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Abstract

We consider the Unrestricted Bin Packing problem where we have
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the items, we get better performance for various measures compared
with the performance achieved on the fair version of the problem. Our
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1 Introduction

1.1 General

In this paper, we are investigating the competitive ratio for a bin packing
problem. However, in addition to considering unrestricted request sequences,
we also consider some restricted sequences which we refer to as accommodat-
ing sequences. Informally, these are sequences where an optimal algorithm
can satisfy all requests. Clearly, the competitive ratio on accommodating se-
quences1 is no worse than the competitive ratio on unrestricted sequences for
any given problem and sometimes can be much better. For problems where
the competitive ratio is a bad measure, it may be useful to compare algo-
rithms by their competitive ratio on accommodating sequences. Specifically,
it was shown in [4, 5] that there are (benefit) problems where the competitive
ratio tends to zero while the competitive ratio on accommodating sequences
is a constant, i.e., independent of the parameters of the problem. Moreover,
when we are trying to distinguish between two algorithms, the competitive
ratio on accommodating sequences may prefer one algorithm while the com-
petitive ratio measure (on all sequences) prefers the other [5].

In the Bin Packing problem we are given some bins and the goal is to pack
a set of items into these bins. We concentrate on the benefit variant of the
problem, where there are n bins and the objective is to maximize the total
number of items in these bins. This problem has been studied in the off-
line setting, starting in [8], and its applicability to processor and storage
allocation is discussed in [9]. (For surveys on bin packing, see [10, 7].)

In the on-line version of the problem the items arrive in some sequence and
the assignment of an item should be done before the next item arrives. We
assume that the items are integer-sized and the bins all have size k. One can
discuss the Fair Bin Packing problem2 where it is required that the packing
be fair , that is, an item can only be rejected if it cannot fit in any bin at the
time when it is given. Note that the optimal algorithm is also required to be
fair. It is shown in [5] that for this problem, Worst-Fit has a strictly better
competitive ratio than First-Fit, while First-Fit has a strictly better com-
petitive ratio than Worst-Fit on accommodating sequences. In this case, the
competitive ratio on accommodating sequences seems the more appropriate
measure, since it is constant while the competitive ratio (on all sequences)
is close to zero, for large values of k, basically due to some sequences which
seem very contrived. This demonstrated the usefulness of the more general
accommodating function [6] which comprises the competitive ratio as well as
the competitive ratio on accommodating sequences (it is a function of the
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restriction on the request sequences).

Here, we consider what happens when the fairness restriction is removed.
Thus, for the on-line problem Unrestricted Bin Packing (UBP), there are
again n bins, all of size k, the items are integer-sized, and the goal is to
maximize the total number of items placed in the bins, but there is no fairness
restriction.

We note that on accommodating sequences, the competitive ratio of UBP is
no worse than the competitive ratio of the fair problem, since the optimal
algorithm serves all the requests and hence is fair. In general, however, the
competitive ratio of UBP is not necessarily better than the competitive ratio
of the fair problem since the optimal algorithms may be different. In fact, in
many cases, considering unfair algorithms, i.e., performing admission control
on the requests, is the more challenging problem; see for example the results
for throughput routing in [1, 2, 3]. In particular, with the Unrestricted
Bin Packing problem, it is easier to differentiate between algorithms since
both their competitive ratio and their competitive ratio on accommodating
sequences can vary over a large range. This is in contrast to on-line algorithms
for Fair Bin Packing where all of them must have both within a constant
factor of each other.

1.2 Accommodating Sequences and the Accommodat-

ing Function

For completeness, we define the competitive ratio and the accommodating
function for Unrestricted Bin Packing. Note that Unrestricted Bin Packing
is a maximization problem, and all ratios are less than or equal to 1.

Let A(I) denote the number of items algorithm A accepts when given request
sequence I and let OPT(I) denote the number an optimal off-line algorithm,
OPT, accepts. An on-line algorithm, A, is c-competitive if there exists a con-
stant b, such that A(I) ≥ c ·OPT(I)− b for all sequences I. The competitive
ratio CR = sup{c | A is c-competitive}.
Next, we introduce the restricted request sequences. We say that I is an
α-sequence, if I could be packed in αn bins. We investigate the competitive
ratio on such restricted sequences. To be precise, an on-line algorithm A is
c-competitive on α-sequences if c ≤ 1 and there exists a constant b, such that
for every α-sequence I, A(I) ≥ c ·OPT (I)− b. The accommodating function
A is defined as A(α) = sup{c | A is c-competitive on α-sequences}.
Thus, the accommodating function for an algorithm is the competitive ratio
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of that algorithm on α-sequences as a function of α. We refer to 1-sequences
as accommodating sequences, since the optimal algorithm can accommodate
all requests in such a sequence. We use AR to denote the competitive ratio
on accommodating sequences.

1.3 Results

We prove results on the Unrestricted Bin Packing problem for the usual
competitive ratio, the competitive ratio on accommodating sequences and
the accommodating function. We start with the competitive ratio.

For the usual competitive ratio we prove the following:

• The algorithm Log (Section 2.2) has a competitive ratio of Θ( 1
log k

).

• No on-line algorithm can have a competitive ratio which is better than
O( 1

log k
), even when considering randomized algorithms.

• We observe that the competitive ratios of First-Fit and Worst-Fit are
1
k
.

These results should be compared with the competitive ratio of any on-line
algorithm for the fair problem: they are all Θ( 1

k
) [5].

For the competitive ratio on accommodating sequences we prove:

• The competitive ratio of Log on accommodating sequences is Θ( 1
log k

).

• We show that the competitive ratio of First-Fit on accommodating
sequences is at most 5

8
. From that and from [5] we conclude that the

competitive ratio of First-Fit on accommodating sequences is exactly
5
8
, since the fairness restriction on OPT is irrelevant when all of the

items can be packed.

• We design an unrestricted algorithm, Unfair-First-Fit, whose compet-
itive ratio on accommodating sequences is 2

3
, which is strictly higher

than the competitive ratio of First-Fit on accommodating sequences.

• The competitive ratio of any on-line algorithm on accommodating se-
quences is no better than 6

7
≈ 0.857, even when considering randomized

algorithms. We also improve the upper bound for fair algorithms and
show that the competitive ratio of any fair deterministic on-line algo-
rithm on accommodating sequences is less than 0.809.
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Thus, according to the usual competitive ratio, Log is the better algorithm,
and according to the competitive ratio on accommodating sequences, First-
Fit is the better algorithm (the same is true for Log and Unfair-First-Fit).

For the accommodating function we prove the following:

• We design randomized and deterministic algorithms for which the ac-
commodating function evaluated at any constant α is a constant, if the
algorithm is given the value α.

• In contrast, we observe that First-Fit’s (and Unfair-First-Fit’s) accom-
modating function drops down to Θ( 1

k
) for α ≥ 1 + c, for any constant

c > 0.

The main technical effort is to prove the competitive ratio of the algorithm
Unfair-First-Fit on accommodating sequences. The other results are easier
to prove. Algorithm Log uses derandomization of the standard classify and
select technique. The proof of the lower bound for Log is similar to the
lower bound proof in [2], and the proof of the general upper bound for the
competitive ratio is analogous to the proof of the corresponding lemma in [1].

Remark: In this paper, we assume that all items are integer-sized and the
bins have size k. All of the results hold with the weaker assumption that the
bins are unit-sized and the smallest item has size at least 1

k
. However, some

of the results in [5] do not appear to hold with this assumption, so we use
the stronger assumption for consistency.

2 The Competitive Ratio

2.1 First-Fit and Worst-Fit

It is easy to see that the competitive ratio of First-Fit or Worst-Fit for
Unrestricted Bin Packing is 1

k
. For the upper bound, consider the sequence

consisting of n items of size k followed by n · k items of size 1. For the lower
bound, note that if First-Fit (or Worst-Fit) rejects anything, it accepts at
least n items, and no algorithm can accept more than n · k items. From that
it follows that First-Fit’s (and Worst-Fit’s) accommodating function drops
down to 1

k
for α ≥ 2. Moreover, it is Θ( 1

k
) for α ≥ 1 + c, for any constant

c > 0, by using (α− 1)n · k (instead of n · k) items of size 1.
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2.2 Algorithm Log

In the description of the algorithm Log, we assume that n > c ⌈log2 k⌉, for
some constant c > 1. If n is smaller, we can use simple randomization to
achieve the same results.

Log divides the n bins into ⌈log2 k⌉ groups G1, G2, . . . , G⌈log
2
k⌉. Let p =

⌊ n
⌈log

2
k⌉⌋ and let s = n− p · ⌈log2 k⌉. Groups G1, G2, . . . , Gs consist of p + 1

bins and the rest of the groups consist of p bins. Let S1 = {x | k
2
≤ x ≤ k},

and Si = {x | k
2i

≤ x < k
2i−1} , for 2 ≤ i ≤ ⌈log2 k⌉. When Log receives

an item o of size so ∈ Si, it decides which group Gj of bins to pack it in by
calculating j = max{j ≤ i | there is a bin in Gj that has room for o}. If j
exists, o is packed in Gj according to the First-Fit packing rule. If not, the
item o is rejected.

Theorem 2.1 The competitive ratio of Log is Θ( 1
log k

), even on accommo-
dating sequences.

Proof Consider first the lower bound. For i ∈ {1, 2, . . . , ⌈log2 k⌉}, let ni(I)
denote the number of items of size s ∈ Si accepted by OPT when given
the sequence I of items. Since group Gi is reserved for items of size k

2i−1 or
smaller, the bins in group Gi will receive at least min{2i−1p, ni(I)} items.
OPT can accept at most 2in items with sizes in Si, i.e. ni(I) ≤ 2in. Thus,
2i−1p > 2i−1( n

⌈log
2
k⌉ − 1) ≥ ni(I)(

1
2⌈log

2
k⌉ − 1

2n
). Given the same sequence,

Log packs at least ni(I)(
1

2⌈log
2
k⌉ − 1

2n
) items in Gi, for i ∈ {1, 2, . . . , ⌈log2 k⌉}.

So, for any I,

Log(I)

OPT(I)
>

∑

i∈{1,2,...,⌈log
2
k⌉}

ni(I)(
1

2⌈log
2
k⌉ − 1

2n
)

∑

i∈{1,2,...,⌈log
2
k⌉}

ni(I)
=

1

2⌈log2 k⌉
− 1

2n
,

so CRLog >
1

2⌈log
2
k⌉ − 1

2n
.

For the upper bound, consider the sequence I with n items of size k. Then,

Log(I)

OPT(I)
=

⌈ n
⌈log

2
k⌉⌉

n
<

1

⌈log2 k⌉
+

1

n
,

so ARLog <
1

⌈log
2
k⌉+

1
n
. Since all sequences are considered for the competitive

ratio, CRLog ≤ ARLog, and the result follows. �
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2.3 An Upper Bound on the Competitive Ratio

In this section, we consider an arbitrary on-line algorithm A for Unrestricted
Bin Packing and prove general bounds on how well it can do. First, note
that the only possible lower bound on the competitive ratio, even on ac-
commodating sequences, is zero, since for the algorithm which simply rejects
everything, the ratio is equal to zero.

Clearly, the algorithm Log does not have the best possible competitive ra-
tio on accommodating sequences, but its competitive ratio is quite close to
optimal.

Theorem 2.2 Any deterministic or randomized algorithm for Unrestricted
Bin Packing has a competitive ratio of less than 2

log
2
k
.

Proof Assume that k is a power of 2. The items are given in phases
numbered 0, 1, . . . , r, r ≤ log2 k. In phase i, n2i items of size k/2i are given.
Clearly, any optimal off-line algorithm will accept all n2r items in phase r.

Let xi be the expected number of items that the on-line algorithm accepts
in phase i, 0 ≤ i ≤ r, and xi = 0, r < i ≤ log2 k. By the linearity of
expectations, the expected total number of items accepted by the on-line
algorithm is

∑log
2
k

i=0 xi and the expected total volume of the items accepted

is
∑log

2
k

i=0 k2−ixi. Since there are only nk units of capacity overall, we get:
∑log

2
k

i=0 k2−ixi ≤ nk, or
∑log

2
k

i=0 2−ixi ≤ n.

We now show that r can be chosen such that
∑r

i=0 xi < 2·n2r
log

2
k
, meaning

that OPT will pack more than 1
2
log2 k times as many items as the on-line

algorithm. Defining Sj = 2−j
∑j

i=0 xi, this statement can be reformulated
as ∃r ∈ {0, 1, . . . , log2 k} : Sr < 2n

log
2
k
, which is proven by the following

inequality.

log
2
k

∑

j=0

Sj =
∑

0≤i≤j≤log
2
k

2−jxi <

log
2
k

∑

i=0

2 · 2−ixi ≤ 2n. �

3 The Competitive Ratio on Accommodating

Sequences

3.1 An Upper Bound

Now we turn to the competitive ratio on accommodating sequences. In [5], it
was shown that for k ≥ 7, any deterministic Fair Bin Packing algorithm has
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a competitive ratio on accommodating sequences of at most 6
7
. The same

result and essentially the same proof hold when the fairness restriction is
removed, even for randomized algorithms.

Theorem 3.1 For k ≥ 7, any deterministic or randomized Unrestricted Bin
Packing algorithm has a competitive ratio of at most 6

7
, even on accommo-

dating sequences.

Proof Assume n is even. Consider an arbitrary on-line algorithm A. An
adversary can proceed as follows: Give n items of size ⌈k

2
⌉ − 1, and let q

denote the number of bins which contain two items after this. In the case
where E[q] < 2n

7
, the adversary gives n

2
long requests of size k. The off-line

algorithm can pack the first n requests in the first n
2
bins and thus accept

all 3n
2
items. On average, the on-line algorithm places two items in E[q] bins

and has at most one item in every other bin. The performance ratio is thus
at most E[n+q]

n+n

2

= 2n+2q
3n

< 6
7
.

In the case where E[q] ≥ 2n
7
, the adversary gives n requests of size ⌊k

2
⌋ + 1.

The off-line algorithm can pack the first n items one per bin and thus accept
all 2n items. The on-line algorithm must reject at least E[q] items on average.

The performance ratio is thus at most E[2n−q]
2n

≤ 6
7
. �

However, for fair algorithms we can slightly improve the upper bound for
deterministic algorithms, if k is much larger than n.

Theorem 3.2 The competitive ratio of any fair deterministic on-line algo-
rithm is at most 23+4

√
3

37
< 0.809.

Proof Assume that both n and k are even and that k > 8n3. We start
the sequence by n items of size k/2 − 2n. Let βn be the number of on-line
bins containing two items. Since the algorithm is fair, all items are accepted,
hence there are also βn empty bins, and the other n− 2βn bins contain one
item. We continue by one of two different sequences, depending on the value
of β. If β ≥ 2 −

√
3, we get the following sequence of items, containing five

phases.

1. n(1− β) items of size k/2 + 2n.

2. βn− 1 items of size k/2− 6n.

3. One item of size k/2− 8n2β + 2n.
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4. βn− 1 items of size 8n.

5. 2βn− 1 items of size 4n+ 1.

All items of phase 1 join an on-line bin with zero items or one item. All
items of phases 2 and 3 join a bin with one phase 1 item. Denote the bin
that got the item of phase 3 by z. Note that according to the restriction on
k, the item of phase 3 could only fit into a bin with one item. At this point,
all on-line bins except z are occupied by at least k − 4n. Hence phase 4 all
fits into z, and does not fit into any other bin. Consequently bin z is also
occupied by k − 4n after phase 4. There is no room for any item of phase 5.

OPT has n(1 − β) bins with the pair k/2 − 2n and k/2 + 2n, βn − 1 bins
with the triplet k/2− 6n, k/2− 2n, 8n, and all other items in one bin. The
total number of items is 2n + 3βn − 2 and the on-line algorithm accepts
2n + βn − 1 of them. The competitive ratio tends to 2+β

2+3β
as n tends to

infinity. The competitive ratio decreases as β grows, and hence it is less than
0.809.

If β < 2−
√
3, we continue as follows, with these five phases.

1. βn items of size k.

2. n(1− 2β)− 1 items of size k/2− 4n2 + 2n.

3. One item of size k/2− 4n3 + 6n2 − 2n+ 4n2β(2n− 1).

4. n/2− βn− 1 items of size 8n2 − 4n.

5. n− 2βn− 2 items of size 4n2 + 1.

After the first phase, the on-line algorithm has no empty bins. All items of
phase two join bins with a single item of the initial sequence. Due to the size
restriction on k, the item of phase 3 also joins such a bin, denote this bin by
w. All items in phase 4 also join bin w. There is again no room for items of
phase 5.

OPT has βn bins with one item of size k, n/2 bins with two items of the
initial phase, n/2 − βn − 1 bins with a pair of items from phase 2 and one
from phase 4, and all other items in one bin.

The total number of items is 3.5n−4βn−3, and the on-line algorithm accepts
2.5n− 2βn− 1. As n grows to infinity, the competitive ratio tends to 5−4β

7−8β
.

This is less than 0.809. �
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Next, we show a negative result on the performance of First-Fit. This demon-
strates the need for a better algorithm.

Theorem 3.3 For Fair Bin Packing, First-Fit’s competitive ratio on accom-
modating sequences is at most 5

8
.

Proof Assume that n is of the form n = 9 · 2i − 5 and that k is greater
than 12 · 23i and divisible by 3. An adversary can give the following request
sequence, divided into i+ 3 phases:

Phase 1. 3 items of size A = k
3
− 23i.

Phases 2 . . . (i+ 1). For j = 1, . . . , i, 3 · 2j pairs, each with one item of size
Bj =

k
3
+ 23i−3j+2 followed by one of size Cj =

k
3
− 23i−3j .

Phase i+ 2. 3 · 2i items of size D = 2k
3
+ 1.

Phase i+ 3. 9 · 2i − 6 items of size E = k
3
.

First-Fit will pack the first phase in one bin, with three items. The assump-
tion on k assures that four items from this phase cannot be packed together.
For phases 2, . . . , i + 1, First-fit will pack one pair in each bin. For every
phase j, each packed bin will contain one item of size Bj and one item of
size Cj using 3 · 2j bins. After such a pair is packed, all future items are
too large to join a pair. The number of bins used in the first i+ 1 phases is

1 +
i
∑

j=1

3 · 2j = 6 · 2i − 5. In the next phase, each item will be placed in its

own bin, using the last 3 · 2i bins. There will be no space for items from the
last phase.

OPT can pack each item from phase one with two of the items of size B1

from phase two, using a total of 3 bins for this. Then, it can place every pair
of items of size Bj+1 together with one item of size Cj (for all j ≤ i − 1).
This occupies 3 · 2j bins for all 1 ≤ j ≤ i− 1. Then it can pack one item of
size Ci together with one item of size D using a total of 3 · 2i for this. The

number of bins used is 3+3
i−1
∑

j=1

2j +3 · 2i = 6 · 2i− 3. There are now 3 · 2i− 2

empty bins which can each hold three items from the last phase. The ratio
is thus 15·2i−9

24·2i−15
= 5

8
+ 1

8(8·2i−5)
which tends to 5

8
as i goes to infinity. �

In [5], it is shown that the competitive ratio of First-Fit on accomodating
sequences is at least 5/8. Hence, 5/8 is a tight bound on the performance of
First-Fit on accommodating sequences.
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3.2 Unfair-First-Fit

3.2.1 The Algorithm.

In Section 2.2, it was shown that there is an algorithm for Unrestricted Bin
Packing which has a better competitive ratio than any algorithm for Fair
Bin Packing. It would be difficult to do the same for the competitive ratio
on accommodating sequences, since the best upper bounds known are 6

7
for

unfair algorithms and 0.809 for fair algorithms. First-Fit’s competitive ratio
on accommodating sequences is 5

8
, and no algorithm for Fair Bin Packing

is known to have a better competitive ratio on accommodating sequences.
The algorithm Unfair-First-Fit (UFF), presented below, is shown to have a
competitive ratio on accommodating sequences which is better than that of
First-Fit as long as the number of bins is at least 16; the ratio approaches 2

3

as n increases. What makes Unfair-First-Fit different from First-Fit is that
items larger than k

2
are rejected if enough items have been accepted already

to maintain the desired ratio of 2
3
.

Input: S = 〈o1, o2, . . . , on〉
Output: A, R, and a packing for those items in A
A:= {o1}; R:= {}; S:= tail(S)
while S 6= 〈〉

o:= hd(S);S:= tail(S)

if size(o) > k
2
and

|A|
|A|+|R|+1

≥ 2
3

R:=R ∪ {o}
else if there is space for o in some bin

place o according to the First-Fit rule

A:=A ∪ {o}
else

R:=R ∪ {o}

3.2.2 The Competitive Ratio on Accommodating Sequences.

Theorem 3.4 For n ≥ 9, the competitive ratio of Unfair-First-Fit on accom-

modating sequences is more than
2

3
− 4

6n+ 3
. Thus, for n ≥ 16, ARUFF >

ARFF.

Proof The term “large” is used for items strictly larger than k
2
, since they

are considered in a special way by the algorithm. Let B denote the set of
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large items that are alone in a bin in UFF’s packing. Let s denote the size
of the smallest item in R. We divide the proof into two cases depending on
the size of s. The first case is easy.

Case 1: s > k
2
: Since the smallest item in R is larger than k

2
, the items in

R ∪ B are all larger than k
2
. Thus, since all items can be packed in n bins,

|R| + |B| ≤ n, or |R| ≤ n − |B|. Furthermore, at most one small item can
be alone in a bin: |A| ≥ 2n− |B| − 1. Thus, the performance ratio is

|A|
|A|+ |R| ≥

2n− |B| − 1

2n− |B| − 1 + n− |B| ≥
2n− 1

3n− 1
=

2

3
− 1

9n− 3
.

Case 2: s ≤ k
2
: Since we consider the competitive ratio on accommodating

sequences, an optimal off-line algorithm, OPT, can pack all items in S. It
may be instructive to view the optimal packing as being done in 3 phases:

1. UFF is run on S.

2. The packed items are rearranged, creating room for the rejected items.

3. The rejected items are packed.

The packing after Phase 1 is denoted by PUFF, and the packing after Phase 3
is denoted by POPT. Similarly, EUFF and EOPT are used to denote the total
empty space after Phase 1 and Phase 3 respectively. We assume without loss
of generality that no large item is moved during Phase 2.

We divide the rejected items into two disjoint sets: Rb which contains large
items, and Rs which contains small items. We use the following equation to
bound the number of small items rejected.

|Rs| ≤
1

s
·
(

EUFF − EOPT − k

2
|Rb|

)

It is easy to see that |R| < n, since the empty space in any bin in PUFF is less
than s and all rejected items have size at least s. Thus, if all bins contain
at least two items each, |A|

|A|+|R| >
2n

2n+n
= 2

3
and we are through. Therefore,

assume that some bins contain only one item. Since the empty space in any
bin is less than k

2
, such items must be large. Thus, the items that are alone

in a bin are exactly the items in B.

It is now clear that |A| ≥ 2n−|B|. However, if some bins contain more than
two items, this lower bound is too pessimistic. Therefore, we try to “spread
out” the items a little more. Assume that the items in PUFF are labeled with

12



consecutive numbers in each bin according to their arrival time, i.e., the first
item in a bin is labeled 1, the next one is labeled 2, and so on. We split Phase
2 into two Subphases, 2A and 2B, such that in Subphase 2A only items with
labels higher than 2 are moved and in Subphase 2B the remaining moves
are performed. Note that the packing produced during Subphase 2A is only
technical and used for counting purposes; it might be illegal in that some
bins might contain a total volume larger than k.

If some of the items moved during Subphase 2A are moved to bins containing
items from B, a better lower bound on |A| can now be obtained (Lemma 3.1).
The set of items that are still alone after Subphase 2A is divided into two
sets: X, containing the items that are still alone after Subphase 2B, and L,
containing those that are not. Any item that is alone after Subphase 2A was
alone in PUFF as well. Since no such item can be combined with an item
belonging to R, each item in X is also alone in POPT. Therefore, the bins
containing an item from X do not contribute to EUFF − EOPT.

Lemma 3.1 |A| ≥ 2n− |L| − |X|.

Proof L ∪X is the set of objects that are alone after Subphase 2A. �

The following easy lemma is used to prove Lemma 3.3 below which, loosely
speaking, shows that if we cannot guarantee that most of the bins contain at
least two items after Subphase 2A, then much of the empty space in PUFF is
used by large rejected items.

Let t denote the time just after the last large item was accepted by UFF and
let At denote the set of items accepted at time t.

Lemma 3.2 |Rb| ≥ 1
2
|At| − 1.

Proof Since a large item was accepted just before time t, all items previously
rejected are large items and therefore contained in Rb. Since the item was
accepted, |At|−1

|At|−1+|Rb|+1
< 2

3
. Solving for |Rb|, we get |Rb| > 1

2
|At| − 3

2
, and

since |Rb| must be integer, we get |Rb| ≥ 1
2
|At| − 1. �

Assume that at time t all small items accepted by UFF are marked.

Lemma 3.3 |Rb| ≥ |L|+ 1
2
|X| − 1.

13



Proof It is shown that |At| ≥ 2|L| + |X|, which will complete the proof,
since, by Lemma 3.2, |Rb| ≥ 1

2
|At| − 1. To each item o ∈ L, a marked item

is assigned in the following way. Since no item in L is alone after Phase 2,
we can assume that the bin bo containing o will receive at least one item, o′,
labeled 1 or 2 during Phase 2. If o′ is marked, it is assigned to o. Otherwise,
it must be labeled 2, since all items labeled 1 in bins before bo are marked.
The item which was packed below o′ in PUFF was alone at time t. Therefore,
this item is not moved to any item in L. This item (labeled 1) can be assigned
to o. In this way, every item in L has an item assigned which arrived before
time t and which is not in L ∪X. Since L ∪X ⊆ At, |At| ≥ 2|L|+ |X|. �

Subcase 2a: s ≤ k
3
. Since the smallest item in R has size s, the empty

space in each bin in PUFF is smaller than s. Thus, we can use s(n− |X|) as
an upper bound on EUFF − EOPT:

|Rs| ≤
1

s
·
(

EUFF − EOPT − k

2
|Rb|

)

<
1

s

(

s(n− |X|)− k

2
|Rb|

)

= n− |X| − k

2s
|Rb| ≤ n− |X| − 3

2
|Rb|.

Now, using Lemma 3.3, we get

|R| = |Rs|+ |Rb| ≤ n− |X| − 1

2
|Rb| ≤ n− |X| − 1

2

(

|L|+ 1

2
|X| − 1

)

= n− 5

4
|X| − 1

2
|L|+ 1

2
.

Thus,

|A|
|A|+ |R| ≥

2n− |L| − |X|
2n− |L| − |X|+ (n− 5

4
|X| − 1

2
|L|+ 1

2
)

≥ 2n− (|L|+ |X|) + 1
3

3n− 3
2
(|L|+ |X|) + 1

2

−
1
3

3n− 3
2
(|L|+ |X|) + 1

2

≥ 2

3
− 2

12n− 3
,

since |L| + |X| ≤ 2
3
(n + 1), which follows from the fact that the number of

large items is at most n: n ≥ |Rb|+ |L|+ |X| ≥ (|L|+ 1
2
|X|−1)+ |L|+ |X| ≥

3
2
(|L|+ |X|)− 1.

Subcase 2b: k
3
< s ≤ k

2
. In this case, s(n − |X|) is not a good bound

on EUFF − EOPT, but we will show that even in this case, EUFF − EOPT is

14



“almost” bounded by k
3
(n−|X|), if n ≥ 9 and |A|

|A|+|R| <
2
3
. Lemma 3.4 below

is used for this purpose.

Lemma 3.4 Let m be the number of bins containing at least c items in a
First-Fit packing. If c ≥ 1 and m ≥ c + 1, then the volume V of the items
in these m bins is more than c

c+1
mk.

Proof Let C denote the set of bins containing at least c items, and, for any
bin b, let V (b) denote the sum of the sizes of the items in b.

Suppose, for the sake of contradiction, that V ≤ c
c+1

mk. Then there is a bin
b ∈ C such that V (b) = c

c+1
k− ε, ε ≥ 0. The size of any item placed in a bin

to the right of b must be greater than 1
c+1

k + ε, since otherwise it would fit
in b. Therefore any bin b′ ∈ C to the right of b has V (b′) > c

c+1
k+ cε ≥ c

c+1
k.

This means that there is only one bin b ∈ C with V (b) ≤ c
c+1

k, and if b is
not the rightmost nonempty bin in C, then V > (m− 2) c

c+1
k+ ( c

c+1
k− ε) +

( c
c+1

k + cε) ≥ m c
c+1

k. Thus, b must be the rightmost nonempty bin in C.

One of the items in b must have size at most 1
c+1

k − ε
c
. Since this item

was not placed in one of the m − 1 bins to the left of b, these must all be
filled to more than c

c+1
k + ε

c
. Thus, V > (m − 1)( c

c+1
k + ε

c
) + ( c

c+1
k − ε) =

m c
c+1

k + (m− 1) ε
c
− ε ≥ m c

c+1
k + c ε

c
− ε = m c

c+1
k, which is a contradiction.

�

Assuming n ≥ 9, Lemma 3.4 combined with Lemma 3.5 below says that the
average empty space in bins containing more than one item can be assumed
to be at most k

3
.

Lemma 3.5 Assume that n ≥ 9 and s ≤ k
2
. Then, in PUFF, at least three

bins contain two or more items.

Proof Assume for the sake of contradiction that fewer than three bins
contain at least two items. Since s ≤ k

2
, no bin contains a single item of

size at most k
2
. Therefore, at least n − 2 bins contain large items, which all

arrived before time t, i.e., At ≥ n− 2. By Lemma 3.2, at least 1
2
At − 1 large

items are rejected. Adding these up and noting that there can be at most n
large items, we get n− 2 + n−2

2
− 1 ≤ n. Solving for n yields n ≤ 8, which is

a contradiction. �

Our goal is now, roughly speaking, to show that the average empty space
in all n bins is bounded by approximately k

3
. Number the bins from left to

15



right, and let l be the number of the bin in which the last large item was
placed. Let e denote the largest empty space in bins containing an item from
B. In the proof of Lemma 3.7 we will show a lower bound on the number
of bins to the right of l of approximately |B|

2
. Each of these bins contains at

least two items of size larger than e. Thus, even if e > k
3
, the average empty

space in the B-bins and the bins to the right of l will be bounded above

by approximately
(

|B| e+ (k − 2e) |B|
2

)

/ 3|B|
2

= k|B|
2

· 2
3|B| =

k
3
. Lemma 3.4

combined with Lemma 3.6 below says that we can assume that the rest of
the bins have an average empty space of at most k

3
.

Lemma 3.6 Assume that n ≥ 9, s ≤ k
2
, e ≥ k

3
, and |A|

|A|+|R| <
2
3
. Then, in

PUFF at least three of the first l bins contain two or more items.

Proof We count the total number of items of size larger than e. Since
|A| ≥ 2n − |B|, more than n − |B|

2
items are rejected, because otherwise we

have a performance ratio of 2
3
, which is a contradiction. After bin l, there

are n − l bins containing at least two items each. All of the rejected items
and those in the last n − l bins are larger than e and there are more than
n − |B|

2
+ 2(n − l) of them. Bins containing items from B cannot accept

any of these items, and only two can be put together since e ≥ k
3
. Thus,

n − |B|
2

+ 2(n − l) ≤ 2(n − |B|). Solving for l, we get l ≥ n
2
+ 3

4
|B|. This

shows that at least n
2
− |B|

4
bins to the left of l contain two or more items. By

Lemma 3.5, |B| ≤ n− 3. Thus, n
2
− |B|

4
≥ n

2
− n−3

4
= n+3

4
≥ 3, since n ≥ 9. �

Lemma 3.7 Assume that n ≥ 9, s ≤ k
2
, and |A|

|A|+|R| < 2
3
. Then, EUFF −

EOPT < (n− |X|)k
3
+ k

2
.

Proof In the case where e ≤ k
3
, we have an upper bound of k

3
on the average

empty space in bins with one item as well as bins with more items. Thus,
EUFF − EOPT ≤ (n − |X|)k

3
. Now, assume that e > k

3
. First we show an

upper bound on l. At time t no two bins can contain only one small item
each. Therefore, |At| ≥ 2l − |B| − 1. The total number of large items is

|Rb| + |B| ≥ 1
2
|At| − 1 + |B| ≥ l + |B|

2
− 3

2
. Since OPT must pack all these

items in separate bins, we have l + |B|
2

− 3
2
≤ n. Define z ≥ 0 such that

n− l = z + |B|
2
− 3

2
. Since every bin after bin l has two items of size greater

than e, we have the following upper bound on the empty space in these n− l
bins and the bins with an item from B \X: e(|B| − |X|) + (k− 2e)(n− l) =

e|B|−e|X|+(k−2e)(z+ |B|
2
− 3

2
) < e|B|− k

3
|X|+(k−2e) |B|

2
+(k−2e)(z− 3

2
) =

16



k|B|
2

− k
3
|X|+ (k − 2e)(z − 3

2
) ≤ k|B|

2
− k

3
|X|+ (k − 2e)z < k|B|

2
− k

3
|X|+ k

3
z.

Among the remaining bins, l − |B| = n − z − 3|B|
2

+ 3
2
bins do not contain

an item from X. All of these bins have at least two items, and according
to Lemma 3.6, enough of these bins exist for us to conclude, by Lemma 3.4,
that the empty space is at most k

3
(n− z − 3|B|

2
+ 3

2
). The total empty space

is then less than k|B|
2

− k
3
|X|+ k

3
z + k

3
(n− z − 3|B|

2
+ 3

2
) = (n− |X|+ 3

2
)k
3
. �

Then, by Lemma 3.7, if n ≥ 9,

|Rs| ≤
1

s
·
(

EUFF − EOPT − k

2
|Rb|

)

<
1

s

(

k

3
(n− |X|) + k

2
− k

2
|Rb|

)

≤ n− |X|+ 3

2
− 3

2
|Rb|.

Using Lemma 3.3 as in Subcase 2a, we get

|R| < n− |X|+ 3

2
− 1

2
(|L|+ 1

2
|X| − 1) = n− 5

4
|X| − 1

2
|L|+ 2, for n ≥ 9.

Thus,

|A|
|A|+ |R| ≥

2n− |L| − |X|
2n− |L| − 5

4
|X| − 1

2
+ 2

≥ 2n− (|L|+ |X|) + 4
3

3n− 3
2
(|L|+ |X|) + 2

−
4
3

3n− 3
2
(|L|+ |X|) + 2

=
2

3
− 4

6n+ 3
, for n ≥ 9.

This bound is lower than the lower bounds obtained in Case 1 and Subcase
2a for all n. For n ≥ 16, 2

3
− 4

6n+3
> 5

8
. Thus, for n ≥ 16, UFF has a better

competitive ratio than FF on accommodating sequences. �

Remark: It is easy to see that UFF’s competitive ratio is 1
k
. If it is less than

2
3
, then R is nonempty, so at least n items are accepted. OPT can accept at

most nk items, so the competitive ratio is at least 1
k
. For the upper bound,

if 3
2
n items of size k followed by nk items of size 1 are given, UFF will accept

n items of size k, while OPT will accept all of the small ones, giving a ratio
of 1

k
. Note that this means that AUFF(α) =

1
k
, for α ≥ 5

2
. Furthermore, if

2n items of size k
2
are given, followed by (α− 1)nk items of size 1, UFF will

accept 2n items of size k
2
, while OPT can accept 2n+ (α− 1)n(k− 2) items,

giving a ratio of 2
2+(α−1)(k−2)

. Thus, for any constant c > 0, AUFF(α) ∈ Θ( 1
k
),

if α ≥ 1 + c.
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4 The Accommodating Function

Suppose that, for each sequence I of items, the on-line algorithm knows,
beforehand, the number αn of bins needed to pack the items in I (or a good
upper bound on α). Then an accommodating function can be achieved for
which the function value is constant (that is, independent of k and n) when
evaluated at a constant α.

4.1 A Randomized Algorithm

One way of exploiting the extra knowledge is to use αn “virtual” bins. At the
beginning the randomized algorithm R randomly decides which n of the αn
virtual bins are going to correspond to the “real” n bins. Call the set of these
n virtual bins BA and the rest of the αn virtual bins BR. An algorithm A

with a “good” competitive ratio on accommodating sequences ARA is used
to decide where the actual items would be packed in the αn virtual bins.
When A packs an item in a bin in BA, the algorithm R accepts the item and
places it in the corresponding real bin. All other items are rejected.

The expected fraction of the items which R accepts is at least ARA

α
, since on

average |BA|
|BA|+|BR| = n

αn
= 1

α
of the items accepted by A will be packed in

BA. Using Unfair-First-Fit, this gives A(α) ≥ 2
3α

(asymptotically), which is
constant when α is.

Another way of using virtual bins is to use an algorithm that is known to
be able to pack any 1-sequence of items in βn bins for some constant β.
In this case, αβn virtual bins are used. According to [7], for the algorithm
Harmonic+1, β ≤ 1.588720. Using Harmonic+1 for packing items in the
virtual bins and randomly choosing the n bins for BA gives A(α) ≥ 1

1.58872α
≈

0.629
α

. According to [7], even for randomized algorithms, β ≥ 1.536. Since
1

1.536
≈ 0.651, this approach cannot give an accommodating function as good

as the method described above using αn virtual bins can.

Remark: Amos Fiat [11] has noted that the technique described above can be
used more generally, for many maximization problems, to give good values
for the accommodating function when α is small. If an algorithm A with
competitive ratio on accommodating sequences ARA is used with a quantity
αn of the virtual resource, and a quantity n of these virtual resources are
randomly chosen and used on the real resources, then the algorithm will
achieve an accommodating function of A(α) ≥ ARA

α
.
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4.2 A Deterministic Algorithm

It is also possible for a deterministic algorithm to have an accommodating
function such that the function value of the accommodating function is con-
stant (that is, independent of k and n) when evaluated at a constant α as
long as n ≥ 5. The following algorithm D has this property.

D divides the possible item sizes into ⌈log2 k⌉ intervals, S1, S2, . . . , S⌈log
2
k⌉,

defined by S1 = {x | k
2
≤ x ≤ k}, and Si = {x | k

2i
≤ x < k

2i−1}, for
2 ≤ i ≤ ⌈log2 k⌉. Thus, for any two items with sizes sa and sb belonging to
the same size interval, sa ≥ 1

2
sb.

For each i, 1 ≤ i ≤ ⌈log2 k⌉, D does the following. It accepts the first item
with size s ∈ Si. After that it accepts every

α
β
th item with size s ∈ Si, for a

given constant β, and rejects all other items with sizes in Si. The accepted
items are packed according to the First-Fit packing rule and the constant β
will be chosen as described below, so that D has no problem doing so. Since
D accepts every α

β
th item in each size interval, A(α) ≥ β

α
.

Let O be the set of all the items given, let OF be the set of items consisting
of the first item in each size interval and let O′ = O \ OF . Let A be the set
of items accepted by D and let A′ = A \ OF . For any set S of items, let the
volume of S, denoted by V (S), be the sum of the sizes of the items in S.

It follows from Lemma 3.4 that the volume of the items in any First-Fit
packing using n bins is more than nk

2
. Thus, if β is chosen such that V (A) ≤

nk
2
, D will be able to pack all the accepted items.

To determine an appropriate value for β, first notice that V (O′) ≤ V (O) ≤
αnk, since all the items can fit in αn bins, and V (O′) > 1

2
α
β
V (A′), since for

every item o ∈ A′, α
β
− 1 items, each of size s ≥ 1

2
size(o), have been rejected.

Combining these inequalities gives 1
2
α
β
V (A′) < αnk, and solving for V (A′)

yields V (A′) < 2βnk.

Furthermore, V (OF ) ≤
⌈log

2
k⌉−1

∑

i=0

k

2i
<

∞
∑

i=0

k

2i
= 2k.

We now have that V (A) = V (A′) + V (OF ) < 2βnk + 2k. To obtain 2βnk +
2k ≤ nk

2
, n must be at least 5, for any β > 0. For n ≥ 5, β = 1

20
assures

that V (A) ≤ nk
2
. If we accept that n must be at least 10, then β = 3

20
can

be used. Thus, if n ≥ 5, A(α) ≥ 1
20α

, and if n ≥ 10, A(α) ≥ 3
20α

.
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Notes

1In earlier papers [4, 5, 6], this competitive ratio on accommodating sequences was
called the accommodating ratio. The change is made here for consistency with common
practice in the field.

2In [6] where some of the results from [5] were first presented in a preliminary form,
this problem was called Unit Price Bin Packing.
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