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The exam set consists of seven pages (including this front page), and contains
four questions. The weight of each question is as follows:

Question 1: 20%
Question 2: 25%
Question 3: 25%
Question 4: 30%

The parts of a question do not necessarily have equal weight. Note that often a
part can be answered independently from the other parts.

All written aids are allowed. Unless otherwise stated in a question, use of results
from the course textbooks, and of the standard libraries of the programming
languages used, is allowed.



Question 1 (20%)

Consider the following Prolog script.

p(X,Y) :- q(X),r(Y).

p(X,X) :- q(X).

q(a).

q(b).

r(1).

r(2).

r(3).

Part a: Draw the entire search tree resulting from repeated satisfaction of the
goal ?- p(A,B) (by repeatedly entering ; in gprolog).

A node in your tree should represent the current goal and every edge should
represent a successful uni�cation; the results of which should be listed on the
corresponding edge. Recall that examples of search trees are given in the notes.

Also state all answers (instatiantions of A and B) reported by gprolog during the
repeated satisfaction. 2

Now consider the following altered script.

p(X,Y) :- q(X),!,r(Y).

p(X,X) :- q(X).

q(a).

q(b).

r(1).

r(2) :- !.

r(3).

Part b: Show which parts of the search tree from Part a are removed due to
the added cuts. 2



Question 2 (25%)

In cryptography, a Caesar cipher is one of the simplest and most widely known
encryption techniques. The method is named after Julius Caesar, who used it to
communicate with his generals. It is a substitution cipher in which each letter
in the plaintext is replaced by a letter some �xed number of positions down the
alphabet in a circular fashion. In this question we consider the alphabet to be the
lower case letters `a'. . .`z'. For example, with a shift of 3, `a' would be replaced
by `d', `b' by `e', and `z' by `c'.

In this question we will implement Caesar cipher encryption using Prolog. For
this we will consider messages to be a list of single lowercase characters, e.g. the
message �Prolog� will be written [p,r,o,l,o,g]. To convert a message in this
form into a list of character codes, we may use the built-in predicate char_code/2,
that is true i� the single lowercase character given as the �rst argument has the
character code given as the second argument, e.g. char_code(a,97) is true, but
char_code(b,97) is not.

The predicate can be used to convert between characters and character codes,
e.g. by char_code(a,A), and vice versa, but fails if neither of its arguments are
instantiated. The character codes of `a'. . .`z' are 97 . . . 122.

Part a: Implement a Prolog predicate

charCodes(Chars,Codes) :- ...

that is true i� Chars, a list of single lowercase characters, corresponds to Codes,
a list of character codes. That is, the �rst element of Chars must have the �rst
element of Codes as its character code, the second element of Chars must have
the second element of Codes as its character code, etc.

Your implementation should make use of char_code/2 and recursion. 2

For the next part, assume that a Prolog predicate

rotateRight(L1,L2,Places)

is available. Assume the predicate is true i� L2, a list of numbers, is equal to
L1, another list of numbers, rotated Places right within the range [97, 122]. For
example, satisfying the goal rotateRight([97,98,122],L2,3) will instatiate L2
to [100,101,99].

Part b: Implement a Prolog predicate

encrypt(Plain,Crypt,Shift) :- ...



that is true i� and only i� Crypt, a list of single lowercase characters, is the
Caeser cipher encryption with shift Shift of Plain.

The idea is, that we can use this predicate to encrypt a message, e.g. instatiate
C to [s,u,r,o,r,j] by satisfying encrypt([p,r,o,l,o,g],C,3). 2

Part c: Implement the Prolog predicate rotateRight(L1,L2,Places). Hint:
The operator mod is used to calculate the modulus of two numbers. For example,

M is P mod Q. 2

Part d: Using your implementations of charCodes/2, encrypt/3 and rotateRight/3,
is it possible to instatiate P to [p,r,o,l,o,g] by attempting satisfaction of the
goal encrypt(P,[s,u,r,o,r,j],3)? Explain your answer. 2



Question 3 (25%)

Part a: Find a most general uni�er of the following pairs of predicates or argue
that none exists. Explain each step of your derivations.

a) p(q(A), B) and p(C, q(C)).

b) p(x, q(A), A) and p(C, q(C), y).

c) p(A, q(A)) and p(r(B), B).

d) t(M/a) and t(b/N).

2

Part b: Convert the following predicate logic expression to clausal form:

∃A(∀B(p(A, B) ∧ (q(B)⇒ r(A)))).

Explain each step of your conversions. 2

Recall the de�nition of the Haskell library function map:

map :: (a -> b) -> [a] -> [b]

map f xs = [f x|x <- xs]

Part c: Find the most general type of the following Haskell function:

mm f g [] = []

mm f g (x:xs) = map f ((g x):(mm f g xs))

Explain your reasoning. 2



Question 4 (30%)

In this problem we consider the whole numbers Z represented in Haskell by

data Whole = Zero | Succ Whole | Pred Whole deriving Show

We will only consider Whole values that contain a �nite number of the type
constructors Succ and Pred. Recall that the textbook has a similar de�nition of
the natural numbers.

As an example of how to interpret a value w of type Whole as an integer value in
Z, consider

w = Succ (Succ (Pred (Succ Zero)))

The integer interpretation of w is then

1 + (1 + (−1 + (1 + 0))) = 2,

i.e., starting from 0, add 1 for each occurence of Succ and substract 1 for each
occurence of Pred.

Part a: De�ne in Haskell a function

wholeToInt :: Whole -> Int

that converts its argument to the corresponding integer value. 2

Naturally, we would like to convert integer values into Whole values as well.
However, this presents a problem; there are several Whole representations of the
same integer!

Part b: Show that using the above data type, there are in�nitely many distinct
representations of a number z ∈ Z. Hint: Consider a representation of z as

a Whole w. Show that any such representation may be extended into a new

representation. 2

For a Whole w, we de�ne the reduced form to be the unique representation of
w that contains only Succ if w represents a positive number, only Pred if w
represents a negative number, or neither if w represents 0. For example, the
reduced form representation of 2 is Succ (Succ Zero).

You are not required to show that such a representation exists nor that it is
unique.

Part c: De�ne in Haskell a function



intToWhole :: Int -> Whole

that converts its argument to the reduced form Whole representation of the same
value. 2

Part d: Show by induction over w that

wholeToInt (intToWhole w) = w

Hint: Use two inductions; one for the positive whole numbers and one for the

negative. 2

Part e: De�ne in Haskell a function

reduce :: Whole -> Whole

that converts an arbitrary Whole w to its corresponding reduced form. This
conversion must be done without using other datatypes than Whole, i.e. you are
not allowed to �rst convert w to an Int. 2


