Exercises Nov. 18 and 21

1. Adapted from June 2006, 3

Convert the following predicate logic expression to clausal form:

$$
\forall X(\forall Y(p(X, Y) \Leftrightarrow \neg(\exists Z(q(X, Z)))))
$$

Document the steps of your conversion.
2. Adapted from January 2000, 5a

Rewrite the following logical expression to clausal form:

$$
\neg(\forall X)(p(X) \Rightarrow((\forall Y)(p(Y) \Rightarrow p(f(X, Y))) \wedge \neg(\forall Z)(q(X, Z) \Rightarrow p(Z))))
$$

3. Adapted from June 2001, 2A

Rewrite the following logical expression to clausal form:

$$
\exists X(p(X) \Rightarrow \forall Y(p(Y) \Rightarrow p(f(X, Y)))) \wedge(\forall Z(q(X, Z) \Rightarrow p(Z)))
$$

4. Adapted from January 2001, 2A

Rewrite the following logical expression to clausal form:

$$
\forall X \forall Y(s(X, Y) \Rightarrow(\neg(m(X) \vee \forall Z(t(X, Z) \wedge(\neg m(Z))))))
$$

5. Adapted from June 2005, 2

In this question, we consider sequences of elements from a set of size three. For concreteness, let the set be $S=\{1,2,3\}$, and the sequences be strings over S. In such a string, two identical nonempty neighboring substrings are said to form a repetition. As an example, the following string contains the two underlined repetitions:
$3 \underline{11321231232}$.
A string having no repetitions is said to be repetition-free. The task of this exercise is to develop a Prolog predicate which generates all repetition-free strings over S of a given length. Strings will be represented as lists of integers from S.
(a) Implement a Prolog predicate frontRep(L) which is true if and only if there is a repetition starting at the front of the list L. Hint: standard predicates (from textbook or standard library) on lists may come in handy.
(b) Implement a Prolog predicate repFree (X, N) which is true if and only if X is a repetition-free list of elements in S and has length N . The predicate must be able to generate (as instantiations of X) all repetition-free lists of length N , by repeated use of ;
(c) Implement a Prolog predicate countLessThanEq(N, R) which is true if and only if R is the number of repetition-free lists of elements in S of length less than or equal to N. The number of repetition-free lists of length zero is defined to be one.

