
Written Examination

DM22 Programming Languages

Department of Mathematics and Computer Science

University of Southern Denmark

Monday, June 12, 2006, 09.00–13.00

The exam set consists of five pages (including this front page), and contains four
questions. The weight of each question is as follows:

Question 1: 25%
Question 2: 25%
Question 3: 30%
Question 4: 20%

The parts of a question do not necessarily have equal weight. Note that often a
part can be answered independently from the other parts.

All written aids are allowed. Unless otherwise stated in a question, use of results
from the course textbooks, and of the standard libraries of the programming
languages used, is allowed.



Question 1 (25%)

A pair of primes which differ by two are denoted twin primes. As an example,
(17,19) is a pair of twin primes.

Recall that in an exercise during the course, the infinite list primes :: [Int] of
all primes was defined.

Part a: Assuming primes is already defined, make in Haskell a definition of

twinprimes :: [(Int,Int)]

such that twinprimes is the infinite list1 of pairs of twin primes. 2

For a finite list, its statistics is a list of tuples telling how many times each list
element appears. As an example, for the list [’a’,’b’,’c’,’a’,’a’,’c’] the
statistics is [(’a’,3),(’b’,1),(’c’,2)]. The statistics for the empty list is
defined as the empty list. We will only consider statistics for lists whose elements
are members of the Ord class.

Part b: Make in Haskell a definition of

statistics :: Ord a => [a] -> [(a,Int)]

such that statistics l is the statistics for the list l. 2

Ternary trees are trees where each internal node has three children. Assume a
data type for ternary trees is defined by

data TTree a = TLeaf a | TNode (TTree a) (TTree a) (TTree a)

As usual, we define the depth of the root of a tree to be zero, the depth of its
children to be one, and so forth.

Part c: Make in Haskell a definition of

depths :: TTree a -> [Int]

such that depths t is the list where the ith element is the number ni of nodes
(internal nodes as well as leaves) at depth i = 0, 1, 2, . . . in a tree t. It is sufficient
that depths t is defined for finite trees t (in which case depths t is a list of
length k + 1, where k is the maximal depth of a leaf in the tree). 2

1More precisely, potentially infinite list, since it is a famous open problem in mathematics

whether there are infinitely many pairs of twin primes.



Question 2 (25%)

A merge of two lists is another list containing each element exactly once, where
the elements of each of the first two lists appear in order (but not necessary
consecutively). As an example, one possible merge of the lists [a,b,c,d] and
[x,y,z] is the list [a,b,x,c,y,z,d].

Part a: Implement a Prolog predicate merge(L1,L2,L3) which is true iff L3 is
a merge of L1 and L2. The predicate must be able to generate (as instantiations
of L3) all merges of given lists L1 and L2 by repeated use of ’;’. 2

In the game of Buzz, players alternate in saying aloud the next positive integer,
except that integers divisible by either 3 or 7 (or both) should be replaced by the
word “buzz”.

Part b: Implement a Prolog predicate buzz which is always true, and where sat-
isfaction of the goal buzz as a side effect prints on the screen the infinite sequence
1 2 buzz 4 5 buzz buzz 8 buzz 10 11 buzz 13 buzz buzz... representing
an infinite game of Buzz. 2

The Danish version of the game is known as Bum, and is slightly different: “buzz”
is replaced by “bum”, there is only one divisor d to check for (not two), and
integers where d occurs as a digit are also replaced by “bum”. The number d is
an integer between 1 and 9, and is decided upon when the game starts.

Part c: Implement a Prolog predicate bum(D,N,L) which is true iff L is the list
of the first N entries in a game of Bum with digit D (where N and D are assumed
to be instantiated).

As an example, satisfaction of the goal bum(3,15,L) should instantiate L to
[1,2,bum,4,5,bum,7,8,bum,10,11,bum,bum,14,bum]. 2



Question 3 (30%)

Part a: For the Prolog program below, state all results (i.e. all instantiations
of X and Y) which will be produced by repeated satisfaction of the goal t(X,Y)
(i.e. by repeated use of ’;’).

t(X,Y):- s(X),!,v(Y),s(X).

s(1).

s(2).

v(a).

v(b):- !.

v(c).

2

Part b: Convert the following predicate logic expression to clausal form:

∀X(∀Y (p(X, Y ) ⇔ ¬(∃Z(q(X, Z)))))

Document the steps of your conversion. 2

Part c: For each of the following pairs of Prolog predicates, find a most general
unifier (with occur-check), or argue that none exists. Explain each step of your
derivations.

i) q(g(X),X) and q(Y,g(Y))

ii) s(h(h(X)),h(Y),Z) and s(h(h(Y)),h(h(Z)),h(h(T)))

iii) X+Y and Y+X

iv) X*(Y+Z) and X*Y + X*Z

2

Part d: Consider the Haskell function signatures

map :: (a -> b) -> [a] -> [b]

sum :: Num a => [a] -> a

Find the most general type of the expression map sum. Explain each step of your
derivation. 2



Part e: Consider the following Haskell definition:

m f g [] = []

m f g (x:xs) = f x : m g f xs

Find the most general type for m (explaining each step of your derivation), and
describe its functionality. 2

Question 4 (20%)

Consider the following two definitions sum1 and sum2 for a function summing the
elements of a list.

sum1, sum2:: Num a => [a] -> a

sum1 [] = 0

sum1 (x:xs) = x + sum1 xs

sum2 = foldr (+) 0

foldr f e [] = e

foldr f e (x:xs) = f x (foldr f e xs)

Part a: Prove that for all finite lists xs, the following holds:

sum1 xs = sum2 xs

2

Part b: Prove the same for all infinite lists xs. 2

Part c: Prove that sum1 = sum2. 2


