Department of Mathematics and Computer Science March 7, 2007
University of Southern Denmark, Odense KSL

DM18 — Exam Project, part 3

Kim Skak Larsen
Spring 2007

I ntroduction

In this note, we describe one part of the exam project whicktrba solved in con-
nection with DM18, Spring 2007. It is important to read thgbuhe entire project
description before starting the work on the project; alsogbctions on requirements
and how to turn in your solution.

Deadline

Wednesday, April 4, 2007, at 12:00.

Correct TIGRIS Programs

Among other things, you must turn in a program which must li#tevrin the program-
ming language C. It must be the variant which is called ANSIF@is excludes C++,
in particular.

The primary new tasks of this part of the project are to cansta weeder and a type
checker. These phases must be combined with the symbolkabléhe scanner/parser
from the previous parts of the project to form a completetiemd of a TGRIS com-
piler. To test the front-end, a new pretty printer must bestautted which prints a
representation of the abstract syntax tree where all esjores (and subexpressions)
are annotated with their types. This must be the output farecd TIGRIS programs.
For incorrect TGRIS programs, the compiler must print an error message, infoymi
the programmer of at least one error in the program along igtline number and a
reasonable explanation of what the error is.

Weeder

There should be a separate weeder phase between the pardittteaype checking
phases. As a minimum, the following must be handled:

e For function definitions, it must be verified that names atterkeysword$unc
andend are identical.

e It must be verified that all function calls will result in thegezution of areturn
statement. It is a part of the assignment to detail this requént and describe
the implemented rules in the report.

Type checking

This part can structurally be organized through the follmpthree (abstract) traversals
of the abstract syntax tree. You can consider whether or moiestraversal could
conveniently be merged with one of the other traversals.

1. Collection of variable, type, and function declarations

2. Calculation of the types of all expressions and subesfes. One possibil-
ity is to allocate space in the nodes of the abstract synt for saving this
information.

3. Verification of correct usage of all variables, types, antttions.

Prettyprinter

A prettyprinter is here a program which prints the abstrgintax tree with sufficient
indentation and/or parantheses so that the structure dfeeean be verified.

Additionally, the type of all expressions and subexpressimust be indicated in the
print-out. Find a way to do this without making the printedgrams completely un-
readable.

Testing

A sufficient collection of programs must be tested such thiatverified, via the pret-
typrinter, that all type information is computed correcthdditionally, any error mes-
sage should be provoked by some test program.

Turningin
Electronically, you must turn in

e All relevant files from the previous parts of the project.
e C-files for the weeder (presumabiged. c with header file).

e C-files for the type checker (presumablypecheck. c with header file).

e a C-program which, using the files above, implements a typetating pret-
typrinter for TIGRIS programs.

e a makefile, connecting all of the above.

Additionally, you must hand in a report with program listingf all of the above, along
with brief descriptions of the most important choices madéhe process of creating
the weeder and type checker. You must include a sufficientdacdmented testing.
See also the standard requirements.

Standard Requirements

This section contains a description of standard requirésriarconnection with exam
projects and how they should be turned in. All informationd necessarily relevant
for each part of your project.

You must always turn in your report on paper. This part is mfthllowing referred to
asthe report. If the development of a program is part of the assignmeigt,gtogram
must be turned in electronically as well.

Exam Rules

This assignment is an exam project. Cooperation beyond isheadplicitly permitted
will be considered cheating and will be treated as such. Yaela duty to keep your
notes private and protect your files against reading andingfby others. Both parties
involved in a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficienetior each assignment
and you are strongly encouraged to plan your work such thatwlbfinish some days
before the deadline.

Assignments which are turned in after the deadline will reoabcepted. Downtime on
the system or the printers will not automatically result mextension; not even if it
is the last hours before the deadline. Neither will own otdrien’s iliness without a
statement from your physician, etc.

Solutions

All specific requirements posed in the project descriptiarsnof course be fulfilled.

The Report

The report should in the best possible manner account faeritiee solution. Possible
omissions, known errors, etc. should be described in thertel is often a good idea
to do this in a separate section instead of mixing it in with ithst of the report.

You must include the page at the end of this document as thépgamge of your report
or attached in some way such that it is easily located. Thertepust be dated and
signed by the members of the group.

If a program must be turned in as part of your solution, you tntaise care of the
following:

The report must contain (possibly as an appendix) a pringintpe entire program.
This printing must be identical with the program which isied in electronically. All
the pages of your program print-out must contain your grougmloer. One way of
obtaining this is to use

az2ps -g --header="Printed by group NN

whereNNis your group number.

The report must contain a description of the most importauct i@levant decisions
which have been made in the process of answering the assigamereasons must be
given where this is appropriate.

You must also explain how the program has been tested. Taesigs and test runs
can and should be included to the extent that this is meaulifigfally large test files
can just be turned in electronically).

Programs

Programs must be well-structured with appropriately chasemes and indentation
and tested sufficiently. The numbers of characters (inolylanks) on a program line
is limited to 79. This is important for various tools used fospecting, evaluating,
and viewing your programs, and it is important for the pont-of parts of your own

program that you will see at the exam.

Programs will often be tested automatically. This makesiteznely important to
respect all interface-like demands, e.g., input/outpuhfas.

Programs which are turned in must compile and run on IMADA&cHines. You are
very welcome to develop your programs at home, but it is yesponsibility. This

includes technical problems at home, lack of access toantesoftware, moving data
to IMADA via modem, e-mail, ftp, floppy disks, USB keys, etadaconverting to the
correct format, e.g., between Windows and Linux.

Turning In

The report should be turned in at IMADA's secretaries’ offitae office may be closed
for very short periods of time. If, for some unexpected reatiee office must be closed
for longer periods of time close to the deadline, an annomece will be made outside
the office, giving instructions as to where you turn in yoyrae.

For the first parts of the projects, you only need to turn in coyy. For the final part,
you must turn in two copies.

Programs, test files, etc. should be turned in electroyic@he procedure for turning
in electronically can be found at

http://ww. i mada. sdu. dk/ ~ksl arsen/ dmL8/ Proj ekt /el afl . ht m

Department of Mathematics and Computer Science Spring 2007
University of Southern Denmark, Odense KSL

DM18, Spring 2007
Exam Project, part 3

Writedligible (block or printed letters)

Group

Date

Name
Birthday
IMADA login
Signature

Name
Birthday
IMADA login
Signature

Name
Birthday
IMADA login
Signature

This report containsatotalof pages.

