
Department of Mathematics and Computer Science

University of Southern Denmark, Odense

October 28, 2014

KSL

Part 2 of the exam project in

DM803 – Advanced Data Structures

Kim Skak Larsen

Fall 2014

Introduction

In this note, we describe one part of the exam project that must be solved in con-

nection with the course DM803 – Advanced Data Structures, Fall 2014. It is im-

portant to read through the entire project description before starting the work on

the project; also the sections on requirements and how to turn in your solution.

Deadline

The deadline for this part of the project is

Friday, November 28, 2014 at 12:00 (noon).

Tracks

For the project in this course, you can choose between two tracks, i.e., you choose

one of them and focus only on that track. The tracks are named as follows:

• The programming track

• The proof track.

Below, we described the content of the two tracks with regards to this part of the

project.

Before doing so, we describe some background material needed for both tracks.

1



99
11

57
12

56
6

87
5

2
9

18
7

42
3

Figure 1: Example Priority Search Tree. Keys are listed above priorities in the

nodes.

Priority Search Trees

The design idea is the following: Every time we want to insert a new key in the

search tree, we also choose a priority, uniformly at random. The new node we

insert will contain both the key and the priority. We require that the tree is a search

tree with respect to the keys and is heap-ordered with respect to the priorities. In

Figure 1, we show an example, listing keys above priorities in the nodes. Here, we

have used “small” priorities for illustration, but in a real implementation, priorities

should be chosen from a very large domain, e.g., all 32- or 64-bit integers. For

simplicity, we will assume that no keys get the same priority.

Operations on the tree are implemented using the following outlines. We point

out that there are many smaller decisions to make while realizing these ideas in an

actual program. The order of the implementations of the operations is important,

since, as we very often do in data structures, one operation is implemented by using

other operations.

The data structure takes up O(n) space and all operations have complexities of the

order of the height of the trees.

Search

As in any standard search tree.

2



Insertion

Given a tree and a key, choose a priority uniformly at random, form a node, and

insert the node at the correct location according to the search tree invariant. Use

single rotations (which preserve the search tree invariant) to move the node up until

the tree is again heap-ordered.

Split

Given a tree and a key k, split should return two trees: one with all keys smaller

than k and one with all keys larger than k. (We assume, for simplicity, that k is not

in the tree.)

The implementation idea is to temporarily insert k, but instead of a random prior-

ity, we give it a priority smaller than any priority currently in the tree. After the

insertion, return the left and right subtree of the root as the result.

Merge

Given two trees where the keys in one tree are smaller than all keys in the other,

we want to merge the two trees into one. We use an idea similar to the recursive

procedure from weekly note 2 for leftist heaps: The node with the smallest priority

should be the root node of the result. Considering the three trees consisting of this

node’s left and right children and the other argument to the merge operation, either

its left or its right child will contain the middle range of keys. Let the root node

keep the child that does not contain the middle range of keys, and replace its other

child tree (the tree with the middle range keys) with the (recursive) merge of that

tree and the other argument of the merge operation.

Deletion

Instead of the node to be deleted, place the merge of its two children.

The Programming Track

There are two independent tasks: Implement priority search trees and implement-

ing partially persistent doubly-linked lists.

3



Both data structures must be implemented as outlined in this note and the articles

describing them, and in such a way that the same time and space complexity bounds

hold.

Note that in the general rules below, we state some implementation requirements

in addition to the ones given in this section.

Priority Search Trees

The operations for priority search trees are described above. After implementing

them, you should investigate their properties. Your philosophy should be that you

want to investigate and understand, and then you want to communicate the results

as clearly as possible to someone else afterwards. Thus, in particular, you should

include graphs showing the connections for all your findings; not just tables with

measurements. Below are some requirements and ideas, but you can supplement

with additional questions.

Investigate the following:

• Average search complexity.

You can simply use the depth of the node a key resides in as a measure for

the time complexity of searching for that key. Investigate average search

complexity as a function of n.

• Variation in search complexity.

For a large number of searches, record for each i how many of these searches

had time complexity i, and illustrate by graphing the percentage of searches

of complexity i as a function of i. If this does not give a good illustration,

consider accumulating, i.e., at i, give the percentage of searches of complex-

ity i or smaller. You can also consider relating i to log2 n, either additively

or multiplicatively, if that gives better information.

Partially Persistent Doubly-Linked Lists

The basic structure consists of items with three fields: an integer field key, and

pointer fields next and prev. To access the list, we have a reference to the

first element. Subsequent elements are reached via the next pointer, and the last

element has a next pointer which is nil (also called null or none). If an

element A’s next pointer points to B, then B’s prev pointer points to A.

4



You must provide operations newversion, search, insert, and update in

a partially persistent version of this data structure, using techniques from [1].

The operation newversion changes to a new version.

The operation search takes a version number v and an integer i as arguments and

returns the key of the ith element of the vth version.

The operation insert takes a key k and an integer i as arguments, and insert the

key k as the new ith element in the list, i.e., between the (i− 1)st and ith element

of the current newest version.

The operation update takes a key and an integer i as arguments, and updates the

key in the ith element to the given key in the newest version.

Experimentally determine the connection between the number of extra pointers and

the space used, i.e., space as a function of extra pointers. Do this both when you

count space as the number elements created in all versions and when you count

space as the total size of memory allocations in all versions. For the latter, you

may count this in terms of number of fields, i.e., you can assume that integers and

pointers take up the same amount of space, and that an element takes up space

equal to the number of fields in it.

Other Remarks

For the report, other than the investigations described above, you need only dis-

cuss possible important choices in your implementation. There is no reason to go

through code that is simply implemented as outlined in the papers.

Remember to read the general rules, where there are also explicit requirements to

programs and reports.

The Proof Track

In this track, you must solve the four independent problems described below.

Priority Search Trees

First argue that given a collection of nodes with keys and priorities, the appearance

of the tree is unique.

We want to establish expected running times of the operations. Let k1, . . . , kn be

all the keys in the tree in sorted order, and let p1, . . . , pn be the corresponding

5



priorities. Consider the subsequence ki, . . . , kj . Argue that

kj is an ancestor of ki ⇐⇒ pj = min {pi, . . . , pj}

Let 1X , where X is a random Boolean variable, denote the value one if X is true

and zero otherwise. Clearly, the expected depth of a node is the expected number

of ancestors it has. Thus, the expected depth of ki is

E





n
∑

j=1

1kj is an ancestor of ki



 =
n
∑

j=1

E
[

1kj is an ancestor of ki

]

From your first argument from the above, you can compute the expected value of

1kj is an ancestor of ki .

Using Harmonic numbers, give a logarithmic upper bound on the expected depth

of ki.

Why does this not necessarily imply that the expected height of a priority search

tree is O(logn)?

Now, we want to prove it, and you may use the following outline for that. Let H(n)
denote the expected height of a tree with n nodes. In such a tree, some key will

have the smallest associated priority. This node will be the root of the subtree and

that will determine the number of nodes going into the left and right subtree. We

let Xn denote the number of nodes in the largest of these, i.e., the maximum of the

number of nodes in the left and in the right subtree. Then the expected height of

the tree can be written as

H(n) = 1 +
∑

i

Prob[Xn = i] ·H(i)

Argue that the right-hand side is bounded by

1 + Prob[Xn ≤ 3

4
n] ·H(3

4
n) + Prob[Xn > 3

4
n] ·H(n)

Bound the probabilities to get a recursion equation for H and show that H(n) ∈
O(logn).

Layered Heaps

A layered heap maintains a collection of fixed-length tuples. Here, we will just

say that the tuple length is three. The purpose of the data structure is to be able to

6



(17, 51, 4)(7, 52, 19)

(3, 50, 3)

(14, 11, 20)

(4, 8, 10)

(6, 6, 6)

(7, 5, 87)

(2, 42, 5)

Figure 2: Example Layered Heap.

efficiently (and separately) extract the tuple with the smallest position 1 value, the

smallest position 2 value, and the smallest position 3 value. Thus, we have three

different deletemin operations, deletemini, i ∈ {1, 2, 3}.

For the structural invariant, we organize the data in the usual heap shape, as known

from introductory data structures. The ordering invariant is the following: The root

layer is referred to as a position 1 layer, the children of the root are in a position 2

layer, then we have position 3 layer, and then we start over, continuing down the

heap. At a position i layer, any node must have a tuple having the smallest position

i value of any tuple in its subtree. Figure 2 shows an example.

Develop O(logn) algorithms; first for insertion and then for deletemini,

using the usual heap strategy of first of all respecting the structural invariant, and

then fixing the ordering invariant. The height is obviously logarithmic, so you just

have to ensure that you can progress up (respectively, down) in the tree in each

step after a constant amount of work, maintaining that you always have at most

one problem node.

Explain the algorithms, or give them in pseudo-code (or implement them), and

7



argue briefly why the algorithms are correct.

Broad Heaps

Consider a heap where we let nodes have degree d > 2. Everything else is un-

changed with regards to structural and ordering invariants.

Express the complexity of the operations

insert, deletemin, and descreasekey

as a function of both d and n.

Fibonacci heaps were basically invented to give Dijkstra’s algorithm the complex-

ity O(n logn + m) in a graph with n vertices and m edges. However, Fibonacci

heaps are a bit cumbersome with lots of pointers, so in this assignment, we want to

avoid them. Using standard binary heaps, the complexity of Dijkstra is O(m logn).
Recall where this expression comes from in terms of how many operations of the

different types must be carried out.

Now, we will use Dijkstra’s algorithm on families of graphs where the number of

edges grows faster than the number of nodes. Assume that we have the dependency

m = nf(n), where f(n) ∈ ω(1). Write up the complexity of Dijkstra’s algorithm

for this case and choose a degree for the heap (that may depend on n) such that

Dijkstra’s algorithm runs in time o(m log n), i.e., strictly better than Θ(m log n).

Beyond Partial Persistency

In what we covered from [1], updates where always performed in the newest ver-

sion. Here we consider a more flexible approach. Assume that the newest version

is version i, and let 1 ≤ j < i. We allow that one can switch to version i+1, make

updates based on version j, and stop. The process can then be repeated. Making

updates based on version j means that you do not follow pointers with version

numbers strictly between j and i + 1. In this way, the versions no longer form a

linear sequence, but instead form a tree structure, e.g., in what we described above,

version j will now have both versions j + 1 and i + 1 as successors in what we

could call the version tree.

Go through the algorithms and determine if this gives rise to any differences or

problems, and discuss if they can be overcome.

Assuming that this can be worked out, we still have that one constant time step

in the ephemeral structure is simulated by an amortized constant time protocol in

8



the persistent structure. However, how are amortized results from the ephemeral

structure transfered? For instance, considering the result that rebalancing after an

insertion in a red-black tree is amortized constant, can that be transfered to a similar

positive result for this more flexible persistency structure?

General Requirements and Rules

Here we list general requirements, procedures for turning in, and exam rules.

Exam Rules

This is an exam project, and cooperation is not permitted. It will be considered

cheating and will be treated as such. You have a duty to keep your notes private

and protect your files against reading and copying by others. Both parties involved

in a possible plagiarism can be held responsible.

There will be given what we judge to be more than sufficient time for solving the

project. Still, we strongly encourage you to plan your work such that you will

finish some days before the deadline.

Solutions that are turned in after the deadline will not be accepted. Downtime on

the system or the printers will not automatically result in an extension; not even if it

is the last hours before the deadline. Neither will own or children’s illness without

a statement from your physician, etc.

The solution

Depending on which track you choose, the solution may consist of just a report or

may consist of a program, test material, and a report.

The Report

The front page of your report must include your full name, the first 6 digits of your

CPR number, and student e-mail address (the prefix to nn@student.sdu.dk).

There are not supposed to be any of the following, but if there are possible omis-

sions, known errors, etc. they should be described in the report. It is often a good

idea to do this in a separate section instead of mixing it in with the rest of the report.

9



The report should in the best possible manner account for the entire solution, i.e., if

your solution includes programs, the report must contain a description of the most

important and relevant decisions that have been made in the process of developing

the solution and reasons must be given where this is appropriate. You must also

explain how possible programs have been tested. Test examples or references to

test examples and test runs can and should be included in the report to the extent

that this is helpful to understand your solution and to be convinced that it is working

correctly.

Programs

When you have to implement algorithms, you must implement them in such a way

that you obtain the asymptotic complexities claimed in the course material. If you

happen to find a library, a package, or similar that implements the algorithms that

you are supposed to implement, then you are of course not allowed to use them.

You should make the implementation yourself from scratch using the basic features

of the programming language you are working with. The safest approach is not to

use libraries and avoid non-trivial built-in features.

Files and directories should be named and organized logically. Programs must be

well-structured with appropriately chosen names and indentation and tested suffi-

ciently.

Programs that are turned in must compile and run on IMADA’s machines.

The preapproved programming languages you can choose from are the following:

• C or C++

• Java

• Python

If you have other preferences, you could likely obtain permission to use an alter-

native. Contact the lecturer.

You are very welcome to develop your programs at home, but it is your responsibil-

ity. This includes technical problems at home, lack of access to relevant software,

moving data to IMADA via e-mail, USB keys, etc. and converting to the correct

format, e.g., between Windows and Linux.

You must turn in a file manual.txt. Here you must explain how to compile

and run your code on IMADA’s computers. Be careful not to hardwire references

10



to your home directory etc. into the code such that it will not be possible for us

to compile or run your program directly. Your goal should be to make it as easy

as possible for us to run your program on additional tests to the ones you have

provided. You have to make everything really clear, e.g., which directory one

should be in, the order in which commands should be carried out, etc. You are

advised to make things as simple as possible. The safest is usually to have all

source files and executables in one directory. Of course, your report and test files

can be in subdirectories.

Turning In

You must turn in on paper and electronically. The details are given below. All

material that is turned in both on paper and electronically must be identical.

On Paper

You must turn in your report on paper at IMADA’s secretaries’ office in your lec-

turer’s letter box. The office may be closed for very short periods of time. If, for

some unexpected reason, the office must be closed for longer periods of time close

to the deadline, an announcement will be made outside the office, giving instruc-

tions as to where you turn in.

Electronically

Electronically, you must turn in everything, i.e., the report in pdf-format, named

report.pdf, and, if you have chosen the programming track, all relevant pro-

grams, test files, and manual.txt.

You upload your files using ”SDU Assignment” in Blackboard (which will give

you a receipt). You should avoid Danish (and other non-ascii) characters (such as

æ, ø, and å) in your directory and file names (Blackboard does not handle this well).

To be safe, also avoid spaces and all special characters not normally occurring in

file names.

You may upload your files individually or collect your files into one (archive) file

(recommended) before uploading. If you choose to do the latter, you may use zip,

bzip2, or tar (with or without gzip).

11



References

[1] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Mak-

ing Data Structures Persistent. Journal of Computer and System Sciences,

38:86–124, 1989.

12


