

Elective Courses Presentation "the pizza meeting"

Kim Skak Larsen

May 26, 2014

Elective Courses Presentation

May 26, 2014 – 1 / 10

DM2xx

Considerations Course Contents More Concretely Example Applications Prerequisites Formal Details Disclaimer

DM2xx – Advanced Data Structures

Elective Courses Presentation

May 26, 2014 - 2 / 10

Considerations

DM2xx

Considerations

Course Contents More Concretely Example Applications Prerequisites Formal Details Disclaimer You know that red-black trees have worst-case $O(\log n)$ operations. However,

- $O(\log n)$ comes from searching what about just rebalancing?
- how many of the rebalancing operations change pointers?
- are any changes possible to obtain O(1) rebalancing?
- its precise height guarantee is $2 \log n \text{can}$ any BST do better?

You know searching in a hash table is expected ${\cal O}(1)$ using a table of size ${\cal O}(n).$ However,

- "expected" is in relation to a uniform input distribution can we make it independent of that?
- how difficult is it to make it worst-case O(1) for static data?

May 26, 2014 - 3 / 10

Course Contents

DM2xx

- Considerations
- Course Contents
- More Concretely Example Applications Prerequisites Formal Details Disclaimer

priority queues

- height and weight balanced trees
- multi-way trees
- randomized search structures
- disjoint sets with variations
- hashing methods
- techniques such as
 - global rebuilding
 - persistency
 - dynamization
 - expected quality vs. expected complexity
 - word RAM manipulations

More Concretely

DM2xx

- Considerations
- Course Contents
- More Concretely
- Example Applications Prerequisites Formal Details Disclaimer

- leftists heaps and skew heaps
- skip lists
- scapegoat trees
- universal and perfect hashing
- analysis of disjoint sets
- disjoint sets with backtracking
- making data structures partially persistent
- van Emde Boas trees
- splay trees
- AVL trees
- treaps
- $\blacksquare \quad (a,b)\text{-trees}$
 - . . .
 -

Elective Courses Presentation

May 26, 2014 – 5 / 10

Example Applications

DM2xx

Considerations Course Contents More Concretely Example Applications Prerequisites

Formal Details

Disclaimer

Data structures are important parts of:

- Efficient algorithms for fundamental problems in CS
- Database Systems
- Geographic Information Systems (GIS)
- Compilers/interpreters for various programming languages
- Robot Motion Planning
- Computer Aided Design
 - I ...
 - . . .

Prerequisites

DM2xx

Considerations Course Contents More Concretely Example Applications Prerequisites Formal Details

Disclaimer

DM508 - Algorithms and Complexity (and the prerequisites implied by DM508, e.g., topics from DM507)

Specific Data Structures

- Search Trees (red-black trees)
- Priority Queues (binary heap)
- Disjoint Sets (Galler-Fischer representation)

General Techniques

- Asymptotic Notation
- Time and Space Analysis
- Amortized Analysis

Formal Details

DM2xx

Considerations Course Contents More Concretely Example Applications Prerequisites Formal Details Disclaimer

10 ECTS

- semester course
- 2 hours of lectures and 2 hours of exercises per week
- articles and excerpts from textbooks
- obligatory project throughout (implementation, possibly optionally theory)
- oral exam with preparation (7 point scale)

Disclaimer

DM2xx

Considerations Course Contents More Concretely Example Applications Prerequisites Formal Details Disclaimer

- There *will* be theorems and proofs in every lecture...
- —in particular, careful analysis of running time
- We will not look much at applications
- Chalk & blackboard lectures...
 - Course language is English, if necessary...

Elective Courses Presentation "the pizza meeting"

Kim Skak Larsen

May 26, 2014

Elective Courses Presentation

May 26, 2014 – 10 / 10 $\,$