
Priority Algorithms for Graph Optimization Problems∗

Allan Borodin
University of Toronto

bor@cs.toronto.edu

Joan Boyar† and Kim S. Larsen†

University of Southern Denmark, Odense
{joan,kslarsen}@imada.sdu.dk

Nazanin Mirmohammadi
University of Toronto

nazanin@cs.toronto.edu

Abstract

We continue the study of priority or “greedy-like” algorithms as initiated
in [10] and as extended to graph theoretic problems in [12]. Graph theoretic
problems pose some modeling problems that did not exist in the original ap-
plications of [10] and [3]. Following [12], we further clarify these concepts.
In the graph theoretic setting, there are several natural input formulations for
a given problem and we show that priority algorithm bounds ingeneral de-
pend on the input formulation. We study a variety of graph problems in the
context of arbitrary and restricted priority models corresponding to known
“greedy algorithms”.

Keywords: approximation algorithms, priority algorithms, greedy algorithms, ver-
tex cover, independent set, vertex coloring.

∗ A preliminary version of this paper appeared in theSecond Workshop on Approximation and
Online Algorithms, Lecture Notes in Computer Science, vol. 3351, pages 126–139, Springer-Verlag,
2005.

† Partially supported by the Danish Natural Science Research Council (SNF) and the IST Pro-
gramme of the EU under contract number IST-1999-14186 (ALCOM-FT). Parts of this work were
carried out while these authors were visiting the University of Toronto andthe University of Califor-
nia, Irvine.

1 Introduction

The concept of a greedy algorithm was explicitly articulated in a paper by Ed-
monds [14] following a symposium on mathematical programming in 1967, al-
though one suspects that there are earlier references to this concept. Since that time,
the greedy algorithm concept has taken on a broad intuitive meaning and a broader
set of applications beyond combinatorial approximation. The importance of greedy
algorithms is well motivated by Davis and Impagliazzo [12] and constitutes an im-
portant part of many texts concerning algorithm design and analysis. Newgreedy
algorithms keep emerging, as, for instance, in [26], which considers mechanisms
for combinatorial auctions, requiring solutions to difficult optimization problems.
Given the importance of greediness as an algorithm design “paradigm”, it is some-
what surprising that a rigorous general framework for studying greedy algorithms
is still developing. Of course, the very diversity of algorithms purported tobe
greedy makes it perhaps impossible to find one definition that will satisfy every-
one. The goal of the priority algorithm model [10] is to provide a frameworkwhich
is sufficiently general so as to capture most (or at least a large fraction)of the algo-
rithms we consider to be greedy or greedy-like while still allowing good intuition
and rigorous analysis, e.g., being able to produce results on the limitations of the
model and ultimately suggesting new algorithms.

The priority model captures algorithms that process the input set in steps, where
we assume that the input comes in the form of a set of input items. The greedy-like
aspect is modelled by allowing the algorithm to choose, in a restricted way, the
order in which the input items are processed. Informally, the restriction is that the
order (or prioritizing) must be made by specifying the property the next input item
should have, e.g., the item of largest size or the edge of smallest weight, etc.In the
next section, we give precise definitions for the format of priority algorithms.

The priority model has two forms: fixed priority and the more general adaptive
priority model. For both models, input items are treated one at a time, and each
time, some irrevocable decision is made concerning the item. For fixed priority
algorithms, a total order on all possible input items is specified in the beginning
and input items are then treated one at a time according to that ordering. For
adaptive algorithms, the ordering can depend on the items already considered, i.e.,
the algorithm can decide on a new ordering every time before processing the next
item. It is crucial that the ordering is not determined by the actual input set, but
rather it must apply to the set all of possible input items.

The priority framework was first formulated in Borodin, Nielsen and Rackoff [10]
and applied to (worst case approximation algorithms for) some classical schedul-

2

ing problems such as Graham’s makespan problem and various interval scheduling
problems. In a subsequent paper, Angelopoulos and Borodin [3] applied the frame-
work to the set cover and uncapacitated facility location problems. The version of
facility location studied in [3] was for the disjoint model where the set of facilities
and the set of clients/cities are disjoint sets. In contrast, in the complete model
for facility location, there is just a set of cities and every city can be a facility.
Angelopoulos [2] studies the facility location problem in the complete model.

The work of Davis and Impagliazzo [12] extends the priority formulation to graph
theoretic problems. They consider a number of basic graph theory problems (sin-
gle source shortest path, weighted vertex cover, minimum spanning tree, Steiner
trees, maximum independent set) with respect to one of two different inputformu-
lations depending on the problem and known “greedy algorithms”. For the shortest
path, minimum spanning tree and Steiner tree problems, the formulation used is
the “edge model”, where input items are edges represented by their weights, the
names of the endpoints, and in the case of the Steiner tree problem by the types (re-
quired or Steiner) of the edge endpoints. In contrast, for the weighted vertex cover
and maximum independent set problems, Davis and Impagliazzo use a vertexadja-
cency formulation, where input items are vertices, represented by their names and
the names of the vertices to which they are adjacent, and in some problems also
the weight of the vertex. This representation presents some challenges for defining
priority algorithms and greedy decisions. These definitional issues have helped to
clarify the nature and usefulness of memoryless priority algorithms. We devote
Section 6 to these discussions, including the issue of possibly reserving theterm
“greedy” for only a subset of all priority algorithms.

In order to establish lower bounds for priority algorithms, it is important to be pre-
cise about the behavior and power of an adversary. Contributions in thisdirection
have been made by Davis and Impagliazzo as well as Angelopoulos. It is also im-
portant to define the precise form of the input to make it clear what can be deduced
by a priority algorithm from seeing parts of the complete input. We give our defini-
tions in the next section, and we further discuss differences from earlier work and
relations between various concepts such as input representation, greediness, and
memorylessness in Section 6.

In Sections 3, 4, and 5, we study the graph theoretic problems of vertex cover, in-
dependent set, and vertex coloring. In the graph theoretic setting, thereare several
natural input formulations for a given problem and we show that priority algorithm
bounds in general depend on the input formulation. In particular, in Section 4,
we establish a separation between the results that can be obtained using a vertex
adjacency formulation versus an edge adjacency formulation.

3

2 Priority Algorithms for Graph Problems

Kruskal’s and Prim’s algorithms for Minimum Spanning Tree are standard exam-
ples of greedy algorithms, and both can be viewed as priority algorithms. We will
use them as examples to present the two models, fixed and adaptive priority algo-
rithms.

As part of the definition of an algorithmic problem where the input can be viewed
as a set of input items, we letΓ denote the set (or universe) of all possible input
items.

For some algorithmic problems, all finite subsets ofΓ form valid input instances,
whereas for other problems, this is not the case. For example, if a graph isgiven by
its edges, any subset of the edges is a valid input instance. However, if agraph is
given by vertices, where along with each vertex a list of its neighbors is given, then
a subset of vertices not containing the vertexv, but containing a vertexu with v
listed as one of its neighbors, would not be a valid input instance. We letΨ denote
the collection of all valid input set instances, i.e., the elements ofΨ are subsets of
Γ.

Priority algorithms define (one or more) orderings onΓ which determine the item
to be processed next in each iteration of the algorithm. The smallest (or first)item
according to the ordering among those remaining in the input instance is processed
next. This item has highest priority, hence the name “priority algorithm”.

Fixed Priority Algorithms

Figure 1 shows the template for a fixed priority algorithm.

An algorithm is called a fixed priority algorithm if it can be formulated using the
template. The notationmin≤F

Gi+1 denotes the minimum element inGi+1 with
respect to the total ordering≤F . Note that the algorithm does not know the sets
Gi, so it bases its irrevocable decisions on the general format for an inputitem (as
captured byΓ) and the items,S, seen so far.

As an example, for Minimum Spanning Tree, the items are edges with their weights.
If the weights are integers, the edges are represented by specifying thevertices they
are incident to, and the vertices are given as integers, then one can letΓ = Z×Z×Z,
where the first component is the weight of the edge and the other two components
are its two endpoints. For Kruskal’s algorithm, the lexicographical ordering on the
items inΓ gives a total ordering,≤F , which places edgee1 = (w1, u1, v1) before
e2 = (w2, u2, v2) if w1 < w2 and breaks ties in some specific way (as we have

4

Γ is the set of all possible input items
G0 ∈ Ψ is the input instance
decide on a total ordering≤F of Γ
S := ∅ { the set of items already seen}
i := 0 { |S| }
while Gi \ S 6= ∅ do

Gi+1 := Gi \ S
item:= min≤F

Gi+1

make an irrevocable decision concerningitem
S := S ∪ {item}
i := i + 1

end

Figure 1: The template for a fixed priority algorithm

defined it, lexicographically on the pairs(ui, vi)). The irrevocable decision made
in Kruskal’s algorithm is to include the edge in the spanning tree, or to reject it(if
it would create a cycle). Thus, Kruskal’s algorithm can clearly be expressed using
the template.

When expressing concrete algorithms, we emphasize readability, and, thus, deviate
slightly from the template. We introduce additional variables and control structures
in order to compute the intended orderings and irrevocable decisions where this is
most convenient. In all cases, however, it should be clear that the algorithms could
be written so as to strictly follow the template.

One can view any online algorithm as a fixed priority algorithm where an adversary
(rather than the algorithm) determines the ordering. The added power of a fixed
priority algorithm is that it imposes a total ordering onΓ (albeit independent of the
actual input set) and, because of this ordering, as items are being revealed, it also
learns that certain items cannot be in the actual input set.

Adaptive Priority Algorithms

In Prim’s algorithm, the next edge chosen is the lowest weight edge incidentto the
portion of the spanning tree which has already been constructed, but not creating
a cycle. One can view this as choosing the first item in a total ordering which
changes for each new item, as explained below.

Figure 2 shows the template for an adaptive priority algorithm.

5

Γ is the set of all possible input items
G0 ∈ Ψ is the input instance
S := ∅ { the set of items already seen (processed)}
i := 0 { |S| }
while Gi \ S 6= ∅ do

decide on a total ordering≤i+1 of Γ
Gi+1 := Gi \ S
item:=min≤i+1 Gi+1

make an irrevocable decision concerningitem
S := S ∪ {item}
i := i + 1

end

Figure 2: The template for an adaptive priority algorithm

An algorithm is called an adaptive priority algorithm if it can be formulated using
the template. Note also here that the algorithm has no knowledge of the setsGi,
but bases its choices (the orderings and the irrevocable decisions) on the general
format for an input item (as captured byΓ) and the items,S, seen so far.

Returning to Prim’s algorithm, letN be the set of edges which have one vertex in
the setS ⊆ Γ of vertices already processed (in the current spanning tree) and one
vertex outside that set (inΓ \S), and letL be all other edges. Place the edges inN
before all those inL in the total ordering. Within the two sets,N andL, the edges
are ordered lexicographically, as in Kruskal’s algorithm, so that edges with smaller
weight come first. If the setN is non-empty, the first edge in this ordering is added
to the tree and toS. Otherwise, the edge is rejected, but still added toS. Since
Prim’s algorithm can be expressed this way, it is an adaptive priority algorithm.

The extra power, in comparison with a fixed priority algorithm, is the ability to
change the priorities of items in each iteration. This prioritizing is based on a total
ordering defined on all possible input items, and is defined using only information
about items already processed, i.e., those inS. From these items, the algorithm,
ALG, can make some deductions concerning what items fromΓ could be in the re-
maining part of the input sequence. Certainly, the items inS cannot be given again.
Additionally, no item less than the last item chosen, according to the ordering≤i,
can be in the input, and possibly other input items originally inΓ cannot lead to a
valid input instance. However, the placement of these items in the total ordering
cannot affect the computation since they will not be part of the input instance (since
G0 ∈ Ψ), i.e., they will not be elements ofGi+1.

6

Further Restrictions

We consider a variety of restricted forms for priority algorithms. The first of these
is relevant for problems where the irrevocable decision concerning an input item
is simply an accept/reject decision, e.g., should an edge be included in the min-
imum spanning tree or not. For such problems, we refer to a priority algorithm
asacceptances-first, if it can choose orderings such that as soon as it has rejected
an item, it never accepts an item again (and of course still solves the algorithmic
problem in question).

The following two restrictions have to do with how much information algorithms
use and store. The first of these applies to the class of accepts/reject problems.
Assume that we partition the setS of items seen up to a given point in time into
the setsA andR of accepted and rejected items, respectively, i.e.,A ∪ R = S
andA ∩ R = ∅. Then we refer to an algorithm asmemorylessif all its decisions
(defining orderings and making irrevocable decisions concerning inputitems) are
based only onA, i.e., all rejected items are ignored.

Finally, for graph problems where input items are vertices, we refer to a priority
algorithm asdegree-basedif only the degrees of vertices are used when defining
an ordering (as opposed to, for example, information regarding neighbors that may
have been seen already or the names of the vertices or edges). Thus, vertices of the
same degree cannot be distinguished when defining the ordering.

Input Representations

In the remainder of this paper, we assume that the input items are vertices in a
graph. We use two different input representations for these vertices,depending on
whether connections to neighbors are expressed through edges or vertices. Vertices
and edges have names or labels (or are numbered in some way) to distinguishthem
from each other.

In the vertex adjacency formulation, the neighbors of a vertexv are given by a
list of the vertices that are neighbors tov. In the edge adjacency formulation,
neighbors are given as a list of edges.

The latter gives less information. For instance, consider a vertexv which has both
u andw as neighbors. In the vertex adjacency formulation, if we seeu andw
(and they are not neighbors), then whether or not we have already seenv, we can
conclude thatu andw are at a distance two apart, sincev appears as a neighbor of
both. In the edge adjacency formulation, we would just get the names of the two
different edges connectingu to v andv to w, and would not be able to infer that

7

distance information.

Note that opposed to the situation for some online formulations, in our setting, a
vertex comes with a complete neighbor list (in terms of either edges or vertices). In
contrast, in some formulations of online problems, only connections to neighbors
already seen are given.

Adversarial Arguments

Most often, the harder part of establishing the limits of what can be obtainedusing
priority algorithms has to do with establishing lower bounds. When establishing
lower bounds, one often uses the concept of an adversary that designs the input to
make it hardest possible for an algorithm trying to solve the problem at hand.

For adaptive priority algorithms in particular, one has to be fairly careful when
devising these types of arguments, since the algorithms can choose a new ordering
for each iteration of the loop and the adversary has an obligation to end up with a
valid input instance.

In Figure 3, we give an alternative formulation of an adaptive priority algorithm
which clarifies the relationship between the algorithm and the adversary. This for-
mulation is equivalent (just more formal) to the one already given. We will callan
algorithm ALG an adaptive priority algorithm if it is possible to define functionsδ
andσ such that no matter which choices are made by the adversary, ADV, the re-
sult of running the template in Figure 3 is always the same as running the algorithm
ALG on the input defined by ADV.

The template highlights the restrictions on the “game” most often written up in
proofs as a case analysis based on the choices made by an algorithm in each it-
eration. The primary purpose of this template is to act as a precise definition of
the power of priority algorithms (by defining exactly which adversary suchalgo-
rithms are working against). Concrete algorithms will be formulated following the
earlier templates which come much closer to a “programmer’s view” on priority
algorithms.

We now explain this template to clarify all the relevant concepts.

Hi represents the history afteri iterations. It is an ordered sequence of pairs con-
sisting of an input item together with the irrevocable decision that was made con-
cerning that item. The decision functionδ makes the irrevocable decision based
on the history and the input item at hand. The ordering function specifies atotal
ordering of the elements ofΓ. This ordering can be based on the history.

The restrictions on the adversary just formalize that it must present a validinput

8

Γ is the set of all possible input items
Ψ is the collection of all valid input sets

Specify:
• a decision functionδ(H, item)
• an ordering functionσ(H,Γ)

H0 := 〈〉 { the history of input items and irrevocable decisions}
i := 0 { number of input items given}

while ADV does not choose to terminate
≤i+1 := σ(Hi,Γ) { ordering on input items}
ADV gives next item,itemi+1 { next input item}
di+1 := δ(Hi, itemi+1) { an irrevocable decision}
Hi+1 := Hi ++ 〈(itemi+1, di+1)〉 { updating the history}
i := i+ 1

endwhile

There are the following restrictions on ADV ’s choice to terminate and on
ADV ’s choice of input items to give. Letitem1, item2, . . . , itemn be the se-
quence of items given before ADV terminates the loop. Then ADV must ensure
that

{item1, item2, . . . , itemn} ∈ Ψ, and

∀i ∈ {1, . . . , n} ∀j ∈ {1, . . . , i− 1} : itemj <j itemi

Figure 3: A formal template for an adaptive priority algorithm.

set, and that it must be consistent with the total orderings defined by the priority
algorithm, i.e., the adversary is not allowed to present an item which according to
an earlier ordering is smaller than the item given at that time. Or phrased positively:
when presenting the priority algorithm with the next item, an item given in an
earlier round must be smaller according to the ordering used in that earlier round.

An alternative, but equivalent, way of viewing this is as follows: LetΓ0 = Γ. The
adversary choosingitemi+1 is equivalent to its restricting the items which could
still be part of the remaining input to the subsetΓi+1 = Γi \ {x ∈ Γi | x ≤i+1

itemi+1}. In this view, ADV defines setsΓ1 ⊃ Γ2 ⊃ Γ3 ⊃ · · · before each
new input item. Before the choice of and processing of theith item,Γi is a set
of items, all of which can lead to a well-defined input instance, i.e., an input in-
stance inΨ. The input to the algorithm,{item1, item2, . . . , itemn}, is the sequence

9

〈min≤1 Γ1,min≤2 Γ2, . . . ,min≤n Γn〉.

Typical structure of an adversarial argument

In graph problems where the graphs are given by vertices, an adversarial argument
will typically involve one or more graph constructions, where the algorithm should
receive some vertices before others. In the set (or universe),Γ, of all possible
input items, each item would contain a vertex label, plus a set of edge (or vertex)
labels for the edges incident to (vertices adjacent to) that vertex. For each vertex
degree,d, possible in the construction, there will typically be an item with each
possible vertex label associated with each possible subset ofd edge (or vertex)
labels. Based on the algorithm’s ordering of the items inΓ, the adversary can
assign labels to the vertices and edges in its constructions. Thus, the adversary
can, for example, decide that the first vertex in the ordering is any of the vertices
in the construction with the same degree (and weight if the vertices have weights).
Later choices as to which vertex is the next chosen will be restricted by which of
the already processed vertices it is adjacent to and by its degree (and weight). In the
vertex adjacency formulation, there is an additional restriction based on neighbors
that this vertex has in common with vertices already processed.

Input Size

For some scheduling results in [10], the adversary assumes that the algorithm does
not know (or use information concerning) the final number of jobs to be processed.
The same holds here for graph problems; in some cases the adversary creates final
input graphs that have different sizes for different algorithms. In practice, most
priority algorithms do not seem to use the total number of vertices or edges in the
graph in assigning priorities or in making the irrevocable decisions, so the results
based on adversaries of this type are widely applicable. Unless otherwisestated,
the results below assume the algorithm does not know the total number of vertices
n or edgesm in the graph.

3 Vertex Cover

Minimum Vertex Cover is the problem of finding a smallest subsetC of vertices
such that all edges are incident to some vertex inC.

This unweighted vertex cover problem is one of the most celebrated open problems
in the area of worst case approximation algorithms. The simple maximal matching

10

algorithm (taking both adjacent vertices in any maximal matching) provides a 2-
approximation. This is essentially the best known polynomial time approximation
bound in the sense that there are no known polynomial time(2− ǫ)-approximation
algorithms (for a fixedǫ > 0), although various algorithms are known which for
certain classes of graphs guarantee an approximation better than 2, but converg-
ing to 2 as some parameter grows. This maximal matching algorithm provides
illustrative examples of priority algorithms. We show below how to implement
it both as a fixed priority algorithm in the vertex adjacency formulation and as
an acceptances-first adaptive priority algorithm in the edge adjacency formulation.
Both implementations are memoryless.

Surprisingly, Johnson [21] showed that the greedy algorithm which chooses the
vertex with highest degree in the remaining graph is only anHn-approximation,
and that this bound is tight in that there are arbitrarily large graphs on whichthe
algorithm produces a vertex cover whose size isHn times the size of the optimal
cover. Thus, this adaptive priority algorithm is inferior to the maximal matching
algorithm. However, the “list processing algorithm”, which is a fixed priority al-
gorithm that simply takes the vertices in non-increasing order of their degree in
the original graph, accepting a vertex if any of its edges is still uncovered, is even
worse. Avis and Imamura [5] show that any list processing algorithm whichorders
the vertices based on degrees only (that is degree-based fixed priority) has an ap-
proximation ratio of at leastΩ(

√
n). We show below that their result also applies

to all acceptances-first fixed priority algorithms in the edge adjacency formulation.
Note that list processing is not the same as acceptances-first, since a list processing
algorithm for vertex cover will reject any vertex if all of its edges are already cov-
ered, and such a vertex might appear in the ordering before other vertices which
will be accepted.

Davis and Impagliazzo [12] show that for the weighted case, no priority algorithm
(in the vertex adjacency formulation) can achieve a(2 − ε)-approximation ratio,
for any ε > 0. Although the weighted vertex cover problem can essentially be
reduced (in polynomial time) to the unweighted case (by making multiple copies of
vertices), this reduction does not preserve the property of being a priority algorithm
and hence the study of the unweighted and weighted vertex cover problemsmay be
substantially different problems in the context of priority algorithms. It turnsout
that there are several priority algorithms for the weighted case that also achieve a
2-approximation (or slightly better). One such algorithm is the “layered algorithm”
as given in [30]. This algorithm chooses all maximum (current) degree vertices and
removes them simultaneously. Another simple to state (and also called greedy)
algorithm is given by Clarkson [11]. This algorithm achieves the approximation
bound ∆

∆−2(2 − 2n
∆·OPT), where∆ is the maximum degree in the graph andn

11

is the number of vertices1. Both the layered algorithm and Clarkson’s algorithm
can be expressed as acceptances-first adaptive algorithms in the edgeadjacency
formulation. Below, we prove a43 lower bound on the approximation achievable
by any priority algorithm. This matches the upper bound by Clarkson for the case
n = 7, ∆ = 3, andOPT = 3.

In addition to priority algorithms, linear programming relaxation techniques have
proven useful in designing approximation algorithms for vertex cover. Arora et
al. [4] have shown an integrality gap of2 − o(1) for three different families of
linear relaxations for vertex cover, implying that many linear programming based
algorithms cannot obtain an approximation ratio better than 2.

In terms of complexity based inapproximation bounds, Dinur and Safra [13]show
that it is NP-hard to have ac-approximation algorithm for the (unweighted) vertex
cover problem forc < 1.36. Assuming the Unique Games Conjecture [24], Khot
and Regev [25] show a very strong result, namely that the vertex cover problem
has an approximation ratio of at least2− ǫ for anyǫ > 0. We note (as in previous
papers concerning priority algorithms) that priority algorithm bounds are incompa-
rable with complexity based bounds as priority algorithms can (in principle) utilize
arbitrarily complex (and even non-computable) functions in determining the prior-
ity of an item and the irrevocable decision being made about an item. Of course, in
practice, priority algorithms tend to be very time efficient (as well as conceptually
simple) and that is, of course, why they are so popular.

3.1 The maximal matching algorithm as a priority algorithm

The matching algorithm for vertex cover proceeds by continually choosingsome
edge not yet covered and adding both of the edge’s endpoints to the current cover,
C. First, we show the easier of two implementations of the maximal matching
algorithm as a priority algorithm.

Theorem 1 The matching algorithm for vertex cover can be implemented as an
acceptances-first (memoryless) adaptive priority algorithm in the edge adjacency
formulation.

Proof Suppose the input set,V , is a subset of the set,Γ, of possible vertices.
In order to see that the matching algorithm can be written as an acceptances-first

1 The stated bound is not defined for∆ ≤ 2. The more general bound that applies to all∆ is that
w(CMG) ≤ w(COPT)−

2(n−w(CMG))
∆

. Here,CMG is the cover obtained by Clarkson’s Modified
Greedy algorithm andCOPT is the cover obtained byOPT .

12

adaptive priority algorithm, we use an ordering satisfying the following property:
P (Marked,≤) is satisfied by an ordering≤ if and only if all vertices incident to
some edge not inMarkedare smaller (i.e., have higher priority) than any vertex
only incident to edges inMarked. The algorithm is listed in Figure 4.

Marked:= ∅ { the set of edges already covered}
C := ∅ { the cover}
i := 0
ChooseNewEdge:= true
while V 6= ∅

if ChooseNewEdge
choose a total ordering≤i+1 of Γ satisfyingP (Marked,≤i+1)
u := min≤i+1 V
V := V \ {u}
if ∃ e incident tou such thate 6∈ Marked

C := C ∪ {u}
edge:= e
ChooseNewEdge:= false

else
choose an ordering≤i+1 of V with vertices incident toedgefirst
v := min≤i+1 V
V := V \ {v}
C := C ∪ {v}
Marked:= Marked ∪ { all edges incident tou or v }
ChooseNewEdge:= true

i := i + 1
endwhile

Figure 4: The matching algorithm for Vertex Cover as an acceptances-first adaptive
priority algorithm.

Note that knowing the number of vertices and/or edges in advance is not necessary.

The marking of edges does not need additional memory other than that for the set
C of accepted items, since the marked edges are those incident to vertices inC.
Thus, it is memoryless. The algorithm is acceptances-first because whenthe first
vertex is rejected, there are no more uncovered edges. ✷

Next, we consider a fixed priority implementation of the maximal matching algo-
rithm, but to do this, we need to use the vertex adjacency formulation. In fact,an

13

arbitrary ordering can be used and hence the algorithm can be viewed asan online
algorithm. The algorithm maintains a list,C, of vertices already accepted and a
list, L, initially empty, of vertices which it intends to accept. A vertex in this list
has not been processed yet; it is the second vertex incident to some edgewhich
has been chosen by the matching algorithm. This is possible because the algorithm
knows which vertices are adjacent to already processed vertices. When the algo-
rithm receives a vertexu from the ordering, it checks ifu ∈ L and acceptsu if it is.
If the vertex is not inL, it checks if all of its neighbors are inC ∪ L and rejects if
they are. Otherwise, it acceptsu and chooses a designated neighborv not inC ∪L
and addsv to L. The edge(u, v) has thus been added to the matching. This gives
us the following:

Theorem 2 The maximal matching algorithm can be implemented as a (memory-
less) fixed priority algorithm in the vertex adjacency formulation.2

Proof Consider the algorithm in Figure 5, which was informally described above,
for an input graphG = (V,E). This is clearly a fixed priority algorithm in the
vertex adjacency formulation, and it functions exactly as the maximal matching al-
gorithm. While the algorithm does not seem memoryless in that it is remembering
vertices inL, the algorithm can reconstruct the current listL by considering just
the set of vertices inC. Again note that knowing the number of vertices and/or
edges in the graph in advance is not necessary. ✷

It is instructive to consider why the argument behind Theorem 2 does notextend
to the edge adjacency formulation. Suppose we try to implement the maximal
matching algorithm as an online algorithm (an algorithm which does not determine
the ordering of the input vertices) as in Theorem 2. Suppose thatu is the vertex of
highest priority (first in the ordering) and say edgee is its incident edge that we are
using for the matching. Letv be the other vertex incident toe. Then while we can
remember to includev in the vertex cover, we do not know until we seev which
other edges (adjacent tov) can be removed. Thus, all ofv’s neighbors could be
accepted before seeingv, and each one could be “matched” tov. Beyond online
algorithms, a priority algorithm could order vertices so that vertices are seen in
adjacent pairs, by placing vertices adjacent to a particular edgee1 first in the total
ordering, then those (still unseen) vertices adjacent toe2, and so on. Suppose the
first adjacent pair of vertices isu andv1, sou andv1 are put in the coverC. If
the ordering of the edges is such that the next adjacent pair is the sameu andv2

2 This algorithm is memoryless according to the definition provided by Davis and Impagli-
azzo [12], but to make it acceptances-first, the algorithm becomes adaptive.

14

Choose any ordering≤F

C := ∅
X := V
L := ∅
while X 6= ∅

u :=min≤F
X

if u ∈ L
C := C ∪ {u} { acceptu, the “2nd vertex” of an edge}
X := X \ {u}
L := L \ {u}

else if u’s adjacency list contains no vertexv 6∈ C ∪ L
X := X \ {u} { rejectu }

else
C := C ∪ {u} { acceptu, the “1st vertex” of an edge}
X := X \ {u}
Choose a vertexv in u’s adjacency list, but not inC ∪ L
L := L ∪ {v} { plan to acceptv later}

endwhile

Figure 5: The matching algorithm for Vertex Cover as a fixed priority algorithm.

and if v2 is adjacent to a vertexv3, which has not been seen yet, but is “matched”
to v2 by the maximal matching algorithm, thenv2 must be accepted and we must
later acceptv3. However, nowv3 causes the same problems as thev in the online
variant above. That is, we do not know what other vertices share edges withv3.

3.2 Limitations on priority algorithms for vertex cover

Although both an acceptances-first adaptive priority algorithm in the edgeadja-
cency formulation and a fixed priority (in fact, online) algorithm in the vertex ad-
jacency formulation can achieve a 2-approximation ratio by implementing a max-
imal matching algorithm, Theorem 3 below shows that this is impossible for an
acceptances-first fixed priority algorithm in the edge adjacency formulation. In
fact, the best obtainable ratio isΩ(

√
n). Using the intuition following Theorem 2,

we conjecture that Theorem 3 applies toany fixed priority algorithm using the
edge adjacency formulation. The proof below uses the construction in Avisand
Imamura’s proof [5] of the similar result3 where they proved anΩ(

√
n) inapprox-

3 Although we use the Avis and Imamura construction, our Theorem 3 is incomparable with the
Avis and Imamura result since they require a degree-based orderingwhile we require acceptances-

15

imation bound for any degree-based list processing algorithm for vertexcover.
Moreover, Avis and Imamura show that anO(

√
n) approximation is achievable

by a list processing algorithm for vertex cover in the edge adjacency formulation.

Theorem 3 No acceptances-first fixed priority algorithm in the edge adjacency
formulation for vertex cover can achieve an approximation ratio better thank2

2k−1

on graphs withn = k2 + 2k − 1 vertices,k ≥ 3.

Proof We use a construction suggested by Avis and Imamura [5]:G is a bipartite
graph with vertex setsU andV , where|V | = 2k−1 and|U | = k2. V is partitioned
into two subsetsV1 andV2, where|V1| = k − 1 and|V2| = k. V1 andU form a
complete bipartite graph, so every vertex inV1 is adjacent to every vertex inU .
Every vertex inV2 is adjacent to exactlyk vertices ofU , so every vertex ofU is
adjacent to exactly one vertex inV2. All vertices inU andV2 have degreek. See
Figure 6 which illustrates the construction fork = 3.

We consider any acceptances-first fixed priority algorithm that computesa vertex
cover for the graphG. Each input item then consists of one vertex label and a set
of edge labels representing the edges incident to the vertex. The set,Γ, of possible
input items consists of all possible combinations of vertex and edge labels where
the size of the set of edge labels (the size of the edge adjacency list) is eitherk or
k2. There are, of course, many more possible input items than there are vertices
in the graph and only certain subsets ofn vertices will constitute a valid input set.
The fixed priority algorithm must create a total ordering≤F of all possible input
items. To derive an inapproximability result, we consider an adversary which is at
liberty to select the set of input items (i.e., to set the actual labels for vertices and
edges) that will comprise the actual input set.

Our goal is to ensure that for all verticesv ∈ V2, all neighbors ofv (which are all
in U) are processed and therefore accepted (by the acceptances-firstassumption)
beforev is processed. For the fixed priority algorithm, this will give rise to a vertex
cover of size at leastk2, since the cover will contain all vertices inU . The optimal
cover consisting of all vertices inV is of size2k − 1.

What remains is to demonstrate how the adversary creates a labelling of the graph
such that the described processing order is obtained. Letvk with adjacency list
{e1k, . . . , ekk} be the last (w.r.t.≤F) input item inΓ of a vertex having degreek.
Then label one of the vertices inV2 by vk and its adjacent edges by the{eik}. Now
let vk−1 with adjacency list{e1k−1, . . . , e

k
k−1} be the last (w.r.t.≤F) input item in

first. The list processing requirement is in essence a greedy requirement which says that we take any
vertex as long as it covers an uncovered edge.

16

V2 U V1

Figure 6: The Avis/Imamura construction fork = 3.

Γ such thatvk−1 6= vk andeik 6= ejk−1 for all 1 ≤ i, j ≤ k. Label another vertex
in V2 by vk−1 and its adjacent edges by the{eik−1}. We continue in this way to
inductively label allk vertices inV2. We use the remaining vertex and edge labels
to consistently label the vertices inU andV1 and the edges inU×V1 so as to create
a valid input instance. Such a labelling clearly has the desired property thateach
vertex inV2 comes after its neighbors in the≤F ordering. ✷

Note that restrictions on rejection, which both acceptances-first and list processing
impose, are necessary in using the above construction to establish the statedlower
bound. Without these restrictions, an algorithm could give highest priorityto the
high degree vertices, accept them, reject all vertices adjacent to them and accept
all other vertices to get the minimum vertex cover.

Removing the acceptances-first restriction from the previous result, we obtain a
much weaker result, especially given the conjecture thatΩ(

√
n) is the best approx-

imation ratio for fixed priority algorithms in the edge adjacency model.

17

Theorem 4 No degree-based fixed priority algorithmA in the edge adjacency for-
mulation for vertex cover can achieve an approximation ratio better than2.

Proof The adversary uses copies of the following construction,G, which is a
modification of a construction due to Hochbaum [19]:

Construction G: There are two sets of vertices,U andV . The setU consists ofk
independent(k + 1)-cliques, and the setV is an independent set consisting ofk2

vertices, each of which is adjacent to every vertex in every(k + 1)-clique.

Note that all vertices inG have degreek2+k. Thus,A cannot distinguish between
the vertices when assigning priorities. The optimum vertex cover includes every
vertex inU and has sizek2 + k.

The adversary arranges that the selected vertices are independent during the first of
the two phases. We letn′ denote the number of vertices processed so far. The first
phase continues until eitherA has rejected at leastc = ⌈n′

k ⌉ vertices orn′ = k2;
whichever happens first.

If the first phase would stop because at leastc vertices were rejected, then the
adversary createsc copies of the constructionG. There are enough cliques so that
each of then′ vertices can be placed in distinct cliques in the copies ofU , and the
rejected vertices can be placed in separate copies ofG. This means that in each
construction, all vertices inV must be accepted in the second phase. In addition,
the algorithm must take at leastk vertices in every clique inU . This gives a ratio
of k2+k2

k2+k
= 2k

k+1 .

If the first phase would stop becausen′ = k2, the adversary uses a single copy
of the constructionG. Then′ vertices are inV . Note that the number of rejected
vertices is at most⌈k2k ⌉ = k, since otherwise the algorithm would have terminated
for that reason. If any of then′ vertices are rejected, then everything inU must be
accepted in the second phase, giving a total ofk2 − k + k2 + k = 2k2. Even if
all the vertices inV are accepted, at leastk vertices must be accepted from every
clique in the second phase. This gives a total of at leastk2 + k2. Thus, in both
cases the ratio is at least2kk+1 . ✷

In contrast to vertices inU , the vertices inV have identical adjacency lists. Since
this distinction can be detected in the vertex adjacency formulation, the above proof
depends on the edge adjacency formulation. The assumption that the algorithm
only considers degrees in ordering prevents the algorithm from ensuring that two
adjacent vertices are chosen first.

The following lower bound applies to all priority algorithms for the vertex cover
problem:

18

Theorem 5 No adaptive priority algorithm in the vertex adjacency formulation
can achieve an approximation ratio better than4/3 for the vertex cover problem.

Proof First note that both graphs in Figure 7 have vertex covers of size3.

D

C

B

A

E

F

G
A

B

C

D

E

F

G

Figure 7: Graph 1 to the left and Graph 2 to the right.

We now force any adaptive priority algorithmA to choose at least4 vertices.

In the first step,A must choose either a degree2 or a degree3 vertex, and it can
choose to accept or reject. We treat these four cases.

If A rejects a degree2 vertex first, the adversary lets it be vertexA in Graph 1. If
A accepts a degree2 vertex first, the adversary lets it be vertexB in Graph 1. If
A rejects a degree3 vertex first, the adversary lets it be vertexC in Graph 1. IfA
accepts a degree3 vertex first, the adversary lets it be vertexA in Graph 2.

(As an example, Clarkson’s algorithm would first accept a vertex of degree 3, so
the adversary would give Graph 2. After accepting vertexA, the algorithm must
accept at least three more vertices to cover all edges.) ✷

Note that the numbers of vertices in the two graphs used in the proof of the above
theorem are the same, so the theorem holds true in a model where the algorithms
know the number of vertices.4

In addition, the results hold for arbitrarily large graphs, since disjoint copies of the
constructions can be used.

In more restrictive models, we obtain stronger lower bounds.

4 If the number of vertices and edges are both known to the algorithm, we can add a cycle of 4
new vertices to Graph 2 and a cycle of 4 new vertices with one diagonal to graph 1 and obtain a
bound of6/5.

19

Theorem 6 In the vertex adjacency formulation, no acceptances-first adaptive pri-
ority algorithm can achieve an approximation ratio better than3/2 for the vertex
cover problem (even if the number of edges and vertices in the graph is known to
the algorithm).

Proof Consider a chain of five vertices. In the acceptances-first model, the first
vertex chosen (the smallest vertex in the first total ordering) must be accepted. If
the first vertex chosen has degree 1, at least two other vertices must bechosen to
cover all the edges. If the first vertex chosen has degree 2, the adversary makes it
the center vertex,C, and again at least two others must be chosen. The smallest
vertex cover consists of the two vertices adjacent to degree 1 vertices. Thus, one
obtains the ratio3/2. ✷

4 Independent Set

Maximum Independent Set is the problem of finding a largest subset,I, of vertices
in a graph such that no two vertices inI are adjacent to each other.

The independent set problem and the clique problem, which finds the same set in
the complement of the graph, are well studied NP-hard problems, where approx-
imation also appears to be hard. The bounded degree maximal independentset
problem is one of the original MAX SNP-Complete problems [28]. Håstad [16]
has shown a general lower bound on the approximation ratio for the independent
set problem ofn1−ǫ, for all ǫ, provided that NP6= ZPP, where ZPP is the class of
languages decidable by a random expected polynomial-time algorithm that makes
no errors. A general upper bound ofO(n/ log2 n) was presented by Boppana and
Halldórsson [8], and an upper bound of6/5 for graphs of degree 3 was shown by
Berman and Fujito [7]. These algorithms are not priority algorithms.

Davis and Impagliazzo [12] have shown that no adaptive priority algorithm(in the
vertex adjacency formulation) can achieve an approximation ratio better than3

2 for
the maximum independent set problem, and their proof uses graphs with maximum
degree 3.

The Davis and Impagliazzo bound is the current best inapproximation bound for
adaptive priority algorithms, although there are better results for more restricted
models. In our preliminary conference paper [9], we claimed that no fixedorder
priority algorithm in the vertex adjacency formulation can achieve an approxima-
tion ratio better thanΩ(n1/3) wheren is the number of vertices. We soon realized
that our proof was assuming a degree-based fixed priority algorithm. Following
the online algorithm results of Halldórsson et al. [17], we provide a corresponding

20

inapproximation bound for degree-based fixed order algorithms in the edge adja-
cency formulation. The following construction is a special case5 of a construction
in the thesis of Mirmohammadi [27].

Construction P: There are three sets of vertices,A, B, andW (refer to Figure 8).
The setsA andB each consist ofk vertices,a1, a2, ..., ak andb1, b2, ..., bk, and the

A B

W

Figure 8: ConstructionP for k = 3.

setW consists of2k − 2 vertices. All vertices have degree2k − 1. The edges,E,
are as follows: For1 ≤ i ≤ k, (ai, bi) ∈ E and(bi, aj), (bi, bj) ∈ E for i < j ≤ k,
so the vertices inA andB come in pairs which are matched, and each vertex inB
is adjacent to all later vertices in bothA andB. In addition, the vertices inA and
B are adjacent to enough vertices inW so that every vertex inA andB has degree
2k − 1. Then, partitioning the vertices inW into two sets of sizek − 1, making

5 The Halld́orsson et al. (respectively, Mirmohammadi) construction is designed toprove a result
for online (respectively, degree based fixed priority pBT algorithms [1]) that allow (polynomially)
many solutions to be simultaneously constructed. Moreover, strong inapproximation results are still
obtained in [27] when the model is extended to allow revocable acceptances as previously studied
in (for example) [20, 1, 31]. However, the construction in [27] does not provide an inapproximation
bound for the vertex adjacency formulation.

21

each of these sets a clique, and adding the edges of a perfect matching between
these two sets will also cause every vertex inW to have degree2k − 1.

Now we consider any degree-based fixed priority algorithm and show anΩ(n)
lower bound. This result is clearly asymptotically optimal.

Theorem 7 No degree-based fixed priority algorithmA in the edge adjacency for-
mulation for independent set (or clique) can achieve an approximation ratiobetter
thann+2

12 , wheren is the number of vertices.

Proof The adversary uses the construction,P. We note that the optimum indepen-
dent set inP includes every vertex inA and has sizek. If n is the total number of
vertices inP, thenk = n+2

4 .

SinceA is a degree-based fixed priority algorithm and all vertices have the same
degree,A cannot distinguish between the vertices when assigning priorities.

The adversary arranges that the selected vertices are given (in adjacent pairs) in the
order

a1, b1, a2, b2, ..., ai, bi, ...

as long asA rejects the vertices. WhenA accepts its first vertex (assuming that less
than2k vertices have already been rejected), the adversary makes itbj , wherej is
the index of the first vertex inB not yet processed. Note that this is possible for the
adversary, even if the last vertex processed was also aB-vertex, becauseaj andbj
are both adjacent to all previousB-vertices and no previousA-vertices. Since the
edge adjacency formulation is used, the edges to unprocessed vertices are simply
labels which are distinct from any edges previously seen. Thus, the adversary can
successfully complete the construction, regardless whetheraj or bj is processed
at this point. Sincebj is adjacent to all laterA- andB-vertices,A must reject all
of them, exceptbj . The vertices inW form two cliques, so at most two of them
can be accepted. Thus,A accepts at most three vertices, compared to the optimal
k, giving a ratio of k3 . (If A rejects2k vertices initially, only the vertices inW
are unprocessed and thus at most two vertices are accepted, giving aneven worse
ratio.)

Since a clique is a complement of an independent set, the same result holds for the
clique problem, by complementing the construction. ✷

Note that if the algorithm,A, in the above proof accepts the first vertex, the ad-
versary will arrange that no other vertices can be included in the independent set.
Hence, the following is obtained.

22

Theorem 8 No acceptances-first adaptive algorithmA in the vertex adjacency for-
mulation for independent set (or clique) can achieve an approximation ratiobetter
than n+2

12 , wheren is the number of vertices (even if the number of vertices and
edges in the graph is known to the algorithm).

Combining the acceptances-first requirement with the fixed priority requirement,
gives a model which is so weak that it appears to be uninteresting for this problem.
Consider, for example, a complete bipartite graph withn vertices in each part. All
vertices look the same to the algorithm as it assigns priorities, so the adversary
can decide that the two vertices that come first in the ordering are adjacent.If
the algorithm is acceptances-first, since it must reject the second vertex,it cannot
accept more than one vertex in all.

We use a special case of the maximal independent set problem to prove that the
edge adjacency formulation is weaker than the vertex adjacency formulationfor
adaptive priority algorithms. Our result is based on the example used in Davisand
Impagliazzo [12] to show that memoryless priority algorithms are less powerful
than those which use memory. Namely, we consider WIS(k), the weighted maxi-
mum independent set problem when restricted to cycles whose vertex weights are
either 1 ork. In their proof separating the power of memoryless algorithms from
those which use memory, Davis and Impagliazzo show that in the vertex adjacency
formulation there is an adaptive priority algorithm whose approximation ratio ap-
proaches one ask goes to infinity. In contrast, for the WIS(k) problem in the vertex
adjacency formulation, Davis and Impagliazzo [12] show a 2-approximationlower
bound for memoryless algorithms. We now show a lower bound of3

2 for the ap-
proximation ratio for the WIS(k) problem in the edge adjacency formulation, thus
showing that the edge adjacency formulation can be restrictive when compared to
the vertex adjacency formulation.

Theorem 9 For the WIS(k) problem withk ≥ 4, no adaptive priority algorithm
in the edge adjacency formulation can obtain an approximation ratio better than3

2 .

Proof We represent the cycles by lists of weights. Two neighbors in the list are
also neighbors in the cycle. In addition, the first and last element in the list are also
neighbors in the cycle.

We usew+ to denote a vertex accepted by the priority algorithm andw− to denote
a vertex rejected by the priority algorithm. To demonstrate a best possible result
which the priority algorithm can obtain given the accept/reject actions it has al-
ready made, we usewc to mark vertices which could be included in addition to the

23

already accepted vertices. Finally, we indicate an optimal vertex cover by mark-
ing vertices in one such cover byw. Neither the vertices markedwc norw can in
general be chosen uniquely, but their total weight will be unique.

The argument is structured according to the choices made by the priority algorithm,
beginning with whether the first vertex has weight1 or k and whether the priority
algorithm accepts or rejects that vertex. In all but one case, the adversary can
immediately guarantee a specific approximation ratio, but in one case, the next
vertex chosen by the algorithm must also be used by the adversary:

First accept weightk vertex: (k+, k, 1c, k) gives 2k
k+1 .

First reject weightk vertex: (k−, 1c, 1) gives k
1 .

First accept weight1 vertex: (1+, k, 1c, k) gives 2k
2 .

First reject weight1 vertex: We now ensure that no vertex of weightk will appear
as a neighbor of the rejected vertex. All the remaining cases are subcases of the
current case.

Next accept non-neighbor weightk vertex: (1−, 1c, k, k+, k, 1c) gives 2k+1
k+2 .

Next accept non-neighbor weight1 vertex: (1−, 1c, k, 1+, 1) gives k+1
2 .

Next accept neighbor weight1 vertex: (1−, 1+, k, 1c) gives k+1
2 .

Next reject non-neighbor weightk vertex: (1−, 1c, k−, 1c) gives k+1
2 .

Next reject non-neighbor weight1 vertex: (1−, 1c, 1, 1−, 1, 1c) gives 3
2 .

Next reject neighbor weight1 vertex: (1−, 1−, 1, 1c) gives 2
1 .

Choosingk ≥ 4 ensures the stated approximation ratio lower bound of3
2 . ✷

The following result shows that in the edge adjacency formulation, a3
2 -approx-

imation ratio for WIS(k) can be achieved.

Theorem 10 For the WIS(k) problem, there is an adaptive priority algorithm in
the edge adjacency formulation with approximation ratio3

2 for k ≥ 2.

Proof The algorithm proceeds as follows:

The algorithm initially orders vertices so that all vertices of weight 1 precede ver-
tices of weightk. If there are no vertices of weight 1, accept the first (in the order-
ing) vertex of weightk. Then follow it around the cycle (by adaptively changing
the ordering to give priority to a neighbor not already seen), accepting every other
vertex until finding a vertex adjacent to two already processed vertices.That last
vertex must be rejected.

24

If there is at least one vertex of weight 1, do the following:

I. Place vertices with weight1 which are not adjacent to anything processed yet
first in the ordering, as long as this is possible. Reject them all.

II. Repeat the next two steps as long as possible:

1. If there is a vertex with both neighbors already processed, accept it. (The
neighbors have been rejected.)

2. If there is a vertex with weightk adjacent to exactly one vertex which was
already processed, accept it. Then, reject its other neighbor.

III. If there are any vertices remaining, there must be a vertex of weight1 adjacent
to only one already processed vertex. Reject this vertex of weight1 and accept its
unprocessed neighbor. Follow this around the cycle, accepting every other vertex
until reaching a vertex which has already been processed. Repeat thisstep until all
processed chains have been joined.

Note that this algorithm maintains the invariant that for any maximal chain of ver-
tices already processed, the endpoints have been rejected.

Case 1: All vertices have weightk. The algorithm finds a maximum weight inde-
pendent set.

Case 2: All vertices have weight 1. Then, at least1
3 of them are accepted. At most

1
2 are in a maximum weight independent set, so the ratio is at least3

2 .

Case 3: There are some vertices of weight1 and some of weightk. For any max-
imal chain of weight-k vertices, one of the endpoints is accepted and then every
other vertex is accepted. For any maximal chainS of weight-1 vertices, both end-
points are adjacent to vertices of weightk, though this may be the same weight-k
vertex. Thus, for each such chain, there is a distinct vertex of weightk which is
accepted. The smallest possible number of acceptances in such a chain oflengths
occurs when the next to last vertex on either end of the chain was selectedin Step I
and rejected, and every third vertex between these two was also selected inStep
I and rejected. Then, at least13(s − 3) vertices in the chain must be accepted in
Step III. (If there are some vertices chosen in Step I which have only onevertex
between them, instead of two, they will be accepted in Step II.1, increasing the
fraction accepted.) Consider the vertex of weightk assigned to this chain. Suppose
there weret vertices in its chainC of weight-k vertices. There are two subcases
based on whethert is even or odd.

Subcaset even: Thent2 of these weight-k vertices were accepted, andt2 of these
vertices are in any maximum weight independent set. Sincet is even, the algorithm

25

cannot accept both endpoints ofC. Next to the endpoint it does not accept, it will
accept a vertex of weight1, which has not been accounted for in the1

3(s
′ − 3)

vertices accepted in any maximal chain of weight-1 vertices which has lengths′.

Subcaset odd: In this case, a maximum weight independent set contains both
endpoints ofC, and the algorithm also accepts both endpoints, sot+1

2 vertices in
C are accepted and are in a maximum weight independent set.

Let E be the set of even-length maximal chains of weight-k vertices, letO be
the set of odd-length maximal chains of weight-k vertices, and letI be the set of
maximal chains of weight-1 vertices, Letl(C) denote the number of vertices in a
chainC. For each chain inE, there is one endpoint of a maximal chain of weight-
1 vertices which cannot be in a maximum weight independent set. Similarly, for
each chain inO, there are two endpoints of maximal chains of weight-1 vertices
which cannot be in a maximum independent set. Thus, amortized over all chains,
C ∈ I, of weight-1 vertices, a maximum weight independent set contains at most
∑

C∈I(
l(C)
2)− 1

2 |O| weight-1 vertices.

Thus, the ratior of the weight of the independent set accepted by this algorithm to
the weight of a maximum independent set is at most

r ≤
∑

C∈E(
k·l(C)

2
)+

∑
C∈O(

k·(l(C)+1)
2

)+
∑

C∈I(
l(C)
2

)− 1
2
|O|

∑
C∈E(

k·l(C)
2

+1)+
∑

C∈O(
k·(l(C)+1)

2
)+

∑
C∈I(

(l(C)−3)
3

)

=
∑

C∈E(
k·l(C)

2
)+

∑
C∈O(

k·(l(C)+1)
2

)+
∑

C∈I(
l(C)
2

)− 1
2
|O|

∑
C∈E(

k·l(C)
2

)+
∑

C∈O(
k·(l(C)+1)

2
)+

∑
C∈I(

(l(C))
3

)−|O|

≤ 6k|O|+3
∑

C∈I(l(C))−3|O|

6k|O|+2
∑

C∈I(l(C))−6|O| .

Fork ≥ 2, this is at most32 . ✷

Thus, with regards to adaptive priority algorithms for the WIS(k) problem,32 is the
exact approximation ratio which can be obtained in theedgeadjacent formulation.
In combination with the result from Davis and Impagliazzo [12], described above,
stating that in thevertexadjacency formulation there is an adaptive priority algo-
rithm whose approximation ratio approaches one ask goes to infinity, we obtain
the following:

Corollary 11 For adaptive priority algorithms, there is a strict separation between
the approximation ratios that can be obtained in the vertex adjacency formulation
and the edge adjacency formulation, respectively.

26

5 Vertex Coloring

Minimum Vertex Coloring is the problem of coloring the vertices in a graph using
the minimum number of different colors in such a way that no two adjacent ver-
tices have the same color. The problem is also known as Graph Coloring andas
Chromatic Number.

Hardness results are known for minimum vertex coloring under various complexity
theoretic assumptions: minimum vertex coloring is NP-hard to approximate within
n

1
7 [6]. Provided that NP6= ZPP, Khot [23] shows that it is NP-hard to approximate

withinΩ
(

n

2(logn)1−γ

)

, for someγ > 0. This improves the earlier result ofΩ(n1−ǫ),

for all ǫ, under the same condition [15].

Khot also shows that for sufficiently largek, it is NP-hard to color ak-chromatic
graph withk

1
25

log k colors, asymptotically improving the earlier result that it is NP-
hard to color ak-chromatic graph with at mostk+2⌈k/3⌉−1 colors [22]. In [22],
it is also shown that it is NP-hard to4-color a3-chromatic graph.

On the positive side, a general upper bound ofO(n log log2 n/log3n) is shown by
Halldórsson [18]. In [29], an upper bound ofλ(G) + 1 is established, whereλ is
any function of graphsG = (V,E) such that

(G′ ⊂ G ⇒ λ(G′) ≤ λ(G)) ∧ λ(G) ≥ min
v∈V

deg(v).

Let d(G) be the maximum over all vertex-induced subgraphs of the minimum de-
gree in that subgraph. The result in [29] constructively establishes that any graph
is d(G) + 1 colorable, so a corollary of the theorem below is that the algorithm
from [29] is not a priority algorithm. This theorem is proven using an adversary
which is defined using a lengthy case analysis.

Theorem 12 No priority algorithm in the edge adjacency formulation can 3-color
all graphsG with d(G) = 2.

Proof The adversary begins with edge lists such that many graphs could be found
by removing different subsets of the edge lists. Each of the final graphsthe adver-
sary might produce in the following contains one degree 2 vertex and the remainder
of the vertices have degree 3. Each graph hasd(G) = 2 and thus can be colored
with three colors, but an adaptive priority algorithmA will be forced to use at least
four colors. In order to satisfy the degree requirements, extra verticesand edges
will need to be added to what is described in each case. This can often be done by

27

creating several copies of the same subgraph and attaching them where the degree
is too low.

Note that attaching the degree 2 vertex in the subgraph of Figure 9 to some vertex

Figure 9: Attachment graph for incrementing vertex degrees while only adding
degree 3 vertices.

u in some partially specified graph will increase the degree ofu by one while all
the added vertices will have degree 3. Thus, any partially specified graph (where
degrees are not already too large) can be completed to a graph of the typewe are
interested in (one degree 2 vertex and the rest degree 3 vertices).

In many of the cases below, we use completions of variants of the graphK =
(V,E), whereV = {A,B,C,D,E, F,G,H} andE = {{A,B}, {A,E}, {A,H},
{B,C}, {B,G}, {C,D}, {C,F},{D,E}, {D,F}, {E,F}}; see Figure 10.

H

G

A

B

D

E

C

F

Figure 10: GraphK.

In some cases, the verticesG andH will be replaced by a single vertex adjacent to
both verticesA andB. This merged vertex will be adjacent to an extra vertex of
degree 2, to make its degree 3 also. The entire graph is then repeated on theother
side of this new degree 2 vertex, so it is symmetric about this vertex. In othercases,
the graph will be completed such thatG (or H) will be the degree 2 vertex andH
(orG) will be a degree 3 vertex.

Note that, in the graph above, since removingG andH (or the vertex replacing
them) fromK leaves a vertex induced subgraph with minimum degree2, d(K) ≥
2. It can easily be seen that no vertex induced subgraph has higher degree.

If verticesC andE get assigned different colors, thenC, D, E, andF must to-

28

gether have at least four different colors, and we are done. GivingverticesA and
C the same colors will forceC andE to get different colors, accomplishing the
same. The goal in most of the following cases is to force one of these conditions.

In the following, the notationc(X) will be used for the color the priority algorithm
A gives vertexX.

Case A: The degree 2 vertex is never chosen (the algorithm never gives an ordering
where a degree 2 vertex comes first in the ordering before ending in a position
where it is forced to use four colors); the adversary never shows it adjacent to
anything untilA has been forced to use four colors and the entire graph is revealed.
In all of Case A, we use the graph variant shown in Figure 11. The firstvertex

I

A

B

D

E

C

F

Figure 11: The Case A Graph.

chosen,W , has degree 3.

Case A.1: The next vertex chosen,X, is adjacent toW . The adversary ensures that
there exists another degree 3 vertex,Z, adjacent to both of them, plus one vertex
adjacent toX, and another adjacent toW . No vertex, other thanZ, W , andX will
be adjacent to two ofW , X, andZ; see Figure 12. The next vertex chosen may be

Y
X W

Z

Figure 12:A’s initial view of the graph in Case A.

Z. WheneverZ is chosen, it is given the third color. In the following, we ignore
the actual timing of when it is chosen.

Case A.1.1: The next vertex chosenY is adjacent to one ofW , X andZ. Without
loss of generality, assumeY is adjacent toX.

Case A.1.1.1: Ifc(Y) = c(W), letA = W , B = X, andC = Y , Z = I, and we
are done since we must havec(A) = c(C).

29

Case A.1.1.2: Ifc(Y) 6= c(W), letA = Z, W = I, B = X, andC = Y , and we
are done sincec(A) = c(C).

Case A.1.2: The next vertexU chosen is not adjacent toW , X, orZ. Without loss
of generality, assumec(U) = c(Z), the third color. LetA = W , B = X, D = U ,
Z = I. Then eitherC and/orE are given a fourth color orc(C) = c(A), and we
are done.

Case A.2: The next vertexX is not adjacent toW .

Case A.2.1: Ifc(W) = c(X), letA = W andC = X, and we are done.

Case A.2.2: Ifc(W) 6= c(X), letC = W andE = X, and we are done.

Case B: The degree 2 vertex is chosen at some point. The adversary ensures that
the connected componentA sees containing the degree 2 vertex never becomes
adjacent to other verticesA has processed untilA can be forced to use a fourth
color and the entire graph is revealed. The following describes how the adversary
handles verticesA chooses after the degree 2 vertex is chosen, in the connected
component processed byA and containing the degree 2 vertex. The adversary may
build graphs on either side of the degree 2 vertex; they are only connected at the
degree 2 vertex, and we will only consider one direction; the other can betreated
similarly. If vertices are chosen which are not connected by a path to the degree 2
vertex, they are treated as in Case A. (Note that at most four degree 3 vertices
not in the same connected component as the degree 2 vertex are sufficient for the
adversary to end in Case A.) Thus, we assume that a degree 3 vertexZ, adjacent to
the degree 2 vertex and a degree 3 vertexX, adjacent toZ, have been chosen and
assigned different colors. The adversary will not present any vertices adjacent to
bothX andZ.

In these cases, we often use the Graph K from Figure 10 where eitherG or H will
be the degree 2 vertex, depending on which vertex is interpreted to beZ.

Case B.1: A vertexY adjacent toZ is chosen next; see Figure 13.

degree 2

Z

X

Y

Figure 13: Initial part of graph in Case B.1.

Case B.1.1: Ifc(Y) = c(X), let A = X, B = Z, andC = Y in the graphK.

30

Thenc(A) = c(C), and we are done.

Case B.1.2: Ifc(Y) 6= c(X), the adversary’s graph will contain two vertices,U
andV , both adjacent toX andY and each other. One ofU andV must be given a
fourth color.

Case B.2: A vertexY adjacent toX is chosen next; see Figure 14.

degree 2 Z X Y

W (B.2.2.1) W (B.2.2.2) W (B.2.2.3)

Figure 14: Initial part of graph in Case B.2. The position ofW depends on sub-
cases.

Case B.2.1: Ifc(Y) = c(Z), let A = Z, B = X, andC = Y in the graphK.
Thenc(A) = c(C), and we are done.

Case B.2.2: Assumec(Y) 6= c(Z).

Case B.2.2.1: Assume a vertexW adjacent toZ is chosen next.

Case B.2.2.1.1: Ifc(W) = c(X), letA = X, B = Z, C = W , andE = Y in the
graphK. Thenc(C) 6= c(E), and we are done.

Case B.2.2.1.2: Ifc(W) = c(Y), letA = W , B = Z, andC = Y . The adversary
will replace the edge{B,C} in the graphK the edges{B,X} and{X,C}. Then
c(A) = c(C), and we are done, since the verticesD, E, andF will have the same
adjacencies as inK. X will be a degree 3 vertex by adding a construction shown
in Figure 9.

Case B.2.2.2: Assume a vertexW adjacent toX is chosen.

Case B.2.2.2.1: Ifc(W) = c(Z), letA = Z, B = X, andC = W in the graphK.
Thenc(A) = c(C), and we are done.

Case B.2.2.2.2: Ifc(W) = c(Y), let A = W , B = X, andC = Y . Then
c(A) = c(C), and we are done.

Case B.2.2.3: Assume a vertexW adjacent toY is chosen.

Case B.2.2.3.1: Ifc(W) = c(Z), letA = Z, B = X, andC = W . The adversary
will replace the edge{B,C} by the edges{B, Y } and{Y,C}. Thenc(A) = c(C),
and we are done. The vertexY is made into a degree 3 vertex by adding the
subgraph of Figure 9.

Case B.2.2.3.2: Ifc(W) = c(X), let A = X, B = Y , andC = W . Then

31

c(A) = c(C), and we are done.

Thus, in every case, the adversary is able to forceA to use at least four colors.✷

In more restrictive models, we obtain stronger lower bounds. The followingre-
sult applies, for example, to the simplest and most natural fixed priority algorithm:
order the vertices by non-increasing (or non-decreasing) degree and then color ver-
tices using the lowest possible numbered color. We note that this natural greedy
algorithm colors any graph having maximum degreed using at mostd+ 1 colors.

Theorem 13 Any degree-based fixed priority algorithm in the edge adjacency for-
mulation must use at leastd+ 1 colors on a (2-colorable) bipartite graph of maxi-
mum degreed.

Proof Informally, the adversary will create ad-regular bipartite graph containing
many disjoint “portions” (induced bipartite subgraphs), each of which willhave
the same number of vertices and the same colors in each side of the partition (there
could be additional colors outside these portions). These portions will grow in size
and it may be necessary to join two portions, making the correct decision as to
which side of the one portion is placed with which side of the other. At the end
all vertices will have degreed, so the degree-based fixed priority algorithm has no
real power in assigning priorities; as with on-line algorithms, the adversaryhas
complete control over the input sequence. The algorithm’s only choice is which
color to assign after seeing which of its adjacent vertices are already colored.

Consider any degree-based fixed priority algorithm in the edge adjacency formula-
tion. Initially, the adversary will arrange that all vertices chosen are independent.
The number chosen at this stage will be large enough so that there are either d+ 1
colors given or enough vertices are given the same color to make the remainder
of the proof possible. Throughout our construction, whenever the algorithm first
usesd+1 colors, the remainder of the construction will add additional vertices (as
explained later) so as to form ad-regular bipartite graph. This requires at all stages
of the construction, that the partial graph that has so far been specifiedcan be so
completed. We will not specify an upper bound on the number of vertices used in
this construction, but it will be clear that some large finite number will be sufficient.
Stage1 ends when there are enough vertices given the same color, which we call
color1. In stage2, vertices adjacent to exactly one vertex having color1 are given.
That is, the adversary is creating a matching between color 1 and color 2 vertices.
This continues similarly until eitherd+1 colors are given in all or enough of these
new vertices are given the same color, which we call color2.

32

Now all the portions being considered consist of two adjacent vertices, one with
color 1 and one with color2. It is essential to note that the adversary does not
have to commit to which side of the partition it will eventually place these adjacent
nodes. In stage3, these portions are combined in pairs. Suppose the adjacent ver-
tices(v11, v

1
2) are combined with(v21, v

2
2), wherevij has colorj. Two new vertices

u1 andu2 are given, withu1 adjacent to bothv11 andv22 and withu2 adjacent to
bothv12 andv21. The result is a bipartite graph (a6-cycle), withu1 andu2 in differ-
ent parts of the partition. Since eachui is adjacent to one vertex of color1 and one
of color2, the algorithm must give eachui a new color; the two could either get the
same color or different colors. Continue combining pairs of portions until either
d + 1 colors are used or there are enough (and evenly many) combined portions
with the same color,3, for eachui, or the same pair of colors,3 and4, for these two
vertices. In the former case, each6-cycle has each of the three colors on both sides
of the partition. In the latter case, since the adversary has not committed to which
side of the partition thevij lie in, it is also free to later choose which side of the
partition eachui lies in. Pairs of these6-cycles will be combined so that for each
pair, there is at least one vertex of each of the first four colors in eachpart. These
pairs are the induced subgraphs for the next stage. In this case, the next stage is
stage5, but if there were enough cases where bothu1 andu2 got the same color,
the next stage is stage4.

In stagei ≥ 4, the partial graph constructed thus far contains a large number
of disjoint equi-partitioned bipartite subgraphsGi with maximum degree at most
i − 2, where both sides contain vertices with colors1, 2, ..., i − 1 (the purpose of
separately treating stages 1 through 3 is to establish this property of having all of
the firsti−1 colors on both sides). There are additional vertices that were also seen
but not used in theseGi subgraphs. We need only claim that all such additional
vertices have degree less thani − 1 with equal number of vertices on each side of
any induced partition so that these vertices can also be extended to be partof the
final bipartite graph. The next vertices chosen are made adjacent to onevertex of
each color1, 2, ..., i − 1, all from one partition of one of the induced subgraphs.
As in stage3, this is done for both parts of the partition. If there are a large enough
number of subgraphs which get the same additional color on both sides, thiscolor
is called colori and the adversary proceeds to stagei + 1. Otherwise, there will
eventually be enough subgraphs given the same two additional colors, which will
be calledi andi + 1. Graphs of this type can be combined in pairs, as in the case
where colors3 and4 were given, arranging that for each pair one vertex of colori
and one of colori+1 is on each side of the partition. Then, the adversary proceeds
to stagei+ 2.

The adversary stops this process as soon asd + 1 colors have been used. At that

33

point, some vertices may have degree less thand in the induced subgraph created
so far. However, every vertex which is presented to the algorithm must have de-
greed. We now explain how additional vertices and edges can be added to the
construction so that every vertex gets degreed. This must be done in a manner
consistent with the algorithm’s observations during the different stages, i.e., we
cannot introduce an edge between two vertices that have already been treated (col-
ored) and have been observed to be independent. This can be done because each
part of the partition in the induced subgraph has the same number of vertices, say
n, in any induced partition, and the sum of their degrees is the same, says. One
can add2(dn− s) edges, each one to a new vertex, to get the degree of each of the
original 2n vertices up tod. This givesdn − s new vertices in each part. Adds
new vertices to each part and edges to make a matching between them. Now there
aredn new vertices on each side, each of degree1. For anyd, it is easy to create
a (d− 1)-regular bipartite graph ond vertices. Add the edges for this ton disjoint
subsets of the new vertices.

Note that if fewer thand + 1 colors are used before staged + 1, a (d + 1)st color
will be used on the first vertex in that stage, since the vertices in that stage will
be adjacent to each of the colors1, 2, ..., d. If there is no staged + 1, because the
adversary went from staged to d+ 2, the(d+ 1)st color was used in staged. ✷

6 Priority Concepts and Relationships

In this section, we discuss the issue of defining a natural concept of greediness. We
also discuss memorylessness, adversaries, restricted models, and inputrepresenta-
tions, as well as relationships between these concepts.

In either of the input formulations used in this paper, we have the situation that
not every set of valid input items constitutes a valid input instance. Clearly, a
valid input instance cannot have the same vertex appear as two differentitems.
And in the vertex adjacency formulation, if a vertexv is an input item andv′ is in
its adjacency list, thenv′ must also be an input item withv in its adjacency list.
Similarly, in the edge adjacency formulation, if an edgee appears in some input
item, thene must appear in exactly one other input item.

Although the priority algorithm framework is designed to model greedy algo-
rithms, it is possible to define priority algorithms where the irrevocable decisions
do not seem greedy. As noted by Davis and Impagliazzo, the definition of “greedy
decision” (as formulated in [10]) is no longer well defined when the algorithm
“knows” that the current item is not the last. More specifically, in [10], a greedy
priority algorithm is one in which all of the irrevocable decisions are “greedy” in

34

the sense that the algorithm acts as if the current item being considered is thelast
item in the input. In more colloquial terms, greediness is defined by the motto “live
for today”.

We would like to formulate a general concept of a greedy decision that alsomakes
sense when the input items are not isolated. (We would like such a definition to also
make sense for non-graph problems, such as scheduling problems with precedence
relations amongst the jobs, where one can have non-isolated input items.) Weoffer
one such definition in this section.

We note, however, that in the context of priority algorithms the greedy versus non-
greedy distinction is not that important, and to the extent that it is important it is
only because greedy is such a commonly used (albeit mostly undefined) concept.
We do argue that the priority algorithm formulation is important as it captures a
wide variety of existing algorithms which might be called “greedy-like”, extending
the concept of greedy and including (for example) all online algorithms.

We propose a very liberal definition for what can constitute a greedy algorithm.
Namely, a greedy (priority) algorithm is one which always makes an irrevoca-
ble “greedy” decision whenever such a decision is available. This, of course, has
pushed the definitional problem to that of defining a “greedy decision” which we
now proceed to do.

Consider a priority algorithm that has processed some number of input items.As
stated, we interpret the underlying philosophy of “greediness” to be thatof “live
for today”. When input items are isolated, this leads to a very natural concept for
being greedy, namely the irrevocable decision must be made to be consistentwith
optimizing the objective function, assuming the current input item being processed
will be the last input item. However, for non-isolated inputs, it may be the casethat
any valid input instance will require further input items, e.g., if items are vertices
represented by their vertex adjacency lists and there are vertices knownto exist,
but not yet processed.

Let S be the set of items already processed plus the item currently being consid-
ered. We say that a setT of input items is aminimal completion setif S ∪ T
constitutes a valid input instance andS ∪ T ′ is not a valid input instance for any
setT ′ ⊂ T . In the case of isolated input items, only the empty set is a minimal
completion set. A greedy decision for an itemI satisfies the property that forevery
minimal completionT , there is a set of decisions for the items inT such that no
other set of decisions forI and the items inT would result in a better value for
the given objective function. Note that we are not concerned with whether or not
the set of minimal completions is finite (or even countable) or whether or not it is
(efficiently) computable to determine whether or not a decision is greedy. Clearly,

35

for any unweighted graph problem, the set of minimal completions is finite and it
is computable (but maybe not efficiently) to determine if a decision is greedy.

Any priority algorithm for the vertex cover problem which accepts a vertex ifnot
all of its incident edges are already covered is greedy by this definition. However,
not every algorithm for vertex coloring which chooses the lowest numbered color
possible at every step is greedy by this definition. To see this, consider thegraph
G = (V,E), whereV = {1, 2, 3, 4, 5}, and

E = {{1, 2}, {1, 3}, {2, 3}, {2, 4}, {2, 5}, {3, 5}, {4, 5}};

see Figure 15. If the vertices are chosen in the order〈1, 2, 3, 4, 5〉, then vertex4

2

1

3

5

4

Figure 15: Choosing the minimal color is not greedy.

will get color 1 if the lowest numbered color possible is given, and thus the last
vertex will get color4. However, giving vertex4 color3 at this point will allow the
last vertex to be colored with color1, and only three colors will be used in all.

One can always make an ad hoc definition of a greedy decision in the context
of any given problem. For example, for the vertex coloring problem, one might
define a greedy decision to be one that never assigns a new color to a vertex if an
existing color could be usednow. However, for a given input and history of what
has been seen, it may be known to the algorithm that any valid completion of the
input sequence will force an additional color and it might be that in such a case
one would also allow a new color to be used before it was needed. This can, of
course, all be considered as a relatively minor definitional issue and oneis free to
choose whatever definition seems to be more natural and captures known “greedy
algorithms”.

Perhaps a more meaningful distinction is the concept of “memoryless” priority
algorithms. Although motivated by the concept of memoryless online algorithms,
especially in the context of thek-server problem, the concept of memorylessness
takes on a somewhat different meaning as applied in [10], [3], and here. Namely,
these papers apply the concept to problems where the irrevocable decision is an

36

accept/reject decision (or at least that acceptance/rejection is part of the irrevocable
decision). In this context, memoryless priority algorithms are defined as priority
algorithms in which the irrevocable decision for the current item (and the choice of
next item in the case of adaptive algorithms) depends only on the set of previously
accepted items. That is, in the words of [12], a rejected item is treated as a NO-
OP (“no operation”). In the accept/reject context, memoryless adaptive algorithms
are “essentially” equivalent toacceptances-firstadaptive algorithms which do not
accept any items after the first rejected item. As observed6 in [10] and [3], we have
the following:

Theorem 14 Let A be a memoryless priority algorithm for a problem with ac-
cept/reject decisions. Then there exists an “acceptances-first” adaptive priority al-
gorithmA

′ that “simulates”A in the sense that it accepts the same set of items and
makes the same irrevocable decisions.

We observe that many graph theoretic algorithms called greedy may or may not
satisfy some generic general definition of greedy. However, many of these algo-
rithms (for instance the maximal matching algorithm for vertex cover when real-
ized as an adaptive priority algorithm) are indeed acceptances-first algorithms and
thus memoryless. In terms of a converse for the above theorem, it is obviousthat
an acceptances-first algorithm can be simulated by a “1-bit algorithm”, where this
one bit is used to remember whether or not a rejection has already occurred.

With regards to the formulation of the power of the adversary, Davis and Impagli-
azzo provide a formal model of an algorithm-adversary game which givesa precise
definition of the adversarial model used to derive inapproximation results and we
use the same model. Angelopoulos [2] refers to this as the DI adversary and he
introduces a stronger (but still reasonable in terms of many existing algorithms)
adversary which intuitively ensures that “input item id’s do not carry information”.
The Angelopoulos adversary is defined for both fixed and adaptive priority. For
our purposes, we need only describe this adversary in terms of the fixedpriority
model. In the context of complete weighted graphs, whenever two vertices have
the same multiset of edge weights, they must be given equal priority and the ad-
versary is then entitled to break this tied priority however it wishes. (For adaptive
algorithms, intuitively one has to say whether or not the history thus far can distin-
guish two unseen vertices.) In the context of unweighted graph problems and fixed
priority algorithms, as considered in this paper, the Angelopoulos adversary does

6 In [10], this fact is stated in terms of memoryless algorithms being simulatedby greedy algo-
rithms, but the essence of that observations really concerns the acceptance-first restriction and not
greediness.

37

not let an algorithm’s priority distinguish between vertices that have the same de-
gree. This corresponds to our degree-based model. In the weighted complete graph
case, Angelopoulos proves lower bounds for the complete facility location problem
(for both fixed and adaptive priority algorithms) and the dominating set problem
(for the more general adaptive priority algorithms). It is not clear if Angelopoulos’
adaptive priority results can be obtained in the DI adversary model, but even if they
can, this simple restriction on priority algorithms certainly makes it easier to derive
lower bound proofs. We have presented a number of inapproximation results in the
degree-based fixed priority model by using graph constructions involving regular
graphs. We believe that all these results (using the same constructions) also hold
for the DI model, but will require much more delicate arguments.

With regards to input representation, we note that any priority algorithm in theedge
adjacency formulation can be simulated in the vertex adjacency formulation (mak-
ing exactly the same set of decisions). In contrast to fixed priority algorithms, most
existing adaptive priority algorithms can function in the edge adjacency formula-
tion; the authors are unable to recall one which does not. However, we established
in Theorem 9 (using an example in [12] for showing that memorylessness is re-
strictive) that the edge adjacency formulation can be restrictive even foradaptive
algorithms.

For fixed priority algorithms, there is a natural problem which seems to differ-
entiate the vertex and edge adjacency formulations. The matching algorithm for
vertex cover can be realized as a fixed priority algorithm in the vertex adjacency
formulation (Theorem 2). However, while the same algorithm can be realizedas
an adaptive algorithm in the edge adjacency formulation (Theorem 1), we do not
believe a fixed priority algorithm can achieve anyO(1) approximation for vertex
cover in the edge adjacency formulation.

With respect to fixed priority algorithms, we have studied the more restrictive
degree-based model, where the priority given to an input item (vertex) is afunction
of only the degree of the vertex. While it may seem that a fixed priority algorithm
cannot utilize any information about adjacent vertex/edge names when assigning
priorities, it is not hard to see that such an algorithm can ensure that vertices are
considered in adjacent pairs, for example by placing all the vertices incident to a
certain edge first in the ordering, followed by those incident to another edge, etc.
However, intuitively this seems like the only additional power such a fixed priority
algorithm has when compared to a degree-based fixed priority algorithm. Wehave
not been able to formalize this intuition for our constructions, but we conjecture
that our inapproximation bounds concerning degree-based fixed priority algorithms
hold for arbitrary fixed priority algorithms in the edge adjacency formulation.We
should also note that for regular graphs, it may seem that a degree-based fixed pri-

38

ority algorithm is essentially just an online algorithm as the adversary has complete
control over the order in which the algorithm considers the inputs. However, in the
usual online model for graph problems, when an input vertexv is provided to the
algorithm, the algorithm only gets to know those vertices adjacent tov which have
previously been input, whereas in the degree-based fixed priority model,the algo-
rithm gets to know the entire list of adjacent vertices (or edges). We note that in the
online model, the edge and vertex adjacent formulations are equivalent. Itfollows
that all of our degree-based lower bounds apply to online algorithms.

7 Concluding Remarks and Open Problems

We have considered priority algorithms in the vertex adjacency and edge adjacency
formulations, and it was shown that the edge adjacency formulation can be more
restrictive than the vertex adjacency formulation for adaptive priority algorithms.
Most known priority algorithms, however, can be implemented using the edge ad-
jacency formulation. Thus, it would be interesting to find natural problems for
which the input formulations are provably different with respect to the best ap-
proximation ratio attainable, and, if different, how much better one can do using
the vertex adjacency formulation.

With respect to lower bounds for fixed priority algorithms, we considered the
degree-based model. It is unclear if arbitrary fixed priority algorithms aremore
powerful than the degree-based model in either the vertex or edge adjacency for-
mulations. We conjecture that the three results we have for degree-basedfixed
orderings also hold for arbitrary fixed priority algorithms in the edge adjacency
formulation.

For problems where an adaptive priority algorithm makes only accept/rejectde-
cisions for each vertex, acceptances-first algorithms are equivalentto memoryless
algorithms. The acceptances-first model was introduced and applied to theMaxi-
mum Independent Set and Vertex Cover problems.

Many of the lower bound results do not meet the upper bounds provided by known
algorithms. It would be interesting to close some of these gaps. For example, in
the result for the unweighted vertex cover, our adaptive priority4/3 lower bound
meets Clarkson’s result in the case when the maximum degree is three. However,
what if the maximum degree is larger than three? Can one prove a better lower
bound? It has long been an open problem whether or not the optimal (polynomial
time) approximation ratio for vertex cover is2− o(1).

39

References

[1] Michael Alekhnovich, Allan Borodin, Joshua Buresh-Oppenheim, Russell
Impagliazzo, Avner Magen, and Toniann Pitassi. Towards a model for back-
tracking and dynamic programming. InProceedings of the Twentieth Annual
IEEE Conference on Computational Complexity, pages 308–322, 2005. Jour-
nal version submitted to Computational Complexity Journal.

[2] Spyros Angelopoulos. Ordering-preserving transformations andgreedy-like
algorithms. InProceedings of the Second Workshop on Approximation and
Online Algorithms, volume 3351 ofLecture Notes in Computer Science,
pages 197–210. Springer-Verlag, 2005.

[3] Spyros Angelopoulos and Allan Borodin. On the power of priority algo-
rithms for facility location and set cover. InProceedings of the 5th Inter-
national Workshop on Approximation Algorithms for Combinatorial Opti-
mization, volume 2462 ofLecture Notes in Computer Science, pages 26–39.
Springer-Verlag, 2002.

[4] Sanjeev Arora, B́ela Bollob́as, and Ĺaszĺo Lovász. Proving integrality gaps
without knowing the linear program. InProceedings of the 43th Annual IEEE
Conference on Foundations of Computer Science, pages 313–322, 2002.

[5] David Avis and Tomokazu Imamura. A list heuristic for vertex cover.Oper-
ations Research Letters, 35(2):201–204, 2007.

[6] Mihir Bellare, Oded Goldreich, and Madhu Sudan. Free bits, PCPs and
non-approximability—towards tight results.SIAM Journal on Computing,
27:804–915, 1998.

[7] Piotr Berman and Toshihiro Fujito. On approximation properties of the in-
dependent set problem for degree 3 graphs. InProceedings of the Fourth
International Workshop on Algorithms and Data Structures, volume 955 of
Lecture Notes in Computer Science, pages 449–460. Springer-Verlag, 1995.

[8] Ravi Boppana and Magnús M. Halld́orsson. Approximating maximum inde-
pendent sets by excluding subgraphs.Bit, 32:180–196, 1992.

[9] Allan Borodin, Joan Boyar, and Kim S. Larsen. Priority algorithms forgraph
optimization problems. InProceedings of the Second Workshop on Approx-
imation and Online Algorithms, volume 3351 ofLecture Notes in Computer
Science, pages 126–139. Springer-Verlag, 2005.

40

[10] Allan Borodin, Morten N. Nielsen, and Charles Rackoff. (Incremental) pri-
ority algorithms.Algorithmica, 37:295–326, 2003.

[11] Kenneth L. Clarkson. A modification of the greedy algorithm for vertex cover.
Information Processing Letters, 16:23–25, 1983.

[12] Sashka Davis and Russell Impagliazzo. Models of greedy algorithmsfor
graph problems.Algorithmica, 54:269–317, 2009.

[13] Irit Dinur and Shmuel Safra. The importance of being biased. InProceedings
of the 34th Symposium on Theory of Computing, pages 33–42. ACM Press,
2002.

[14] Jack Edmonds. Matroids and the greedy algorithm.Mathematical Program-
ming, 1:127–136, 1971.

[15] Urid Feige and Joe Kilian. Zero knowledge and the chromatic number.Jour-
nal of Computer and System Sciences, 57:187–199, 1998.

[16] Johan H̊astad. Clique is hard to approximate withinn1−ε. Acta Mathematica,
182:105–142, 1999.

[17] Magńus Halld́orsson, Kazuo Iwama, Shuichi Miyazaki, and Shiro Taketomi.
Online independent sets. InProceedings of the Sixth Annual International
Computing and Combinatorics Conference, volume 1858 ofLecture Notes in
Computer Science, pages 202–209, 2000.

[18] Magńus M. Halld́orsson. A still better performance guarantee for approxi-
mate graph coloring.Information Processing Letters, 45:19–23, 1993.

[19] Dorit S. Hochbaum. Efficient bounds for the stable set, vertex cover and set
packing problems.Discrete Applied Mathematics, 6:243–254, 1983.

[20] Stephanie Lorraine Horn. One-pass algorithms with revocable acceptances
for job interval selection. MS Thesis, University of Toronto, 2004.

[21] David S. Johnson. Approximation algorithms for combinatorial problems.
Journal of Computer and System Sciences, 9(3):256–278, 1974.

[22] Sanjeev Khanna, Nathan Linial, and Shmuel Safra. On the hardness of ap-
proximating the chromatic number.Combinatorica, 20(3):393–415, 2000.

[23] Subhash Khot. Improved inapproximability results for maxclique, chromatic
number and approximate graph coloring. InProceedings of the 42nd An-
nual IEEE Symposium on Foundations of Computer Science, pages 600–609,
2001.

41

[24] Subhash Khot. On the power of unique 2-prover 1-round games.In Pro-
ceedings of the 34th Symposium on Theory of Computing, pages 767–775,
2002.

[25] Subhash Khot and Oded Regev. Vertex cover might be hard to approximate
within 2− ǫ. In Proceedings of the 18th IEEE Conference on Computational
Complexity, pages 379–387, 2003.

[26] Daniel J. Lehmann, Liadan O’Callaghan, and Yoav Shoham. Truth revela-
tion in approximately efficient combinatorial auctions.Journal of the ACM,
49(5):1–26, 2002.

[27] Nazanin Mirmohammadi. Inapproximation lower bounds for the maximum
independent set problem in pBT model—and other observations. MS Thesis,
University of Toronto, 2007.

[28] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approxi-
mation and complexity classes.Journal of Computer and System Sciences,
43:425–440, 1991.

[29] G. Szekeres and Herbert S. Wilf. An inequality for the chromatic number of
graphs.Journal of Combinatorial Theory, 4:1–3, 1968.

[30] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, 2001.

[31] Yuli Ye and Allan Borodin. Priority algorithms for the subset-sum problem.
In Proceedings of the Thirteenth Annual International Computing and Com-
binatorics Conference, pages 504–514, 2007. Journal version accepted for
publication in Journal of Combinatorial Optimization.

42

