Department of Mathematics and Computer Science February 5, 2007
University of Southern Denmark, Odense KSL

DM18 — Exam Project, part 1

Kim Skak Larsen
Spring 2007

I ntroduction

In this note, we describe one part of the exam project whicktrba solved in con-
nection with DM18, Spring 2007. It is important to read thgbuhe entire project
description before starting the work on the project; alsodéactions on requirements
and how to turn in your solution.

Deadline

Wednesday, February 21, 2007, at 12:00.

A Symbol Tablein C

Among other things, you must turn in a program which must li#tevrin the program-
ming language C. It must be the variant which is called ANSIF@is excludes C++,
in particular.

In this assignment, you must construct an advanced formrabsytable where data
is stored in a collection of connected hash tables. See Figh# entire construction
illustrates the symbol table and each box illustrates a taddb.

You may use the filsynbol . h, which is available via the course home page, as a
starting point for this assignment (see Fig. 2).

Your task is to implement the six function listed last. Thelementation should be
placed in a new filsynbol . c. In addition, you must write and include test examples,
commenting on what is tested, what is expected, and whatisreed.

The elements in the symbol table are stringajre, with an associated value field,
val ue. When such an element is inserted into the symbol table stiised into one
of the hash tables. This will be described in detail below.

A pointer to a hash table can also be thought of as a pointgraxs(of) the symbol
table which can be accessed through the pointer to the gasmtable.

PN
AN
N

Figure 1: An example of connections between hash tables.

d

Conflicts during insertions into the hash tables are resolging chaining. Thus, the

entries in the hash table arrays are (possibly empty) litikeglof elements of the type

SYMBOL (linked viaSYMBOL's next field). For eaclmane, there is a value of type

SYMBQL in which nane is stored. To avoid any confusion, chaining is handled withi
each hash table and has nothing to do with the pointers sd€g.it.

We now discuss the functionality of the six functions.

e Hash computes the hash values (see how below).

e i ni t Synbol Tabl e returns a pointer to a new initialized hash table (of type
Synbol Tabl e).

e scopeSynbol Tabl e takes a pointer to a hash tables argument and returns
a new hash table with a pointertaoin its next field.

e put Synbol takes a hash table and a strimgne, as arguments and inserts
name into the hash table together with the associated vahleue. A pointer
to theSYMBOL value which storesan® is returned.

e get Synbol takes a hash table and a strimgme as arguments and searches for
name in the following manner: First search foane in the hash table which
is one of the arguments of the function call.nl&e is not there, continue the
search in the next hash table. This process is repeatediisiegly. Ifname has
not been found after the root of the tree (see Fig. 1) has beerked, the result
NULL is returned. Ifnane is found, return a pointer to theYMBCL value in
which narme is stored.

e dumpSynbol Tabl e takes a pointer to a hash talileas argument and prints
all the(nane, val ue) pairs which are found in the hash tables frorap to the

#defi ne HashSi ze 317
#define NEWtype) (type *)mall oc(sizeof (type))
void =mal | oc(unsi gned n);

/+ SYMBOL will be extended |ater.
Function calls will take nore paraneters |ater
*/
typedef struct SYMBOL {
char *nane;
int val ue;
struct SYMBOL *next;
} SYMBOL;
typedef struct Synbol Table {
SYMBOL +t abl e[HashSi ze] ;
struct Synbol Tabl e *next;
} Synbol Tabl e;
i nt Hash(char =*str);
Synbol Tabl e =i ni t Synbol Tabl e() ;
Synbol Tabl e *scopeSynbol Tabl e(Synbol Tabl e *t);
SYMBOL *put Synbol (Synbol Tabl e *t, char *name, int val ue);
SYMBOL *get Synbol (Synbol Tabl e xt, char =xnane);

voi d dunmpSynbol Tabl e(Synbol Tabl e *t);

Figure 2: The filesynbol . h.

root. Hash tables are printed one at a time. The printing Ishio& formatted
in a nice way and is intended to be used for debugging (of qtheis of the
compiler).

The tests should, among other things, demonstrate that avkearch for a givenane
is carried out, the one closest to the argument hash taldaslf A given stringpnane,
can be stored in many of the hash tables, but each hash tadiiyisllowed to store
a givennane once. In the testing, theal ue field can be used to show whictane
value is found.

One of the tests must build a structure corresponding tonlkedllustrated in Fig. 1.

Computation of Hash Values

It is well known that for efficiency it is important that theteies inserted into a hash
table are spread out fairly evenly over the hash table suathtlost of the linked lists
end up relatively short.

Experience shows that the following works well: One congsidae ASCII values of
each character. Thus, each character is considered aelintedit string. The char-
acters are treated one at a time. Each treatment of a charestéts in an adjustment
of a partial result which is zero initially. To be preciser &mch character, the partial
result is shifted one position to the left and then the AS@Iue of the character in
question is added to the partial result.

Consider the example in Fig. 3 where this has been done fattimgki tty.

k = 107 = 0000000001101011

shift 0000000011010110
i = 105 = 0000000001101001
sum 0000000100111111
shift 0000001001111110
t = 116 = 0000000001110100
sum 0000001011110010
shift 0000010111100100
t = 116 = 0000000001110100
sum 0000011001011000
shift 0000110010110000
y = 121 = 0000000001111001
sum 0000110100101001
= 3369

Figure 3: Example computation of a hash value.

This is the method you must use in your implementation.

The Symbol Tablein Your Compiler

The symbol table will later be used to store variable names;tion names, etc. The
value field will be used to store type information etc. Eackhhble will be used to
store the names within one function. The reason for the treetsre in Fig. 1 is that
the language for which a compiler must be produced can hateah&unctions and the
tree reflects this nesting structure.

The symbol table you implement in this assignment will ikélave to be adjusted
slightly to fit your concrete needs later.

Standard Requirements

This section contains a description of standard requirésriarconnection with exam
projects and how they should be turned in. All informationd necessarily relevant
for each part of your project.

You must always turn in your report on paper. This part is mfthllowing referred to
asthe report. If the development of a program is part of the assignmeig,gtogram
must be turned in electronically as well.

Exam Rules

This assignment is an exam project. Cooperation beyond isteadplicitly permitted
will be considered cheating and will be treated as such. Yaela duty to keep your
notes private and protect your files against reading andingfby others. Both parties
involved in a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficienetior each assignment
and you are strongly encouraged to plan your work such thatwlbfinish some days
before the deadline.

Assignments which are turned in after the deadline will rmabcepted. Downtime on
the system or the printers will not automatically result mextension; not even if it
is the last hours before the deadline. Neither will own otdren’s illness without a

statement from your physician, etc.

Solutions

All specific requirements posed in the project descriptiarsnof course be fulfilled.

The Report

The report should in the best possible manner account faritiee solution. Possible
omissions, known errors, etc. should be described in thertel is often a good idea
to do this in a separate section instead of mixing it in with ttést of the report.

You must include the page at the end of this document as thépgamge of your report
or attached in some way such that it is easily located. Thertepust be dated and
signed by the members of the group.

If a program must be turned in as part of your solution, you tntaise care of the
following:

The report must contain (possibly as an appendix) a pringintpe entire program.
This printing must be identical with the program which isied in electronically. All
the pages of your program print-out must contain your grougmloer. One way of
obtaining this is to use

az2ps -g --header="Printed by group NN

whereNNis your group number.

The report must contain a description of the most importauct i@levant decisions
which have been made in the process of answering the assigamereasons must be
given where this is appropriate.

You must also explain how the program has been tested. Taesigs and test runs
can and should be included to the extent that this is meaulifigfally large test files
can just be turned in electronically).

Programs

Programs must be well-structured with appropriately chasemes and indentation
and tested sufficiently. The numbers of characters (inolylanks) on a program line
is limited to 79. This is important for various tools used fospecting, evaluating,
and viewing your programs, and it is important for the pont-of parts of your own

program that you will see at the exam.

Programs will often be tested automatically. This makesiteznely important to
respect all interface-like demands, e.g., input/outpuhfas.

Programs which are turned in must compile and run on IMADA&cHines. You are
very welcome to develop your programs at home, but it is yesponsibility. This

includes technical problems at home, lack of access toantesoftware, moving data
to IMADA via modem, e-mail, ftp, floppy disks, USB keys, etadaconverting to the
correct format, e.g., between Windows and Linux.

Turning In

The report should be turned in at IMADA's secretaries’ offitae office may be closed
for very short periods of time. If, for some unexpected reatiee office must be closed
for longer periods of time close to the deadline, an annomece will be made outside
the office, giving instructions as to where you turn in yoyrae.

For the first parts of the projects, you only need to turn in coyy. For the final part,
you must turn in two copies.

Programs, test files, etc. should be turned in electroyic@he procedure for turning
in electronically can be found at

http://ww. i mada. sdu. dk/ ~ksl arsen/ dmL8/ Proj ekt /el afl . ht m

Department of Mathematics and Computer Science Spring 2007
University of Southern Denmark, Odense KSL

DM18, Spring 2007
Exam Project, part 1

Writedligible (block or printed letters)

Group

Date

Name
Birthday
IMADA login
Signature

Name
Birthday
IMADA login
Signature

Name
Birthday
IMADA login
Signature

This report containsatotalof pages.

