
Written Examination

DM509 Programming Languages

Department of Mathematics and Computer Science
University of Southern Denmark

Friday, January 23, 2009, 14:00–18:00

The exam set consists of 6 pages (including this front page), and contains 5
problems. The weight of each problem is listed as a percentage of the full set.
The questions of each problem do not necessarily have equal weight. Note that
most often questions in a problem can be answered independently from the other
questions.

All written aids are allowed. Answering questions by references to material not
listed in the course curriculum is not acceptable.

In answering this exam set, there is free choice between Danish and English.

Problem 1 (25%)

Question a: Implement a Prolog predicate get(L, I, X) which is true if
and only if X is the I’th element in the list L, counting from zero. You may
assume that I is an integer which is at least zero and smaller than the length of
L.

An example of the intended use of this predicate is

get([1,3,5,7], 2, X)

which should give X = 5 as the only answer. 2

Question b: Implement a Prolog predicate getset(L, C, R) which is true
if and only if R the list of elements from L with indices in C, in the same order.

An example of the intended use of this predicate is

getset([1,3,5,7], [0,3], R)

which should give R = [1,7] as the only answer. 2

Question c: Implement a Prolog predicate findindices(L, X, C) which is
true if and only if C is the list of indices where X occurs in L.

An example of the intended use of this predicate is

findindices([1,2,2,1,3,2], 2, C)

which should give C = [1,2,5] as the only answer. 2

Question d: Implement a Prolog predicate occurtwice(L, R) which is true
if and only if R is the list of elements occuring exactly twice in L.

An example of the intended use of this predicate is

occurtwice([1,2,3,4,2,1,3,2], R)

which should give R = [1,3] and/or R = [3,1] as the only answer(s). 2

2

Problem 2 (25%)

Question a: Consider the following Prolog program:

s(X,Y) :- q(X,Y).

s(0,0).

q(X,Y) :- i(X), !, j(Y).

q(3,3).

i(1).

i(2).

i(3).

j(1).

j(2).

Draw the search tree traversed by the Prolog interpreter during repeated sat-
isfaction of the goal s(X,Y). (by repeated use of ’;’). Also, list all results (in-
stantiations of X and Y). 2

Question b: For the following pairs of Prolog predicates, find a most general
unifier or argue that none exists. Show the steps of the algorithm you use.

1. g(h(Y), Z, c) and g(Z, h(X), Y)

2. f(g(X), X, Y) and f(Y, c, g(b))

3. f([H|T], 1, Y, [X,Y], H) and f(L, X, 2, T, 0)

2

Question c: Convert the following expression to clausal form:

∀X ∀Y ¬(p(X,Y) ⇒ ∀Y q(Y, Y))

List the steps of your conversion. 2

3

Problem 3 (10%)

Question a: We define a run in a list of elements to be a maximal subsequence
of identical elements, i.e., [1,2,2,3,1,1,1,4,4,2] has six runs, namely [1],
[2,2], [3], [1,1,1], [4,4], and [2]. Define a Haskell function runLengths

which takes a list of integers as argument and produces a list of the lengths of
the runs in the order they appear, i.e., runLengths [1,2,2,3,1,1,1,4,4,2] =

[1,2,1,3,2,1]. 2

Question b: Given a positive integer n, we define the Collatz sequence from n
as follows: It is an infinite sequence n0, n1, n2, . . . defined by n0 = n and for any
i ≥ 1, ni = f(ni−1) where

f(x) =

{

x/2, if x is even
3x + 1, otherwise

In Haskell, define a function collatz such that collatz n produces the infinite
list [n0, n1, n2, . . .].

For example, evaluating collatz 6 should give the infinite list

[6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 4, 2, 1, ...]

and the definition should be given in such a way that, for example, take 5

(collatz 6) will produce [6, 3, 10, 5, 16]. 2

4

Problem 4 (25%)

Consider the following data type of trees:

data Tree a = Node a (Tree a) (Tree a) | Leaf

Thus, the expression

ex = Node 3 (Node 2 Leaf (Node 3 Leaf Leaf)) (Node 4 Leaf Leaf)

corresponds to the tree

LeafLeaf

4

LeafLeaf

3Leaf

2

3

Question a: We define the fringe of a tree to be those nodes that have two
leaves as children. Define a function

fringe :: Tree a -> [a]

which computes a list of all the values in the fringe nodes (with repetition, i.e., a
value should appear in the result as many times as it appears in a fringe node).
As an example, fringe ex should return [3,4]. 2

The level of a node in a tree is defined as its distance from the root, i.e., the level
of the root is zero, the level of a child of the root is one, the level of a grandchild
of the root is two, etc.

Question b: Define a function

level :: Int -> Tree a -> [a]

which produces a list of all values in nodes at a particular level (again, with
repetition).

As examples, level 1 ex should return [2,4] and level 2 ex should return
[3]. 2

Question c: Define a function levels that given a value and a tree computes a
list of all the levels at which that value appears in the tree (again, with repetition).
Also, state the most general type of the function levels.

As examples, levels 2 ex should return [1] and levels 3 ex should return
[0,2]. 2

5

Problem 5 (15%)

Question a: Find the most general type of each of the following two functions.
Explain the steps in your derivation of the result.

1. numberOf p xs = length (filter p xs)

2. restrict xs = map (\ (x,y) -> x < y) xs

Recall that \ is the symbol in Hugs for λ and the types of the built-in functions
are as follows:

• length :: [a] -> Int

• filter :: (a -> Bool) -> [a] -> [a]

• map :: (a -> b) -> [a] -> [b]

2

Question b: Consider the two different ways of adding elements pairwise from
two lists which can be assumed to be of equal length:

s1 [] [] = []

s1 (n:ns) (m:ms) = (n+m) : (s1 ns ms)

h [] = []

h ((x,y):xs) = (x+y) : (h xs)

s2 ns ms = h (zip ns ms)

Prove by induction that on lists xs and ys of type [Int] and of the same length,
s1 xs ys = s2 xs ys. Argue for the steps in your derivation. 2

6

