
Multi-Way Heaps

We are consideringd-trees; a generalization of binary trees where each node hasup to
d children, whered is an integer.

As usual, letn denote the number of nodes in the tree, and define the height ofa tree
to be the maximal number of edges from the root to a leaf.

Question a: Determine the number of leaves as a function ofd andn. 2

Question b: Determine the smallest possible height of ad-tree as a function ofd and
n. 2

We now used-trees to implement a priority queue. As for a standard heap,we use the
structural invariant that the tree is filled from top to bottom and the last layer from left
to right.

Question c: Argue that the following complexities can be obtained (as usual, we
assume thatDecreaseKey gets a pointer to the element as an argument):

Insert ∈ O(log
d
n)

DeleteMin ∈ O(d log
d
n)

DecreaseKey ∈ O(log
d
n)

2

The Single Source Shortest Path Problem can be solved using Dijkstra’s algorithm
which is implemented using a priority queue. Withn nodes andm edges, at mostn
Insert andDeleteMin operations andm DecreaseKey operations are carried out, and
these operations dominate the running time of Dijkstra’s algorithm. Thus, using a
standard binary heap, the running time isO(m log n).

We now consider scenarios wherem = n · f(n) for some functionf(n) ∈ ω(1), i.e.,
a functionf , wheref(n) → ∞ for n → ∞. In other words, we assume thatm grows
asymptotically faster thann.

Question d: Show that for such graphs, we can obtain a faster implementation than
with the binary heap by choosing an appropriated and using ad-tree.

Hint: d does not have to be a constant, and recall thatlog
d
n = log n/ log d. 2

1


