Multi-Way Heaps

We are considering d-trees; a generalization of binary trees where each node has up to d children, where d is an integer.

As usual, let n denote the number of nodes in the tree, and define the height of a tree to be the maximal number of edges from the root to a leaf.

Question a: Determine the number of leaves as a function of d and n.
Question b: Determine the smallest possible height of a d-tree as a function of d and n.

We now use d-trees to implement a priority queue. As for a standard heap, we use the structural invariant that the tree is filled from top to bottom and the last layer from left to right.

Question c: Argue that the following complexities can be obtained (as usual, we assume that DecreaseKey gets a pointer to the element as an argument):

$$
\begin{array}{ll}
\text { Insert } & \in O\left(\log _{d} n\right) \\
\text { DeleteMin } & \in O\left(d \log _{d} n\right) \\
\text { DecreaseKey } & \in O\left(\log _{d} n\right)
\end{array}
$$

The Single Source Shortest Path Problem can be solved using Dijkstra's algorithm which is implemented using a priority queue. With n nodes and m edges, at most n Insert and DeleteMin operations and m DecreaseKey operations are carried out, and these operations dominate the running time of Dijkstra's algorithm. Thus, using a standard binary heap, the running time is $O(m \log n)$.
We now consider scenarios where $m=n \cdot f(n)$ for some function $f(n) \in \omega(1)$, i.e., a function f, where $f(n) \rightarrow \infty$ for $n \rightarrow \infty$. In other words, we assume that m grows asymptotically faster than n.

Question d: Show that for such graphs, we can obtain a faster implementation than with the binary heap by choosing an appropriate d and using a d-tree.
Hint: d does not have to be a constant, and recall that $\log _{d} n=\log n / \log d$.

