
Exercises Nov. 18 and 21

1. Adapted from June 2006, 3

Convert the following predicate logic expression to clausal form:

∀X(∀Y (p(X,Y ) ⇔ ¬(∃Z(q(X,Z)))))

Document the steps of your conversion.

2. Adapted from January 2000, 5a

Rewrite the following logical expression to clausal form:

¬(∀X)(p(X) ⇒ ((∀Y )(p(Y ) ⇒ p(f(X,Y ))) ∧ ¬(∀Z)(q(X,Z) ⇒ p(Z))))

3. Adapted from June 2001, 2a

Rewrite the following logical expression to clausal form:

∃X(p(X) ⇒ ∀Y (p(Y ) ⇒ p(f(X,Y )))) ∧ (∀Z(q(X,Z) ⇒ p(Z)))

4. Adapted from January 2001, 2a

Rewrite the following logical expression to clausal form:

∀X∀Y (s(X,Y ) ⇒ (¬(m(X) ∨ ∀Z(t(X,Z) ∧ (¬m(Z))))))

5. Adapted from June 2005, 2

In this question, we consider sequences of elements from a set of size three. For
concreteness, let the set be S = {1, 2, 3}, and the sequences be strings over S. In such
a string, two identical nonempty neighboring substrings are said to form a repetition.
As an example, the following string contains the two underlined repetitions:

311321231232.

A string having no repetitions is said to be repetition-free. The task of this exercise
is to develop a Prolog predicate which generates all repetition-free strings over S

of a given length. Strings will be represented as lists of integers from S.

(a) Implement a Prolog predicate frontRep(L) which is true if and only if there
is a repetition starting at the front of the list L. Hint: standard predicates (from
textbook or standard library) on lists may come in handy.

(b) Implement a Prolog predicate repFree(X,N) which is true if and only if X is
a repetition-free list of elements in S and has length N. The predicate must be
able to generate (as instantiations of X) all repetition-free lists of length N, by
repeated use of ;.

(c) Implement a Prolog predicate countLessThanEq(N,R) which is true if and
only if R is the number of repetition-free lists of elements in S of length less
than or equal to N. The number of repetition-free lists of length zero is defined
to be one.

1


