project; also the sections on requirements
and how to turn in your solution.

Deadline

Wednesday, February 21, 2007, at 12:00.

A Symbol Table in C

Among other things, you must turn in a program which must be written in the program-
ming language C. It must be the variant which is called ANSI-C. This excludes C++,
in particular.

In this assignment, you must construct an advanced form of symbol table where data
is stored in a collection of connected hash tables. See Fig. 1. The entire construction
illustrates the symbol table and each box illustrates a hashtable.

You may use the filesymbol.h, which is available via the course home page, as a
starting point for this assignment (see Fig. 2).

Your task is to implement the six function listed last. The implementation should be
placed in a new filesymbol.c. In addition, you must write and include test examples,
commenting on what is tested, what is expected, and what is observed.

The elements in the symbol table are strings,name, with an associated value field,
value. When such an element is inserted into the symbol table, it isstored into one
of the hash tables. This will be described in detail below.

A pointer to a hash table can also be thought of as a pointer to (parts of) the symbol
table which can be accessed through the pointer to the given hash table.

1

�
�

�
�> 6

Z
Z

Z
Z}

�
�

�
�>

�
�

�
�> 6

Z
Z

Z
Z}

6

Z
Z

Z
Z}

Figure 1: An example of connections between hash tables.

Conflicts during insertions into the hash tables are resolved using chaining. Thus, the
entries in the hash table arrays are (possibly empty) linkedlists of elements of the type
SYMBOL (linked viaSYMBOL’s next field). For eachname, there is a value of type
SYMBOL in whichname is stored. To avoid any confusion, chaining is handled within
each hash table and has nothing to do with the pointers seen inFig. 1.

We now discuss the functionality of the six functions.

• Hash computes the hash values (see how below).

• initSymbolTable returns a pointer to a new initialized hash table (of type
SymbolTable).

• scopeSymbolTable takes a pointer to a hash tablet as argument and returns
a new hash table with a pointer tot in its next field.

• putSymbol takes a hash table and a string,name, as arguments and inserts
name into the hash table together with the associated valuevalue. A pointer
to theSYMBOL value which storesname is returned.

• getSymbol takes a hash table and a stringname as arguments and searches for
name in the following manner: First search forname in the hash table which
is one of the arguments of the function call. Ifname is not there, continue the
search in the next hash table. This process is repeatedly recursively. Ifname has
not been found after the root of the tree (see Fig. 1) has been checked, the result
NULL is returned. Ifname is found, return a pointer to theSYMBOL value in
whichname is stored.

• dumpSymbolTable takes a pointer to a hash tablet as argument and prints
all the(name,value) pairs which are found in the hash tables fromt up to the

2

#define HashSize 317
#define NEW(type) (type *)malloc(sizeof(type))
void *malloc(unsigned n);

/* SYMBOL will be extended later.
Function calls will take more parameters later.

*/

typedef struct SYMBOL {
char *name;
int value;
struct SYMBOL *next;

} SYMBOL;

typedef struct SymbolTable {
SYMBOL *table[HashSize];
struct SymbolTable *next;

} SymbolTable;

int Hash(char *str);

SymbolTable *initSymbolTable();

SymbolTable *scopeSymbolTable(SymbolTable *t);

SYMBOL *putSymbol(SymbolTable *t, char *name, int value);

SYMBOL *getSymbol(SymbolTable *t, char *name);

void dumpSymbolTable(SymbolTable *t);

Figure 2: The filesymbol.h.

3

root. Hash tables are printed one at a time. The printing should be formatted
in a nice way and is intended to be used for debugging (of otherparts of the
compiler).

The tests should, among other things, demonstrate that whena search for a givenname
is carried out, the one closest to the argument hash table is found. A given string,name,
can be stored in many of the hash tables, but each hash table isonly allowed to store
a givenname once. In the testing, thevalue field can be used to show whichname
value is found.

One of the tests must build a structure corresponding to the one illustrated in Fig. 1.

Computation of Hash Values

It is well known that for efficiency it is important that the entries inserted into a hash
table are spread out fairly evenly over the hash table such that most of the linked lists
end up relatively short.

Experience shows that the following works well: One considers the ASCII values of
each character. Thus, each character is considered an integer; or bit string. The char-
acters are treated one at a time. Each treatment of a character results in an adjustment
of a partial result which is zero initially. To be precise, for each character, the partial
result is shifted one position to the left and then the ASCII value of the character in
question is added to the partial result.

Consider the example in Fig. 3 where this has been done for thestringkitty.

k = 107 = 0000000001101011
shift 0000000011010110
i = 105 = 0000000001101001
sum 0000000100111111
shift 0000001001111110
t = 116 = 0000000001110100
sum 0000001011110010
shift 0000010111100100
t = 116 = 0000000001110100
sum 0000011001011000
shift 0000110010110000
y = 121 = 0000000001111001
sum 0000110100101001
= 3369

Figure 3: Example computation of a hash value.

This is the method you must use in your implementation.

4

The Symbol Table in Your Compiler

The symbol table will later be used to store variable names, function names, etc. The
value field will be used to store type information etc. Each hash table will be used to
store the names within one function. The reason for the tree structure in Fig. 1 is that
the language for which a compiler must be produced can have nested functions and the
tree reflects this nesting structure.

The symbol table you implement in this assignment will likely have to be adjusted
slightly to fit your concrete needs later.

Standard Requirements

This section contains a description of standard requirements in connection with exam
projects and how they should be turned in. All information isnot necessarily relevant
for each part of your project.

You must always turn in your report on paper. This part is in the following referred to
asthe report. If the development of a program is part of the assignment, this program
must be turned in electronically as well.

Exam Rules

This assignment is an exam project. Cooperation beyond whatis explicitly permitted
will be considered cheating and will be treated as such. You have a duty to keep your
notes private and protect your files against reading and copying by others. Both parties
involved in a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficient time for each assignment
and you are strongly encouraged to plan your work such that you will finish some days
before the deadline.

Assignments which are turned in after the deadline will not be accepted. Downtime on
the system or the printers will not automatically result in an extension; not even if it
is the last hours before the deadline. Neither will own or children’s illness without a
statement from your physician, etc.

Solutions

All specific requirements posed in the project description must of course be fulfilled.

The Report

The report should in the best possible manner account for theentire solution. Possible
omissions, known errors, etc. should be described in the report. It is often a good idea
to do this in a separate section instead of mixing it in with the rest of the report.

5

You must include the page at the end of this document as the front page of your report
or attached in some way such that it is easily located. The report must be dated and
signed by the members of the group.

If a program must be turned in as part of your solution, you must take care of the
following:

The report must contain (possibly as an appendix) a printingof the entire program.
This printing must be identical with the program which is turned in electronically. All
the pages of your program print-out must contain your group number. One way of
obtaining this is to use

a2ps -g --header="Printed by group NN"

whereNN is your group number.

The report must contain a description of the most important and relevant decisions
which have been made in the process of answering the assignment and reasons must be
given where this is appropriate.

You must also explain how the program has been tested. Test examples and test runs
can and should be included to the extent that this is meaningful (really large test files
can just be turned in electronically).

Programs

Programs must be well-structured with appropriately chosen names and indentation
and tested sufficiently. The numbers of characters (including blanks) on a program line
is limited to 79. This is important for various tools used forinspecting, evaluating,
and viewing your programs, and it is important for the print-out of parts of your own
program that you will see at the exam.

Programs will often be tested automatically. This makes it extremely important to
respect all interface-like demands, e.g., input/output formats.

Programs which are turned in must compile and run on IMADA’s machines. You are
very welcome to develop your programs at home, but it is your responsibility. This
includes technical problems at home, lack of access to relevant software, moving data
to IMADA via modem, e-mail, ftp, floppy disks, USB keys, etc. and converting to the
correct format, e.g., between Windows and Linux.

Turning In

The report should be turned in at IMADA’s secretaries’ office. The office may be closed
for very short periods of time. If, for some unexpected reason, the office must be closed
for longer periods of time close to the deadline, an announcement will be made outside
the office, giving instructions as to where you turn in your report.

6

For the first parts of the projects, you only need to turn in onecopy. For the final part,
you must turn in two copies.

Programs, test files, etc. should be turned in electronically. The procedure for turning
in electronically can be found at

http://www.imada.sdu.dk/∼kslarsen/dm18/Projekt/elafl.html

7

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

Spring 2007
KSL

DM18, Spring 2007
Exam Project, part 1

Write eligible (block or printed letters)

Group

Date

Name
Birthday
IMADA login
Signature

Name
Birthday
IMADA login
Signature

Name
Birthday
IMADA login
Signature

This report contains a total of pages.

