
Multi-Way Heaps
We are considering d-trees; a generalization of binary trees where each node has up to
d children, where d is an integer.
As usual, let n denote the number of nodes in the tree, and define the height of a tree
to be the maximal number of edges from the root to a leaf.

Question a: Determine the number of leaves as a function of d and n. 2

Question b: Determine the smallest possible height of a d-tree as a function of d and
n. 2

We now use d-trees to implement a priority queue. As for a standard heap, we use the
structural invariant that the tree is filled from top to bottom and the last layer from left
to right.

Question c: Argue that the following complexities can be obtained (as usual, we
assume that DecreaseKey gets a pointer to the element as an argument):

Insert ∈ O(logd n)
DeleteMin ∈ O(d logd n)
DecreaseKey ∈ O(logd n)

2

The Single Source Shortest Path Problem can be solved using Dijkstra’s algorithm
which is implemented using a priority queue. With n nodes and m edges, at most n
Insert and DeleteMin operations and m DecreaseKey operations are carried out, and
these operations dominate the running time of Dijkstra’s algorithm. Thus, using a
standard binary heap, the running time is O(m log n).
We now consider scenarios where m = n · f(n) for some function f(n) ∈ ω(1), i.e.,
a function f , where f(n)→∞ for n→∞. In other words, we assume that m grows
asymptotically faster than n.

Question d: Show that for such graphs, we can obtain a faster implementation than
with the binary heap by choosing an appropriate d and using a d-tree.
Hint: d does not have to be a constant, and recall that logd n = log n/ log d. 2

1


