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Abstract

We continue the study of priority or “greedy-like” algonitts as initiated
in [10] and as extended to graph theoretic problems in [12§pB theoretic
problems pose some modeling problems that did not exiseimtiginal ap-
plications of [10] and [3]. Following [12], we further cldyithese concepts.
In the graph theoretic setting, there are several natupalt iformulations for
a given problem and we show that priority algorithm boundgeéneral de-
pend on the input formulation. We study a variety of graptbfgms in the
context of arbitrary and restricted priority models copmsding to known
“greedy algorithms”.

Keywords approximation algorithms, priority algorithms, greedy algorithms, ver-
tex cover, independent set, vertex coloring.

* A preliminary version of this paper appeared in tecond Workshop on Approximation and
Online AlgorithmsLecture Notes in Computer Science, vol. 3351, pages 126-139g8pierlag,
2005.

' partially supported by the Danish Natural Science Research Coundf) (&M the IST Pro-
gramme of the EU under contract number IST-1999-14186 (ALCN!-Parts of this work were
carried out while these authors were visiting the University of Torontatla@d)niversity of Califor-
nia, Irvine.



1 Introduction

The concept of a greedy algorithm was explicitly articulated in a paper by Ed
monds [14] following a symposium on mathematical programming in 1967, al-
though one suspects that there are earlier references to this corioeptthat time,

the greedy algorithm concept has taken on a broad intuitive meaning anedeb

set of applications beyond combinatorial approximation. The importanaeetfly
algorithms is well motivated by Davis and Impagliazzo [12] and constitutes an im-
portant part of many texts concerning algorithm design and analysis.gkesdy
algorithms keep emerging, as, for instance, in [26], which considersaneshs

for combinatorial auctions, requiring solutions to difficult optimization problems
Given the importance of greediness as an algorithm design “paradigm”pitis-s
what surprising that a rigorous general framework for studyingdyredgorithms

is still developing. Of course, the very diversity of algorithms purportetheo
greedy makes it perhaps impossible to find one definition that will satisfy-ever
one. The goal of the priority algorithm model [10] is to provide a framewanich

is sufficiently general so as to capture most (or at least a large fractitmg algo-
rithms we consider to be greedy or greedy-like while still allowing good intuition
and rigorous analysis, e.g., being able to produce results on the limitations of th
model and ultimately suggesting new algorithms.

The priority model captures algorithms that process the input set in stéesew
we assume that the input comes in the form of a set of input items. The glikedy
aspect is modelled by allowing the algorithm to choose, in a restricted way, the
order in which the input items are processed. Informally, the restriction isliba
order (or prioritizing) must be made by specifying the property the nexitiigm
should have, e.g., the item of largest size or the edge of smallest weight gie.

next section, we give precise definitions for the format of priority algorgh

The priority model has two forms: fixed priority and the more general agapti
priority model. For both models, input items are treated one at a time, and each
time, some irrevocable decision is made concerning the item. For fixed priority
algorithms, a total order on all possible input items is specified in the beginning
and input items are then treated one at a time according to that ordering. For
adaptive algorithms, the ordering can depend on the items already ceusider,

the algorithm can decide on a new ordering every time before processimgxih

item. It is crucial that the ordering is not determined by the actual input séet, b
rather it must apply to the set all of possible input items.

The priority framework was first formulated in Borodin, Nielsen and R#JRO]
and applied to (worst case approximation algorithms for) some classicadgeh



ing problems such as Graham’s makespan problem and various intdredusiag
problems. In a subsequent paper, Angelopoulos and Borodin [8gdftpbe frame-
work to the set cover and uncapacitated facility location problems. Theners
facility location studied in [3] was for the disjoint model where the set of facdlitie
and the set of clients/cities are disjoint sets. In contrast, in the complete model
for facility location, there is just a set of cities and every city can be a facility.
Angelopoulos [2] studies the facility location problem in the complete model.

The work of Davis and Impagliazzo [12] extends the priority formulation spbr
theoretic problems. They consider a number of basic graph theory prsliften-

gle source shortest path, weighted vertex cover, minimum spanning teeerS
trees, maximum independent set) with respect to one of two differentfiaput-
lations depending on the problem and known “greedy algorithms”. Fohibréest

path, minimum spanning tree and Steiner tree problems, the formulation used is
the “edge model”, where input items are edges represented by their wetlgts
names of the endpoints, and in the case of the Steiner tree problem by thérgmpe
quired or Steiner) of the edge endpoints. In contrast, for the weightéekveover

and maximum independent set problems, Davis and Impagliazzo use aadjegex
cency formulation, where input items are vertices, represented by thegsand

the names of the vertices to which they are adjacent, and in some problems also
the weight of the vertex. This representation presents some challemgksifong
priority algorithms and greedy decisions. These definitional issues ledpecto
clarify the nature and usefulness of memoryless priority algorithms. Wet@evo
Section 6 to these discussions, including the issue of possibly reservitgrthe
“greedy” for only a subset of all priority algorithms.

In order to establish lower bounds for priority algorithms, it is important toriee p
cise about the behavior and power of an adversary. Contributions iditeigion
have been made by Davis and Impagliazzo as well as Angelopoulos. lbisrals
portant to define the precise form of the input to make it clear what caedeced
by a priority algorithm from seeing parts of the complete input. We give ofimide
tions in the next section, and we further discuss differences from eadid and
relations between various concepts such as input representatiodingse and
memorylessness in Section 6.

In Sections 3, 4, and 5, we study the graph theoretic problems of vertex, ¢o-
dependent set, and vertex coloring. In the graph theoretic setting,aieeseveral
natural input formulations for a given problem and we show that priolggréhm
bounds in general depend on the input formulation. In particular, in Sedtio
we establish a separation between the results that can be obtained usitexa ve
adjacency formulation versus an edge adjacency formulation.



2 Priority Algorithmsfor Graph Problems

Kruskal's and Prim’s algorithms for Minimum Spanning Tree are standaachex
ples of greedy algorithms, and both can be viewed as priority algorithms. ilWe w
use them as examples to present the two models, fixed and adaptive piagoity a
rithms.

As part of the definition of an algorithmic problem where the input can beadew
as a set of input items, we I€tdenote the set (or universe) of all possible input
items.

For some algorithmic problems, all finite subsetd’dbrm valid input instances,
whereas for other problems, this is not the case. For example, if a grgpkeiisby
its edges, any subset of the edges is a valid input instance. However,aph is
given by vertices, where along with each vertex a list of its neighbors éngthen
a subset of vertices not containing the vertexut containing a vertex with v
listed as one of its neighbors, would not be a valid input instance. e tkenote
the collection of all valid input set instances, i.e., the elementk afe subsets of
I.

Priority algorithms define (one or more) orderingslowhich determine the item
to be processed next in each iteration of the algorithm. The smallest (oitérat)
according to the ordering among those remaining in the input instance ispeate
next. This item has highest priority, hence the name “priority algorithm”.

Fixed Priority Algorithms

Figure 1 shows the template for a fixed priority algorithm.

An algorithm is called a fixed priority algorithm if it can be formulated using the
template. The notatiomin<, G;; denotes the minimum element @, with
respect to the total orderingr. Note that the algorithm does not know the sets
G, so it bases its irrevocable decisions on the general format for anitepufas
captured byl") and the items$, seen so far.

As an example, for Minimum Spanning Tree, the items are edges with their weights
If the weights are integers, the edges are represented by specifyivertices they

are incident to, and the vertices are given as integers, then one €as 18t< Z x Z,
where the first component is the weight of the edge and the other two cemigon
are its two endpoints. For Kruskal's algorithm, the lexicographical orgevimthe
items inT" gives a total orderings , which places edge, = (w1, u1,v1) before

e2 = (wg,ug,v9) if w; < wy and breaks ties in some specific way (as we have



I' is the set of all possible input items
Gy € ¥ is the input instance
decide on a total ordering » of I'

S:=0 { the set of items already seén
i:=0 {15}
whileG; \ S # () do

Gi—H =G \ S

item: = min<, G;41
make an irrevocable decision concernitegn
S =SuU/item}
ir=zi+1
end

Figure 1: The template for a fixed priority algorithm

defined it, lexicographically on the paifs;, v;)). The irrevocable decision made
in Kruskal's algorithm is to include the edge in the spanning tree, or to rejétt it
it would create a cycle). Thus, Kruskal's algorithm can clearly be esga@ using
the template.

When expressing concrete algorithms, we emphasize readability, and]éviste
slightly from the template. We introduce additional variables and controltstes
in order to compute the intended orderings and irrevocable decisiong Whigis
most convenient. In all cases, however, it should be clear that thethlgsrcould
be written so as to strictly follow the template.

One can view any online algorithm as a fixed priority algorithm where anradse
(rather than the algorithm) determines the ordering. The added power>ad fi
priority algorithm is that it imposes a total ordering Brfalbeit independent of the
actual input set) and, because of this ordering, as items are beinde\viéalso
learns that certain items cannot be in the actual input set.

Adaptive Priority Algorithms

In Prim’s algorithm, the next edge chosen is the lowest weight edge indiol g
portion of the spanning tree which has already been constructed, tbateading

a cycle. One can view this as choosing the first item in a total ordering which
changes for each new item, as explained below.

Figure 2 shows the template for an adaptive priority algorithm.



I" is the set of all possible input items
Gy € ¥ is the input instance
S:=0 { the set of items already seen (processed)
i:=0 {|5]'}
whileG; \ S # () do
decide on a total ordering;; of I’
Gi+1 =Gy \ S
item: = ming, Git1
make an irrevocable decision concernitegn
S =5 uU/{item}
ir=i+1
end

Figure 2: The template for an adaptive priority algorithm

An algorithm is called an adaptive priority algorithm if it can be formulated using
the template. Note also here that the algorithm has no knowledge of th@'sets
but bases its choices (the orderings and the irrevocable decisionsg genleral
format for an input item (as captured by and the items$, seen so far.

Returning to Prim’s algorithm, le¥ be the set of edges which have one vertex in
the setS C T of vertices already processed (in the current spanning tree) and one
vertex outside that set (in\ S), and letZ be all other edges. Place the edged/in
before all those irl. in the total ordering. Within the two setd] and L, the edges

are ordered lexicographically, as in Kruskal's algorithm, so that edgbswmaller
weight come first. If the se¥ is non-empty, the first edge in this ordering is added
to the tree and t&. Otherwise, the edge is rejected, but still added toSince
Prim’s algorithm can be expressed this way, it is an adaptive priority algorith

The extra power, in comparison with a fixed priority algorithm, is the ability to
change the priorities of items in each iteration. This prioritizing is based on a total
ordering defined on all possible input items, and is defined using onlynafibon
about items already processed, i.e., thos§.irFrom these items, the algorithm,
ALG, can make some deductions concerning what items fraould be in the re-
maining part of the input sequence. Certainly, the items @annot be given again.
Additionally, no item less than the last item chosen, according to the ord€fing
can be in the input, and possibly other input items originally/ icannot lead to a
valid input instance. However, the placement of these items in the total ogderin
cannot affect the computation since they will not be part of the input instégince

G € 1), i.e., they will not be elements @f; ;.



Further Restrictions

We consider a variety of restricted forms for priority algorithms. The fifthese

is relevant for problems where the irrevocable decision concerningpan item

is simply an accept/reject decision, e.g., should an edge be included in the min-
imum spanning tree or not. For such problems, we refer to a priority algorithm
asacceptances-firsif it can choose orderings such that as soon as it has rejected
an item, it never accepts an item again (and of course still solves the algorithmic
problem in question).

The following two restrictions have to do with how much information algorithms
use and store. The first of these applies to the class of accepts/rajbtdmps.
Assume that we partition the s8tof items seen up to a given point in time into
the setsA and R of accepted and rejected items, respectively, ¥e) R = S
andA N R = (. Then we refer to an algorithm asemoryles# all its decisions
(defining orderings and making irrevocable decisions concerning itgoas) are
based only ory, i.e., all rejected items are ignored.

Finally, for graph problems where input items are vertices, we refer teoatgr
algorithm asdegree-based only the degrees of vertices are used when defining
an ordering (as opposed to, for example, information regarding neigltiet may
have been seen already or the names of the vertices or edges). &ittiegswf the
same degree cannot be distinguished when defining the ordering.

Input Representations

In the remainder of this paper, we assume that the input items are vertices in a
graph. We use two different input representations for these verdepgnding on
whether connections to neighbors are expressed through edgesaesiévertices

and edges have names or labels (or are numbered in some way) to distihgaish
from each other.

In the vertex adjacency formulatigrihe neighbors of a vertex are given by a
list of the vertices that are neighbors o In the edge adjacency formulation
neighbors are given as a list of edges.

The latter gives less information. For instance, consider a vertelxich has both

v andw as neighbors. In the vertex adjacency formulation, if we sesd w
(and they are not neighbors), then whether or not we have already se/e can
conclude that: andw are at a distance two apart, sincappears as a neighbor of
both. In the edge adjacency formulation, we would just get the names of the tw
different edges connectingto v andv to w, and would not be able to infer that



distance information.

Note that opposed to the situation for some online formulations, in our setting, a
vertex comes with a complete neighbor list (in terms of either edges or vertines)
contrast, in some formulations of online problems, only connections to naighbo
already seen are given.

Adversarial Arguments

Most often, the harder part of establishing the limits of what can be obtaisiag
priority algorithms has to do with establishing lower bounds. When establishing
lower bounds, one often uses the concept of an adversary thahsiéiseginput to
make it hardest possible for an algorithm trying to solve the problem at hand

For adaptive priority algorithms in particular, one has to be fairly caretunv

devising these types of arguments, since the algorithms can choose adegingr
for each iteration of the loop and the adversary has an obligation to endtlup w
valid input instance.

In Figure 3, we give an alternative formulation of an adaptive priority rtigm
which clarifies the relationship between the algorithm and the adversasy/forh
mulation is equivalent (just more formal) to the one already given. We willasall
algorithm ALG an adaptive priority algorithm if it is possible to define functigns
ando such that no matter which choices are made by the adversary, the re-
sult of running the template in Figure 3 is always the same as running the afgorith
ALG on the input defined by Bv.

The template highlights the restrictions on the “game” most often written up in
proofs as a case analysis based on the choices made by an algorithrh iit- eac
eration. The primary purpose of this template is to act as a precise definition of
the power of priority algorithms (by defining exactly which adversary salgb-
rithms are working against). Concrete algorithms will be formulated following the
earlier templates which come much closer to a “programmer’s view” on priority
algorithms.

We now explain this template to clarify all the relevant concepts.

H; represents the history aftéiterations. It is an ordered sequence of pairs con-
sisting of an input item together with the irrevocable decision that was made con
cerning that item. The decision functienmakes the irrevocable decision based
on the history and the input item at hand. The ordering function specitiesila
ordering of the elements &f. This ordering can be based on the history.

The restrictions on the adversary just formalize that it must present aimplid



I" is the set of all possible input items
¥ is the collection of all valid input sets

Specify:
¢ a decision function (H, item)
e an ordering functiow (H,T")

() { the history of input items and irrevocable decisigns
{ number of input items giveh

~.

~
..
S

while Abv does not choose to terminate

<i+1:=o0(H;,T) { ordering on input items
ADV gives next itemitem; { next input item}
dit1:=0(H;,itemq) { anirrevocable decisioh
H;iq: = H; ++ ((itemy1,d;i+1)) { updating the history
1i=t+1

endwhile

There are the following restrictions onD&’s choice to terminate and on
ADV'’s choice of input items to give. Ldtemy,item,...,item, be the se-
guence of items given beforepd terminates the loop. Thenv must ensure
that

{item, itemy, ..., item,} € ¥, and

Vie{l,...,n}Vje{l,...;i—1}: item; <; item

Figure 3: A formal template for an adaptive priority algorithm.

set, and that it must be consistent with the total orderings defined by th@yprio
algorithm, i.e., the adversary is not allowed to present an item which acgaalin
an earlier ordering is smaller than the item given at that time. Or phrased/pbsiti
when presenting the priority algorithm with the next item, an item given in an
earlier round must be smaller according to the ordering used in that eadied r

An alternative, but equivalent, way of viewing this is as follows: Lgt=1I". The
adversary choosingem;; is equivalent to its restricting the items which could
still be part of the remaining input to the subsgt; = T'; \ {z € T; | <; 41
item1}. In this view, Abv defines set§’; D I'; D I's O --- before each
new input item. Before the choice of and processing ofithdatem, I'; is a set

of items, all of which can lead to a well-defined input instance, i.e., an input in-
stance in¥. The input to the algorithmijitemy, item, . . ., item, }, is the sequence



(min<, I'1,min<, Iy, ..., min<c, I'y).

Typical structure of an adversarial argument

In graph problems where the graphs are given by vertices, an atatergument
will typically involve one or more graph constructions, where the algorithoukh
receive some vertices before others. In the set (or univelrsedf all possible
input items, each item would contain a vertex label, plus a set of edge texyer
labels for the edges incident to (vertices adjacent to) that vertex. Ebrvemtex
degree/, possible in the construction, there will typically be an item with each
possible vertex label associated with each possible subséiedfe (or vertex)
labels. Based on the algorithm’s ordering of the itemg jrthe adversary can
assign labels to the vertices and edges in its constructions. Thus, theagver
can, for example, decide that the first vertex in the ordering is any ofdare®s

in the construction with the same degree (and weight if the vertices havetajeigh
Later choices as to which vertex is the next chosen will be restricted byhvatiic
the already processed vertices it is adjacent to and by its degree (ayid)wkn the
vertex adjacency formulation, there is an additional restriction basedighbwes
that this vertex has in common with vertices already processed.

Input Size

For some scheduling results in [10], the adversary assumes that thighedgdoes

not know (or use information concerning) the final number of jobs to begssed.
The same holds here for graph problems; in some cases the adveesgsdmal
input graphs that have different sizes for different algorithms. btiice, most
priority algorithms do not seem to use the total number of vertices or edges in th
graph in assigning priorities or in making the irrevocable decisions, so fiutse
based on adversaries of this type are widely applicable. Unless othestatsel,

the results below assume the algorithm does not know the total number oesertic
n or edgesn in the graph.

3 Vertex Cover

Minimum Vertex Cover is the problem of finding a smallest suldseif vertices
such that all edges are incident to some verteX.in

This unweighted vertex cover problem is one of the most celebrated opelems
in the area of worst case approximation algorithms. The simple maximal matching

10



algorithm (taking both adjacent vertices in any maximal matching) provides a 2-
approximation. This is essentially the best known polynomial time approximation
bound in the sense that there are no known polynomial {2nee)-approximation
algorithms (for a fixed > 0), although various algorithms are known which for
certain classes of graphs guarantee an approximation better than 2nbatg:

ing to 2 as some parameter grows. This maximal matching algorithm provides
illustrative examples of priority algorithms. We show below how to implement
it both as a fixed priority algorithm in the vertex adjacency formulation and as
an acceptances-first adaptive priority algorithm in the edge adjacenoylfation.

Both implementations are memoryless.

Surprisingly, Johnson [21] showed that the greedy algorithm whiclosd® the
vertex with highest degree in the remaining graph is onlyignRapproximation,
and that this bound is tight in that there are arbitrarily large graphs on vthéh
algorithm produces a vertex cover whose sizé/jstimes the size of the optimal
cover. Thus, this adaptive priority algorithm is inferior to the maximal matching
algorithm. However, the “list processing algorithm”, which is a fixed priority a
gorithm that simply takes the vertices in non-increasing order of their dagre
the original graph, accepting a vertex if any of its edges is still uncoyé&exen
worse. Avis and Imamura [5] show that any list processing algorithm winidars
the vertices based on degrees only (that is degree-based fixed priastyan ap-
proximation ratio of at leas®(,/n). We show below that their result also applies
to all acceptances-first fixed priority algorithms in the edge adjacenoyuiation.
Note that list processing is not the same as acceptances-first, sinceadestging
algorithm for vertex cover will reject any vertex if all of its edges areadsecov-
ered, and such a vertex might appear in the ordering before otheregeviitich
will be accepted.

Davis and Impagliazzo [12] show that for the weighted case, no priorityrighgn

(in the vertex adjacency formulation) can achieva- ¢)-approximation ratio,

for anye > 0. Although the weighted vertex cover problem can essentially be
reduced (in polynomial time) to the unweighted case (by making multiple copies of
vertices), this reduction does not preserve the property of beingrtyatgorithm

and hence the study of the unweighted and weighted vertex cover protayrise
substantially different problems in the context of priority algorithms. It tuuas

that there are several priority algorithms for the weighted case that digevaa
2-approximation (or slightly better). One such algorithm is the “layered digot

as given in [30]. This algorithm chooses all maximum (current) degreizgs and
removes them simultaneously. Another simple to state (and also called greedy)
algorithm is given by Clarkson [11]. This algorithm achieves the approxima
bound A{2(2 — A_QO’}DT), where A is the maximum degree in the graph and

11



is the number of verticés Both the layered algorithm and Clarkson’s algorithm
can be expressed as acceptances-first adaptive algorithms in thadjdgency
formulation. Below, we prove é lower bound on the approximation achievable
by any priority algorithm. This matches the upper bound by Clarkson forake c
n=7A=3 andOPT = 3.

In addition to priority algorithms, linear programming relaxation techniques have
proven useful in designing approximation algorithms for vertex coveoraet

al. [4] have shown an integrality gap @f— o(1) for three different families of
linear relaxations for vertex cover, implying that many linear programmingdas
algorithms cannot obtain an approximation ratio better than 2.

In terms of complexity based inapproximation bounds, Dinur and SafrasH@&}
that it is NP-hard to have @approximation algorithm for the (unweighted) vertex
cover problem for < 1.36. Assuming the Uniqgue Games Conjecture [24], Khot
and Regev [25] show a very strong result, namely that the vertex cogblem
has an approximation ratio of at le@st- ¢ for anye > 0. We note (as in previous
papers concerning priority algorithms) that priority algorithm bounds a@npa-
rable with complexity based bounds as priority algorithms can (in principle) utilize
arbitrarily complex (and even non-computable) functions in determining the pr
ity of an item and the irrevocable decision being made about an item. Of ¢aurse
practice, priority algorithms tend to be very time efficient (as well as conedptu
simple) and that is, of course, why they are so popular.

3.1 Themaximal matching algorithm asa priority algorithm

The matching algorithm for vertex cover proceeds by continually choasinge
edge not yet covered and adding both of the edge’s endpoints to tlemtoover,

C. First, we show the easier of two implementations of the maximal matching
algorithm as a priority algorithm.

Theorem 1 The matching algorithm for vertex cover can be implemented as an
acceptances-first (memoryless) adaptive priority algorithm in the edgeesuty
formulation.

Proof Suppose the input set/, is a subset of the sel,, of possible vertices.
In order to see that the matching algorithm can be written as an accepfastes-

! The stated bound is not defined far< 2. The more general bound that applies to/alis that
w(Cua) < w(Copr) — W. Here,C'i ¢ is the cover obtained by Clarkson’s Modified
Greedy algorithm and'o pr is the cover obtained b9 PT.

12



adaptive priority algorithm, we use an ordering satisfying the following @riyp
P(Marked <) is satisfied by an ordering if and only if all vertices incident to
some edge not iMarkedare smaller (i.e., have higher priority) than any vertex
only incident to edges iMarked The algorithm is listed in Figure 4.

Marked: = () { the set of edges already covered
C:=0 { the cover}

i:=0

ChooseNewEdge= true

whileV 2 ()

if ChooseNewEdge
choose a total ordering;;; of I satisfyingP(Marked <; 1)
u:=ming, , V
Vi=V\{u}
if 9 e incident tou such that ¢ Marked
C:=CU{u}
edge: =ze
ChooseNewEdge= false
else
choose an ordering ;.1 of V with vertices incident t@dgefirst
v:=ming, , V
Vi=V\{v}
C:=CU{v}
Marked: = Marked U { all edges incident ta or v }
ChooseNewEdge= true
=i+l
endwhile

Figure 4. The matching algorithm for Vertex Cover as an acceptanctsdiaptive
priority algorithm.

Note that knowing the number of vertices and/or edges in advance iscedsay.

The marking of edges does not need additional memory other than thaéefseth
C of accepted items, since the marked edges are those incident to vertices in
Thus, it is memoryless. The algorithm is acceptances-first becausethdérst
vertex is rejected, there are no more uncovered edges. i

Next, we consider a fixed priority implementation of the maximal matching algo-
rithm, but to do this, we need to use the vertex adjacency formulation. Indfiact,

13



arbitrary ordering can be used and hence the algorithm can be vieveedoadine
algorithm. The algorithm maintains a list;, of vertices already accepted and a
list, L, initially empty, of vertices which it intends to accept. A vertex in this list
has not been processed yet; it is the second vertex incident to somevbibie
has been chosen by the matching algorithm. This is possible because thigadgor
knows which vertices are adjacent to already processed verticesn ivaalgo-
rithm receives a vertex from the ordering, it checks if € L and accepts if itis.

If the vertex is not inL, it checks if all of its neighbors are ifi U L and rejects if
they are. Otherwise, it accepisand chooses a designated neighbaot inC U L
and adds to L. The edg€u, v) has thus been added to the matching. This gives
us the following:

Theorem 2 The maximal matching algorithm can be implemented as a (memory-
less) fixed priority algorithm in the vertex adjacency formulaton.

Proof Consider the algorithm in Figure 5, which was informally described above,
for an input graphG = (V, E). This is clearly a fixed priority algorithm in the
vertex adjacency formulation, and it functions exactly as the maximal matching a
gorithm. While the algorithm does not seem memoryless in that it is remembering
vertices inL, the algorithm can reconstruct the current lisby considering just

the set of vertices ir’. Again note that knowing the number of vertices and/or
edges in the graph in advance is not necessary. m]

It is instructive to consider why the argument behind Theorem 2 doesxteind

to the edge adjacency formulation. Suppose we try to implement the maximal
matching algorithm as an online algorithm (an algorithm which does not determine
the ordering of the input vertices) as in Theorem 2. Supposeutisthe vertex of
highest priority (first in the ordering) and say edgs its incident edge that we are
using for the matching. Let be the other vertex incident to Then while we can
remember to include in the vertex cover, we do not know until we seevhich

other edges (adjacent t9 can be removed. Thus, all ofs neighbors could be
accepted before seeing and each one could be “matched”«to Beyond online
algorithms, a priority algorithm could order vertices so that vertices ane isee
adjacent pairs, by placing vertices adjacent to a particular edfjest in the total
ordering, then those (still unseen) vertices adjacent t@nd so on. Suppose the
first adjacent pair of vertices is andv,, sou andwv; are put in the cove€'. If

the ordering of the edges is such that the next adjacent pair is thewsamv,

2This algorithm is memoryless according to the definition provided by Davis lawpagli-
azzo [12], but to make it acceptances-first, the algorithm becomesiaela

14



Choose any ordering
C:=
X: =V
L:=
while X # ()
u:=minc, X
ifuel
C:=CuU{u} { acceptu, the “2nd vertex” of an edgg
X=X\ {u}
L:=1L \ {u}
elseif u's adjacency list contains no vertexz C U L
X=X\ {u} { rejectu }
else
C:=CU{u} { acceptu, the “1st vertex” of an edgg
X:=X\ {u}
Choose a vertex in u’s adjacency list, but not i’ U L
L:=LU{v} { plan to accept later }
endwhile

Figure 5: The matching algorithm for Vertex Cover as a fixed priority algorith

and if vy is adjacent to a verteyxs, which has not been seen yet, but is “matched”
to vo by the maximal matching algorithm, thes must be accepted and we must
later accepts. However, nows causes the same problems asitie the online
variant above. That is, we do not know what other vertices sharesaslighvs.

3.2 Limitationson priority algorithmsfor vertex cover

Although both an acceptances-first adaptive priority algorithm in the edge
cency formulation and a fixed priority (in fact, online) algorithm in the vertgx a
jacency formulation can achieve a 2-approximation ratio by implementing a max-
imal matching algorithm, Theorem 3 below shows that this is impossible for an
acceptances-first fixed priority algorithm in the edge adjacency formalatio

fact, the best obtainable ratio/n). Using the intuition following Theorem 2,

we conjecture that Theorem 3 appliesawy fixed priority algorithm using the
edge adjacency formulation. The proof below uses the construction inafvds
Imamura’s proof [5] of the similar resdlvhere they proved af}(y/n) inapprox-

3 Although we use the Avis and Imamura construction, our Theorem 3 isripamable with the
Avis and Imamura result since they require a degree-based ordehiifeywe require acceptances-
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imation bound for any degree-based list processing algorithm for vedear.
Moreover, Avis and Imamura show that an(\/n) approximation is achievable
by a list processing algorithm for vertex cover in the edge adjacenayulation.

Theorem 3 No acceptances-first fixed priority algorithm in the edge adjacency
. . . . . 2

formulation for vertex cover can achieve an approximation ratio better;ﬁgp

on graphs witm = k? + 2k — 1 vertices k > 3.

Proof We use a construction suggested by Avis and Imamurad5& a bipartite
graph with vertex set§ andV’, where|V | = 2k—1 and|U| = k2. V is partitioned
into two subsetd; and Vs, where|Vi| = k — 1 and|V;| = k. V3 andU form a
complete bipartite graph, so every vertexiinis adjacent to every vertex il.

Every vertex inVs is adjacent to exactly vertices ofU, so every vertex ot/ is

adjacent to exactly one vertex ity. All vertices inU andV; have degreé. See
Figure 6 which illustrates the construction for= 3.

We consider any acceptances-first fixed priority algorithm that computestex
cover for the grapltz. Each input item then consists of one vertex label and a set
of edge labels representing the edges incident to the vertex. THe sépossible
input items consists of all possible combinations of vertex and edge labets whe
the size of the set of edge labels (the size of the edge adjacency list) iskedher
k2. There are, of course, many more possible input items than there areesertic
in the graph and only certain subsetsiwofertices will constitute a valid input set.
The fixed priority algorithm must create a total orderidg of all possible input
items. To derive an inapproximability result, we consider an adversanhvidiat
liberty to select the set of input items (i.e., to set the actual labels for vertices a
edges) that will comprise the actual input set.

Our goal is to ensure that for all verticess V5, all neighbors ofy (which are all

in U) are processed and therefore accepted (by the acceptancesdirstption)
beforev is processed. For the fixed priority algorithm, this will give rise to a vertex
cover of size at leagt?, since the cover will contain all vertices ih. The optimal
cover consisting of all vertices i is of size2k — 1.

What remains is to demonstrate how the adversary creates a labelling ofe gr
such that the described processing order is obtained.vL@tith adjacency list
{et,... ek} be the last (w.r.t<p) input item inT" of a vertex having degrek.
Then label one of the vertices Iy by v* and its adjacent edges by tM}. Now

let vx_; with adjacency lis{lel ,,...,eF |} be the last (w.rt<p) input itemin

first. The list processing requirement is in essence a greedy reauitevhich says that we take any
vertex as long as it covers an uncovered edge.
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Vs U Wi

Figure 6: The Avis/Imamura construction for= 3.

I" such thatvy, 1 # v ande}'C =+ eihl forall 1 < i,j < k. Label another vertex
in V2 by v;_; and its adjacent edges by tfie. ,}. We continue in this way to
inductively label allk vertices inV5;. We use the remaining vertex and edge labels
to consistently label the verticesihandV; and the edges it x V7 so as to create

a valid input instance. Such a labelling clearly has the desired propertgahht
vertex inV, comes after its neighbors in thker ordering. ]

Note that restrictions on rejection, which both acceptances-first anddis¢gsing
impose, are necessary in using the above construction to establish thdmstatied
bound. Without these restrictions, an algorithm could give highest pritwritiie
high degree vertices, accept them, reject all vertices adjacent to thetmcaapt
all other vertices to get the minimum vertex cover.

Removing the acceptances-first restriction from the previous result,bieenca
much weaker result, especially given the conjecturettigtn) is the best approx-
imation ratio for fixed priority algorithms in the edge adjacency model.
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Theorem 4 No degree-based fixed priority algorithinin the edge adjacency for-
mulation for vertex cover can achieve an approximation ratio betterxhan

Proof The adversary uses copies of the following constructi®nwhich is a
modification of a construction due to Hochbaum [19]:

Construction G: There are two sets of verticds,andV. The set/ consists of
independentk + 1)-cliques, and the sét is an independent set consistingidf
vertices, each of which is adjacent to every vertex in eygry 1)-clique.

Note that all vertices it> have degreé? + k. Thus,A cannot distinguish between
the vertices when assigning priorities. The optimum vertex cover includay ev
vertex inU and has sizé? + k.

The adversary arranges that the selected vertices are independegttte first of

the two phases. We lef denote the number of vertices processed so far. The first
phase continues until eithér has rejected at least= (%1 vertices orm’ = k?;
whichever happens first.

If the first phase would stop because at leasertices were rejected, then the
adversary createscopies of the constructioi. There are enough cliques so that
each of then' vertices can be placed in distinct cliques in the copie§ oénd the
rejected vertices can be placed in separate copiés. ofhis means that in each
construction, all vertices i must be accepted in the second phase. In addition,
the 2aI920rithm must take at leastvertices in every clique iV. This gives a ratio

of k°+k 2k

k2+k — k+1°

If the first phase would stop because = k?, the adversary uses a single copy
of the constructiorfz. Then’ vertices are irl/. Note that the number of rejected
vertices is at mosﬁ%} = k, since otherwise the algorithm would have terminated
for that reason. If any of the’ vertices are rejected, then everythingimust be
accepted in the second phase, giving a totat’of- k + k? + k = 2k>. Even if

all the vertices inV/ are accepted, at leastvertices must be accepted from every
clique in the second phase. This gives a total of at I&ast k2. Thus, in both
cases the ratio is at leagt;. m]

In contrast to vertices ifV, the vertices irl/ have identical adjacency lists. Since
this distinction can be detected in the vertex adjacency formulation, the almmfe pr
depends on the edge adjacency formulation. The assumption that the ahgorith
only considers degrees in ordering prevents the algorithm from egstiéh two
adjacent vertices are chosen first.

The following lower bound applies to all priority algorithms for the vertex cove
problem:

18



Theorem 5 No adaptive priority algorithm in the vertex adjacency formulation
can achieve an approximation ratio better tdas for the vertex cover problem.

Proof First note that both graphs in Figure 7 have vertex covers of3size

D B E

Figure 7: Graph 1 to the left and Graph 2 to the right.

We now force any adaptive priority algorithinto choose at leagtvertices.

In the first stepA must choose either a degr2er a degree3 vertex, and it can
choose to accept or reject. We treat these four cases.

If A rejects a degre® vertex first, the adversary lets it be vertéxn Graph 1. If
A accepts a degrekvertex first, the adversary lets it be vertBxin Graph 1. If
A rejects a degreg vertex first, the adversary lets it be vert@xin Graph 1. IfA
accepts a degrekvertex first, the adversary lets it be vertéxn Graph 2.

(As an example, Clarkson’s algorithm would first accept a vertex ofeded, so
the adversary would give Graph 2. After accepting verdexhe algorithm must
accept at least three more vertices to cover all edges.) m|

Note that the numbers of vertices in the two graphs used in the proof of tve ab
theorem are the same, so the theorem holds true in a model where the algorithms
know the number of vertices.

In addition, the results hold for arbitrarily large graphs, since disjoint copii¢he
constructions can be used.

In more restrictive models, we obtain stronger lower bounds.

“If the number of vertices and edges are both known to the algorithm, wadda cycle of 4
new vertices to Graph 2 and a cycle of 4 new vertices with one diagonahfihdr and obtain a
bound of6/5.
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Theorem 6 In the vertex adjacency formulation, no acceptances-first adaptive pr
ority algorithm can achieve an approximation ratio better théhfor the vertex
cover problem (even if the number of edges and vertices in the graplowenkio

the algorithm).

Proof Consider a chain of five vertices. In the acceptances-first model, gte fir
vertex chosen (the smallest vertex in the first total ordering) must b@tactelf

the first vertex chosen has degree 1, at least two other vertices mcisbgen to
cover all the edges. If the first vertex chosen has degree 2, thesadyenakes it

the center vertex(’, and again at least two others must be chosen. The smallest
vertex cover consists of the two vertices adjacent to degree 1 vertibes, dne
obtains the rati@/2. O

4 Independent Set

Maximum Independent Set is the problem of finding a largest subsaftyertices
in a graph such that no two verticesiirare adjacent to each other.

The independent set problem and the clique problem, which finds the saime se
the complement of the graph, are well studied NP-hard problems, whprexap
imation also appears to be hard. The bounded degree maximal indepeetient
problem is one of the original MAX SNP-Complete problems [28fskad [16]

has shown a general lower bound on the approximation ratio for the indepe

set problem of,' ¢, for all ¢, provided that NP4 ZPP, where ZPP is the class of
languages decidable by a random expected polynomial-time algorithm thas make
no errors. A general upper bound@fn/log? n) was presented by Boppana and
Halldérsson [8], and an upper bound®f5 for graphs of degree 3 was shown by
Berman and Fuijito [7]. These algorithms are not priority algorithms.

Davis and Impagliazzo [12] have shown that no adaptive priority algorfthitine
vertex adjacency formulation) can achieve an approximation ratio bette%tfmn

the maximum independent set problem, and their proof uses graphs with nmaximu
degree 3.

The Davis and Impagliazzo bound is the current best inapproximationdoimun
adaptive priority algorithms, although there are better results for morectesdtr
models. In our preliminary conference paper [9], we claimed that no fixedr
priority algorithm in the vertex adjacency formulation can achieve an appsex
tion ratio better thaf2(n'/3) wheren is the number of vertices. We soon realized
that our proof was assuming a degree-based fixed priority algorithm. wiotjo
the online algorithm results of Haldsson et al. [17], we provide a corresponding
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inapproximation bound for degree-based fixed order algorithms in the adig-
cency formulation. The following construction is a special éade construction
in the thesis of Mirmohammadi [27].

Construction IP: There are three sets of vertices, B, andW (refer to Figure 8).
The setsA and B each consist of verticesaq, as, ..., ax andby, bs, ..., b, and the

DN

A B

\

e

St

w

Figure 8: Constructiof? for k = 3.

setWW consists o2k — 2 vertices. All vertices have degre@é — 1. The edgesFE,
are as follows: Fot <i <k, (a;,b;) € Eand(b;, a;), (b;,b;) € Efori < j <k,
so the vertices il and B come in pairs which are matched, and each verteX in
is adjacent to all later vertices in bothand B. In addition, the vertices il and
B are adjacent to enough verticedinso that every vertex il and B has degree
2k — 1. Then, partitioning the vertices W into two sets of sizé — 1, making

5 The Hallcbrsson et al. (respectively, Mirmohammadi) construction is designette a result
for online (respectively, degree based fixed priority pBT algorithnjstfiat allow (polynomially)
many solutions to be simultaneously constructed. Moreover, strongriméppation results are still
obtained in [27] when the model is extended to allow revocable acceptasgereviously studied
in (for example) [20, 1, 31]. However, the construction in [27] doesprovide an inapproximation
bound for the vertex adjacency formulation.
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each of these sets a clique, and adding the edges of a perfect matctviregie
these two sets will also cause every verteXlino have degreek — 1.

Now we consider any degree-based fixed priority algorithm and shof(an
lower bound. This result is clearly asymptotically optimal.

Theorem 7 No degree-based fixed priority algorithinin the edge adjacency for-
mulation for independent set (or clique) can achieve an approximationbetter

than’:t2, wheren is the number of vertices.

Proof The adversary uses the constructiBn\Ve note that the optimum indepen-
dent set inP includes every vertex il and has sizé. If n is the total number of
vertices inP, thenk = ™42,

SinceA is a degree-based fixed priority algorithm and all vertices have the same
degree A cannot distinguish between the vertices when assigning priorities.

The adversary arranges that the selected vertices are given (iemtdjairs) in the
order
at, bla ag, b27 ey Uiy bi7

as long a3\ rejects the vertices. Whehaccepts its first vertex (assuming that less
than2k vertices have already been rejected), the adversary makesvhere; is

the index of the first vertex i not yet processed. Note that this is possible for the
adversary, even if the last vertex processed was al3evartex, because; andb;

are both adjacent to all previods-vertices and no previoud-vertices. Since the
edge adjacency formulation is used, the edges to unprocessed verticisply
labels which are distinct from any edges previously seen. Thus, treesady can
successfully complete the construction, regardless whether b; is processed

at this point. Since; is adjacent to all lateA- and B-vertices,A must reject all

of them, excepb;. The vertices iV form two cliques, so at most two of them
can be accepted. Thus,accepts at most three vertices, compared to the optimal
k, giving a ratio ofg. (If A rejects2k vertices initially, only the vertices il

are unprocessed and thus at most two vertices are accepted, givengramorse
ratio.)

Since a clique is a complement of an independent set, the same result mdkds fo
clique problem, by complementing the construction. m]

Note that if the algorithmA, in the above proof accepts the first vertex, the ad-
versary will arrange that no other vertices can be included in the indepéset.
Hence, the following is obtained.
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Theorem 8 No acceptances-first adaptive algoritiAnin the vertex adjacency for-
mulation for independent set (or clique) can achieve an approximationoettier
than “1—*52 wheren is the number of vertices (even if the number of vertices and
edges in the graph is known to the algorithm).

Combining the acceptances-first requirement with the fixed priority regeing
gives a model which is so weak that it appears to be uninteresting for tbtepn.
Consider, for example, a complete bipartite graph witrertices in each part. All
vertices look the same to the algorithm as it assigns priorities, so the agversar
can decide that the two vertices that come first in the ordering are adjalfent.
the algorithm is acceptances-first, since it must reject the second \ietarnot
accept more than one vertex in all.

We use a special case of the maximal independent set problem to provbeha
edge adjacency formulation is weaker than the vertex adjacency formufation
adaptive priority algorithms. Our result is based on the example used in &avis
Impagliazzo [12] to show that memoryless priority algorithms are less polverfu
than those which use memory. Namely, we consider WjSthe weighted maxi-
mum independent set problem when restricted to cycles whose vertelkteaig
either 1 ork. In their proof separating the power of memoryless algorithms from
those which use memory, Davis and Impagliazzo show that in the vertex adjace
formulation there is an adaptive priority algorithm whose approximation ratio ap
proaches one dsgoes to infinity. In contrast, for the W(8) problem in the vertex
adjacency formulation, Davis and Impagliazzo [12] show a 2-approxim kdveer
bound for memoryless algorithms. We now show a lower boun§ fofr the ap-
proximation ratio for the WIgk) problem in the edge adjacency formulation, thus
showing that the edge adjacency formulation can be restrictive when cedhjza
the vertex adjacency formulation.

Theorem 9 For the WISE) problem withk > 4, no adaptive priority algorithm
in the edge adjacency formulation can obtain an approximation ratio bette% than

Proof We represent the cycles by lists of weights. Two neighbors in the list are
also neighbors in the cycle. In addition, the first and last element in thedistiso
neighbors in the cycle.

We usew™ to denote a vertex accepted by the priority algorithm ando denote

a vertex rejected by the priority algorithm. To demonstrate a best possibilé res
which the priority algorithm can obtain given the accept/reject actions it has a
ready made, we use® to mark vertices which could be included in addition to the
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already accepted vertices. Finally, we indicate an optimal vertex cover by ma
ing vertices in one such cover hy. Neither the vertices marked® norw can in
general be chosen uniquely, but their total weight will be unique.

The argument is structured according to the choices made by the prioritjtiatgp
beginning with whether the first vertex has weightr £ and whether the priority
algorithm accepts or rejects that vertex. In all but one case, the adyaran
immediately guarantee a specific approximation ratio, but in one case, the next
vertex chosen by the algorithm must also be used by the adversary:

First accept weight: vertex (k™ k, 1¢, k) giveskz—f:l.
First reject weightt vertex (k,1¢,1) gives®.
First accept weight vertex (1, k, 1, k) gives 3.

First reject weightl vertex We now ensure that no vertex of weightill appear
as a neighbor of the rejected vertex. All the remaining cases are sshufatbe
current case.

2k+1
k+2 "

Next accept non-neighbor weightertex (1,1 k, k1, k, 1¢) gives
; ; - Ve ktl

Next accept non-neighbor weighwertex (17,1¢ k,17,1) gives*3-=.
i i - Ve kt+l

Next accept neighbor weightvertex (1,17, k, 1¢) gives*Z-=.

Next reject non-neighbor weightvertex (17, 1¢ k~, 1°) gives%.

_ . . _ - Nac3
Next reject non-neighbor weightvertex (1,1¢,1,17, 1, 1¢) givess.
Next reject neighbor weightvertex (17,17, 1, 1) gives%.

Choosingk > 4 ensures the stated approximation ratio lower boungi of O

The following result shows that in the edge adjacency formulatio%l—,a@prox—
imation ratio for WISk) can be achieved.

Theorem 10 For the WISk) problem, there is an adaptive priority algorithm in
the edge adjacency formulation with approximation r%tikmr k> 2.

Proof The algorithm proceeds as follows:

The algorithm initially orders vertices so that all vertices of weight 1 preceu-
tices of weightk. If there are no vertices of weight 1, accept the first (in the order-
ing) vertex of weightc. Then follow it around the cycle (by adaptively changing
the ordering to give priority to a neighbor not already seen), acceptieny ether
vertex until finding a vertex adjacent to two already processed vertidest last
vertex must be rejected.
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If there is at least one vertex of weight 1, do the following:

I. Place vertices with weight which are not adjacent to anything processed yet
first in the ordering, as long as this is possible. Reject them all.

Il. Repeat the next two steps as long as possible:

1. If there is a vertex with both neighbors already processed, accefthie (
neighbors have been rejected.)

2. If there is a vertex with weight adjacent to exactly one vertex which was
already processed, accept it. Then, reject its other neighbor.

l1. If there are any vertices remaining, there must be a vertex of weighljacent
to only one already processed vertex. Reject this vertex of weight accept its
unprocessed neighbor. Follow this around the cycle, accepting etregy \ertex
until reaching a vertex which has already been processed. Repestethisntil all

processed chains have been joined.

Note that this algorithm maintains the invariant that for any maximal chain of ver-
tices already processed, the endpoints have been rejected.

Case 1: All vertices have weight The algorithm finds a maximum weight inde-
pendent set.

Case 2: All vertices have weight 1. Then, at Ie?sif them are accepted. At most
5 are in a maximum weight independent set, so the ratio is at Jeast

Case 3: There are some vertices of weighind some of weight. For any max-

imal chain of weightk vertices, one of the endpoints is accepted and then every
other vertex is accepted. For any maximal chaiof weight-1 vertices, both end-
points are adjacent to vertices of weightthough this may be the same weight-
vertex. Thus, for each such chain, there is a distinct vertex of weigbhich is
accepted. The smallest possible number of acceptances in such a cleaigtiof
occurs when the next to last vertex on either end of the chain was sele&#p |

and rejected, and every third vertex between these two was also sele&tzpin

| and rejected. Then, at Iea§(s — 3) vertices in the chain must be accepted in
Step llIl. (If there are some vertices chosen in Step | which have onlyeriex
between them, instead of two, they will be accepted in Step Il.1, increasing the
fraction accepted.) Consider the vertex of weiglassigned to this chain. Suppose
there were vertices in its chairC' of weight+ vertices. There are two subcases
based on whetheris even or odd.

Subcase even: Thent of these weight: vertices were accepted, agcf these
vertices are in any maximum weight independent set. Sireceven, the algorithm
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cannot accept both endpoints@f Next to the endpoint it does not accept, it will
accept a vertex of weight, which has not been accounted for in tbes’ - 3)
vertices accepted in any maximal chain of weightertices which has lengt.

Subcasé odd: In this case, a maximum weight independent set contains both
endpoints ofC, and the algorithm also accepts both endpoints‘,igéovertices in
C are accepted and are in a maximum weight independent set.

Let £ be the set of even-length maximal chains of weightertices, letO be

the set of odd-length maximal chains of weightertices, and lef be the set of
maximal chains of weight-vertices, Let(C) denote the number of vertices in a
chainC. For each chain iz, there is one endpoint of a maximal chain of weight-

1 vertices which cannot be in a maximum weight independent set. Similarly, for
each chain irO, there are two endpoints of maximal chains of weitjiertices
which cannot be in a maximum independent set. Thus, amortized over alscha
C € I, of weight-l vertices, a maximum weight independent set contains at most
Y oer(M2) — 10| weight vertices.

Thus, the ratio- of the weight of the independent set accepted by this algorithm to
the weight of a maximum independent set is at most

T oen(FEN + oo (HHUPE 4+ 5 (K- 110)
Toer(FE2+ D)4+ g0 (BEDEY) 5 (K=

k-l(C k-(l(C c
_ Teen®EN 4T oo o (BHUGED 45 o () 10]
Yeer(FED+ T ceo TN+ T 0 (M) - (0|

6K[O1+3 > cer(U(C)) 30|
6k[O[+2 e (U(C)) =60

ro<

<

Fork > 2, this is at mosg. O

Thus, with regards to adaptive priority algorithms for the \(\kl}iproblem,% is the
exact approximation ratio which can be obtained ingtigeadjacent formulation.

In combination with the result from Davis and Impagliazzo [12], descrileEde,
stating that in thevertexadjacency formulation there is an adaptive priority algo-
rithm whose approximation ratio approaches oné a@®es to infinity, we obtain
the following:

Corollary 11 For adaptive priority algorithms, there is a strict separation between
the approximation ratios that can be obtained in the vertex adjacency formulatio
and the edge adjacency formulation, respectively.
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5 Vertex Coloring

Minimum Vertex Coloring is the problem of coloring the vertices in a graph using
the minimum number of different colors in such a way that no two adjacent ver
tices have the same color. The problem is also known as Graph Coloringsand
Chromatic Number.

Hardness results are known for minimum vertex coloring under variouplexity
theoretic assumptions: minimum vertex coloring is NP-hard to approximate within

n [6]. Provided that NBZ ZPP, Khot [23] shows that it is NP-hard to approximate
within (W) , forsomey > 0. Thisimproves the earlier result 8fn! =),
for all ¢, under the same condition [15].

Khot also shows that for sufficiently larde it is NP-hard to color &-chromatic
graph withk 35 log k colors, asymptotically improving the earlier result that it is NP-
hard to color &-chromatic graph with at moét+ 2[%/3] — 1 colors [22]. In [22],

it is also shown that it is NP-hard tbcolor a3-chromatic graph.

On the positive side, a general upper boundéf log log? n/log>n) is shown by
Halldorsson [18]. In [29], an upper bound &fG) + 1 is established, wherg is
any function of graph& = (V, E') such that

(G'C G = MNG)<MNG) A XNG) > {)Iéi‘r/_ldegv).

Let d(G) be the maximum over all vertex-induced subgraphs of the minimum de-
gree in that subgraph. The result in [29] constructively establishésittyagraph

is d(G) + 1 colorable, so a corollary of the theorem below is that the algorithm
from [29] is not a priority algorithm. This theorem is proven using an asbgr
which is defined using a lengthy case analysis.

Theorem 12 No priority algorithm in the edge adjacency formulation can 3-color
all graphsG with d(G) = 2.

Proof The adversary begins with edge lists such that many graphs could ka foun
by removing different subsets of the edge lists. Each of the final grtheredver-
sary might produce in the following contains one degree 2 vertex andrtiender

of the vertices have degree 3. Each graphd{@$) = 2 and thus can be colored
with three colors, but an adaptive priority algoritixwill be forced to use at least
four colors. In order to satisfy the degree requirements, extra vedivg®dges

will need to be added to what is described in each case. This can oftembédoy
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creating several copies of the same subgraph and attaching them windegtke
is too low.

Note that attaching the degree 2 vertex in the subgraph of Figure 9 to soter ve

Figure 9: Attachment graph for incrementing vertex degrees while onlingdd
degree 3 vertices.

u in some partially specified graph will increase the degree b§ one while all
the added vertices will have degree 3. Thus, any partially specifiedh gvepere
degrees are not already too large) can be completed to a graph of thedyge
interested in (one degree 2 vertex and the rest degree 3 vertices).

In many of the cases below, we use completions of variants of the dgkaph
(V,E),whereV ={A,B,C,D,E,F,G,H}andE = {{A,B},{A,E},{A H},
{B,C},{B,G},{C,D},{C,F}{D,E},{D,F}, {E, F}}, see Figure 10.

G B C
D F
He—s¢
A E

Figure 10: Graplk.

In some cases, the verticésand H will be replaced by a single vertex adjacent to
both verticesA and B. This merged vertex will be adjacent to an extra vertex of
degree 2, to make its degree 3 also. The entire graph is then repeatedotimethe
side of this new degree 2 vertex, so it is symmetric about this vertex. Incdlses,
the graph will be completed such th@t(or H) will be the degree 2 vertex and

(or G) will be a degree 3 vertex.

Note that, in the graph above, since removi#@nd H (or the vertex replacing
them) fromK leaves a vertex induced subgraph with minimum de@reg ') >
2. It can easily be seen that no vertex induced subgraph has highreedeg

If verticesC' and E' get assigned different colors, théh D, E, and F' must to-
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gether have at least four different colors, and we are done. GigrtgcesA and
C the same colors will forc€' and E to get different colors, accomplishing the
same. The goal in most of the following cases is to force one of these cardditio

In the following, the notatiom(X') will be used for the color the priority algorithm
A gives vertexX.

Case A: The degree 2 vertex is never chosen (the algorithm neveragivadering
where a degree 2 vertex comes first in the ordering before ending isiaopo
where it is forced to use four colors); the adversary never showdjacent to
anything untilA has been forced to use four colors and the entire graph is revealed.
In all of Case A, we use the graph variant shown in Figure 11. Theuingex

Figure 11: The Case A Graph.

chosen]V, has degree 3.

Case A.1: The next vertex chosen, is adjacent tdV. The adversary ensures that
there exists another degree 3 vert&x,adjacent to both of them, plus one vertex
adjacent taX, and another adjacent iy. No vertex, other thai, W, and.X will

be adjacent to two dfl’, X, andZ; see Figure 12. The next vertex chosen may be

Y
X W

Figure 12:A’s initial view of the graph in Case A.

Z. WhenevelrZ is chosen, it is given the third color. In the following, we ignore
the actual timing of when it is chosen.

Case A.1.1: The next vertex chosEris adjacent to one dfi”, X andZ. Without
loss of generality, assume is adjacent toX.

Case AL1LLIE(Y) =c(W),letA=W,B=X,andC =Y, Z = I, and we
are done since we must haved) = ¢(C).
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Case A1.1.2: 1E(Y) # c(W), letA=Z, W =1, B = X,andC =Y, and we
are done since(A) = ¢(C).

Case A.1.2: The next vertéx chosen is not adjacent t&', X, or Z. Without loss
of generality, assumgU) = ¢(Z), the third color. LetA = W, B = X, D = U,
Z = I. Then eitheiC' and/orE are given a fourth color of(C') = ¢(A4), and we
are done.

Case A.2: The next verteX is not adjacent téV .
Case A.2.1: lfe(W) = ¢(X), let A =W andC = X, and we are done.
Case A.2.2: lie(W) # ¢(X), letC = W andE = X, and we are done.

Case B: The degree 2 vertex is chosen at some point. The adversarg&that

the connected componeft sees containing the degree 2 vertex never becomes
adjacent to other vertices has processed until can be forced to use a fourth
color and the entire graph is revealed. The following describes how trersady
handles verticeg\ chooses after the degree 2 vertex is chosen, in the connected
component processed lyand containing the degree 2 vertex. The adversary may
build graphs on either side of the degree 2 vertex; they are only comhatctee
degree 2 vertex, and we will only consider one direction; the other careatd
similarly. If vertices are chosen which are not connected by a path to greal@
vertex, they are treated as in Case A. (Note that at most four degredi@se
not in the same connected component as the degree 2 vertex are dufificitie
adversary to end in Case A.) Thus, we assume that a degree 3 Zeddjacent to

the degree 2 vertex and a degree 3 veftexadjacent taZ, have been chosen and
assigned different colors. The adversary will not present anycesradjacent to
both X and~.

In these cases, we often use the Graph K from Figure 10 where éltbef] will
be the degree 2 vertex, depending on which vertex is interpreted4o be

Case B.1: A verteX” adjacent taZ is chosen next; see Figure 13.

Z
degree 2

Y
Figure 13: Initial part of graph in Case B.1.

Case B.1.1: Ife(Y) = ¢(X), letA = X, B = Z, andC =Y in the graphk.
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Thenc(A) = ¢(C), and we are done.

Case B.1.2: Ife(Y') # ¢(X), the adversary’s graph will contain two verticés,
andV/, both adjacent to&X andY and each other. One éf andV must be given a
fourth color.

Case B.2: A verteY” adjacent taX is chosen next; see Figure 14.

degree 2 7 X Y

W (B.‘2.2.1) W (52.2.2) W (5.2.2.3)

Figure 14: Initial part of graph in Case B.2. The positionfgfdepends on sub-
cases.

Case B.2.1: lfe(Y) = ¢(Z2), letA = Z, B = X, andC = Y in the graphk.
Thenc(A) = ¢(C), and we are done.

Case B.2.2: AssumgY) # ¢(Z).
Case B.2.2.1: Assume a vertd@x adjacent to” is chosen next.

Case B.2.2.1.1: (W) =¢(X),letA=X,B=Z7Z,C =W,andE =Y inthe
graphK. Thenc(C') # ¢(E), and we are done.

Case B.2.2.1.2: (W) =c(Y),let A=W, B = Z,andC =Y. The adversary
will replace the edg¢ B, C'} in the graphK the edgeg B, X } and{ X, C}. Then
¢(A) = ¢(C), and we are done, since the vertidesE, andF’ will have the same
adjacencies as iK. X will be a degree 3 vertex by adding a construction shown
in Figure 9.

Case B.2.2.2: Assume a vertdx adjacent taX is chosen.

Case B.2.2.2.1: (W) =c(Z),letA=Z, B= X, andC = W in the graphX..
Thenc(A) = ¢(C), and we are done.

Case B.2.2.2.2: IE(W) = ¢(Y), letA = W, B = X, andC = Y. Then
¢(A) = ¢(C), and we are done.

Case B.2.2.3: Assume a vert@x adjacent td” is chosen.

Case B.2.23.1: (W) =c(Z2),letA=Z, B= X, andC = W. The adversary
will replace the edgéB, C'} by the edge$ B, Y } and{Y, C'}. Thenc(A) = ¢(C),
and we are done. The vertéx is made into a degree 3 vertex by adding the
subgraph of Figure 9.

Case B.2.2.3.2: IE(W) = ¢(X), letA = X, B =Y, andC = W. Then
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¢(A) = ¢(C), and we are done.
Thus, in every case, the adversary is able to fér¢e use at least four colors.o

In more restrictive models, we obtain stronger lower bounds. The followeng
sult applies, for example, to the simplest and most natural fixed priorityitigar
order the vertices by non-increasing (or non-decreasing) degdsthan color ver-
tices using the lowest possible numbered color. We note that this natuealygre
algorithm colors any graph having maximum degdaesing at mostl + 1 colors.

Theorem 13 Any degree-based fixed priority algorithm in the edge adjacency for-
mulation must use at leagt+ 1 colors on a (2-colorable) bipartite graph of maxi-
mum degreel.

Proof Informally, the adversary will created&regular bipartite graph containing
many disjoint “portions” (induced bipartite subgraphs), each of which kéile

the same number of vertices and the same colors in each side of the partitren (the
could be additional colors outside these portions). These portions will igrsize

and it may be necessary to join two portions, making the correct decision as to
which side of the one portion is placed with which side of the other. At the end
all vertices will have degreé, so the degree-based fixed priority algorithm has no
real power in assigning priorities; as with on-line algorithms, the advetsasy
complete control over the input sequence. The algorithm’s only choiceishwh
color to assign after seeing which of its adjacent vertices are alreadgdolo

Consider any degree-based fixed priority algorithm in the edge adjaéameula-

tion. Initially, the adversary will arrange that all vertices chosen arepedéent.
The number chosen at this stage will be large enough so that there areieithe
colors given or enough vertices are given the same color to make the cemain
of the proof possible. Throughout our construction, whenever tharighgn first
usesd + 1 colors, the remainder of the construction will add additional vertices (as
explained later) so as to formdaregular bipartite graph. This requires at all stages
of the construction, that the partial graph that has so far been spegdifiede so
completed. We will not specify an upper bound on the number of vertices ins
this construction, but it will be clear that some large finite number will be seiffic
Stagel ends when there are enough vertices given the same color, which we call
color 1. In stage2, vertices adjacent to exactly one vertex having colare given.
That is, the adversary is creating a matching between color 1 and coloti@sge
This continues similarly until eithet+ 1 colors are given in all or enough of these
new vertices are given the same color, which we call clor
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Now all the portions being considered consist of two adjacent verticeswith
color 1 and one with coloR. It is essential to note that the adversary does not
have to commit to which side of the patrtition it will eventually place these adjacent
nodes. In stags, these portions are combined in pairs. Suppose the adjacent ver-
tices(v{, vy) are combined withv, v3), wherev’ has colorj. Two new vertices

u; andusy are given, withu; adjacent to both} andv? and withu, adjacent to
bothvi andv?. The result is a bipartite graph ¢acycle), withu; andus in differ-

ent parts of the partition. Since eaghis adjacent to one vertex of colbrand one

of color2, the algorithm must give eaal) a new color; the two could either get the
same color or different colors. Continue combining pairs of portions uititiee

d + 1 colors are used or there are enough (and evenly many) combined portion
with the same colog, for eachu;, or the same pair of color8,and4, for these two
vertices. In the former case, ea@ftycle has each of the three colors on both sides
of the partition. In the latter case, since the adversary has not committed th whic
side of the partition the;;? lie in, it is also free to later choose which side of the
partition eachy; lies in. Pairs of thesé-cycles will be combined so that for each
pair, there is at least one vertex of each of the first four colors in padh These
pairs are the induced subgraphs for the next stage. In this case xthetage is
stageb, but if there were enough cases where botlandus got the same color,

the next stage is stage

In stagei > 4, the partial graph constructed thus far contains a large number
of disjoint equi-partitioned bipartite subgrap@s with maximum degree at most

i — 2, where both sides contain vertices with colarg, ...,7 — 1 (the purpose of
separately treating stages 1 through 3 is to establish this property of hdivirig a
the firsti — 1 colors on both sides). There are additional vertices that were also seen
but not used in thes&’; subgraphs. We need only claim that all such additional
vertices have degree less than 1 with equal number of vertices on each side of
any induced partition so that these vertices can also be extended to lod theert
final bipartite graph. The next vertices chosen are made adjacent teede® of
each colorl, 2, ...,7 — 1, all from one partition of one of the induced subgraphs.
As in stages, this is done for both parts of the partition. If there are a large enough
number of subgraphs which get the same additional color on both sidespkbis

is called colori and the adversary proceeds to stagel. Otherwise, there will
eventually be enough subgraphs given the same two additional coldcd) witl

be calledi andi + 1. Graphs of this type can be combined in pairs, as in the case
where colors3 and4 were given, arranging that for each pair one vertex of color
and one of colo§ + 1 is on each side of the partition. Then, the adversary proceeds
to stage; + 2.

The adversary stops this process as sood-asl colors have been used. At that
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point, some vertices may have degree less thamthe induced subgraph created

so far. However, every vertex which is presented to the algorithm must dhex
greed. We now explain how additional vertices and edges can be added to the
construction so that every vertex gets degieelhis must be done in a manner
consistent with the algorithm’s observations during the different stageswiee
cannot introduce an edge between two vertices that have already batut(col-
ored) and have been observed to be independent. This can be dausdeach

part of the partition in the induced subgraph has the same number of vestges

n, in any induced partition, and the sum of their degrees is the same, sage

can ad®(dn — s) edges, each one to a new vertex, to get the degree of each of the
original 2n vertices up tal. This givesdn — s new vertices in each part. Add

new vertices to each part and edges to make a matching between them. Now ther
aredn new vertices on each side, each of dedgre€or anyd, it is easy to create

a(d — 1)-regular bipartite graph od vertices. Add the edges for this todisjoint
subsets of the new vertices.

Note that if fewer thanl + 1 colors are used before stage- 1, a(d + 1)st color

will be used on the first vertex in that stage, since the vertices in that stiige w
be adjacent to each of the colar, ..., d. If there is no stag€d + 1, because the
adversary went from stagéto d + 2, the(d + 1)st color was used in stage 0O

6 Priority Conceptsand Relationships

In this section, we discuss the issue of defining a natural conceptedigess. We
also discuss memorylessness, adversaries, restricted models, angjpmpsénta-
tions, as well as relationships between these concepts.

In either of the input formulations used in this paper, we have the situation that
not every set of valid input items constitutes a valid input instance. Clearly, a
valid input instance cannot have the same vertex appear as two diffenerst

And in the vertex adjacency formulation, if a vertexs an input item anad’ is in

its adjacency list, them’ must also be an input item with in its adjacency list.
Similarly, in the edge adjacency formulation, if an edgappears in some input
item, thene must appear in exactly one other input item.

Although the priority algorithm framework is designed to model greedy algo-
rithms, it is possible to define priority algorithms where the irrevocable deaision
do not seem greedy. As noted by Davis and Impagliazzo, the definitiogreéty
decision” (as formulated in [10]) is no longer well defined when the algorith
“knows” that the current item is not the last. More specifically, in [10]reegly
priority algorithm is one in which all of the irrevocable decisions are “gyéeul
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the sense that the algorithm acts as if the current item being consideredastthe
item in the input. In more colloquial terms, greediness is defined by the motto “live
for today”.

We would like to formulate a general concept of a greedy decision thatredkes
sense when the input items are not isolated. (We would like such a definititsoto a
make sense for non-graph problems, such as scheduling problems edgédpnce
relations amongst the jobs, where one can have non-isolated input itemefjewe
one such definition in this section.

We note, however, that in the context of priority algorithms the greedysarsn-
greedy distinction is not that important, and to the extent that it is important it is
only because greedy is such a commonly used (albeit mostly undefinezbpton
We do argue that the priority algorithm formulation is important as it captures a
wide variety of existing algorithms which might be called “greedy-like”, extegd

the concept of greedy and including (for example) all online algorithms.

We propose a very liberal definition for what can constitute a greedyitign
Namely, a greedy (priority) algorithm is one which always makes an irgevoc
ble “greedy” decision whenever such a decision is available. This,wkephas
pushed the definitional problem to that of defining a “greedy decisionthmvve
now proceed to do.

Consider a priority algorithm that has processed some number of input if&ns.
stated, we interpret the underlying philosophy of “greediness” to beoffidive

for today”. When input items are isolated, this leads to a very natural pofme
being greedy, namely the irrevocable decision must be made to be consigtent
optimizing the objective function, assuming the current input item being psaece
will be the last input item. However, for non-isolated inputs, it may be thettege
any valid input instance will require further input items, e.g., if items are vestice
represented by their vertex adjacency lists and there are vertices knaswist,
but not yet processed.

Let S be the set of items already processed plus the item currently being consid-
ered. We say that a s@&t of input items is aminimal completion sef S U T
constitutes a valid input instance afdJ 7” is not a valid input instance for any
setT’ c T. In the case of isolated input items, only the empty set is a minimal
completion set. A greedy decision for an itdreatisfies the property that fewvery
minimal completion?’, there is a set of decisions for the itemsiirsuch that no
other set of decisions fof and the items irff” would result in a better value for

the given objective function. Note that we are not concerned with whetheot

the set of minimal completions is finite (or even countable) or whether or not it is
(efficiently) computable to determine whether or not a decision is greedsrigle

35



for any unweighted graph problem, the set of minimal completions is finite and it
is computable (but maybe not efficiently) to determine if a decision is greedy.

Any priority algorithm for the vertex cover problem which accepts a vertewif
all of its incident edges are already covered is greedy by this definitioneker,
not every algorithm for vertex coloring which chooses the lowest nuetbeolor
possible at every step is greedy by this definition. To see this, considgraph
G = (V,E),whereV = {1,2,3,4,5}, and

E={{1,2},{1,3},{2,3},{2,4},{2,5}, {3,5}, {4, 5} };

see Figure 15. If the vertices are chosen in the ofdle2, 3, 4, 5), then vertexd
4

5
3

1

Figure 15: Choosing the minimal color is not greedy.

will get color 1 if the lowest numbered color possible is given, and thus the last
vertex will get color4. However, giving vertex color 3 at this point will allow the
last vertex to be colored with colar and only three colors will be used in all.

One can always make an ad hoc definition of a greedy decision in the tontex
of any given problem. For example, for the vertex coloring problem, onéatmig
define a greedy decision to be one that never assigns a new color tex ivan
existing color could be usetbw. However, for a given input and history of what
has been seen, it may be known to the algorithm that any valid completion of the
input sequence will force an additional color and it might be that in suchsa ¢
one would also allow a new color to be used before it was needed. Thistan
course, all be considered as a relatively minor definitional issue and diree to
choose whatever definition seems to be more natural and captures kgmealy
algorithms”.

Perhaps a more meaningful distinction is the concept of “memoryless” priority
algorithms. Although motivated by the concept of memoryless online algorithms,
especially in the context of thieserver problem, the concept of memorylessness
takes on a somewhat different meaning as applied in [10], [3], and Nemnmely,
these papers apply the concept to problems where the irrevocable desisin
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accept/reject decision (or at least that acceptance/rejection is pagtiofvocable
decision). In this context, memoryless priority algorithms are defined astprior
algorithms in which the irrevocable decision for the current item (and thieelod

next item in the case of adaptive algorithms) depends only on the setvidysky
accepted items. That is, in the words of [12], a rejected item is treated as a NO
OP (“no operation”). In the accept/reject context, memoryless adaptjeethms

are “essentially” equivalent tacceptances-firsadaptive algorithms which do not
accept any items after the first rejected item. As obsérirefd 0] and [3], we have

the following:

Theorem 14 Let A be a memoryless priority algorithm for a problem with ac-
cept/reject decisions. Then there exists an “acceptances-first” a& gptority al-
gorithm A’ that “simulates”A in the sense that it accepts the same set of items and
makes the same irrevocable decisions.

We observe that many graph theoretic algorithms called greedy may or may not
satisfy some generic general definition of greedy. However, many eéthkgo-
rithms (for instance the maximal matching algorithm for vertex cover when real-
ized as an adaptive priority algorithm) are indeed acceptances-firsithfgs and

thus memoryless. In terms of a converse for the above theorem, it is olitamtus

an acceptances-first algorithm can be simulated by a “1-bit algorithmeathés

one bit is used to remember whether or not a rejection has already atcurre

With regards to the formulation of the power of the adversary, Davis anddtip
azzo provide a formal model of an algorithm-adversary game which gipescise
definition of the adversarial model used to derive inapproximation resultsve

use the same model. Angelopoulos [2] refers to this as the DI adversadryean
introduces a stronger (but still reasonable in terms of many existing algojithms
adversary which intuitively ensures that “input item id’s do not carrgrimfation”.

The Angelopoulos adversary is defined for both fixed and adaptieeitgr For

our purposes, we need only describe this adversary in terms of thepfiiarity
model. In the context of complete weighted graphs, whenever two vertias h
the same multiset of edge weights, they must be given equal priority and the ad
versary is then entitled to break this tied priority however it wishes. (Foptada
algorithms, intuitively one has to say whether or not the history thus fariséin-d
guish two unseen vertices.) In the context of unweighted graph probledrfsxad
priority algorithms, as considered in this paper, the Angelopoulos adyetsas

81n [10], this fact is stated in terms of memoryless algorithms being simulategteedy algo-
rithms, but the essence of that observations really concerns thet@oceyfirst restriction and not
greediness.
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not let an algorithm’s priority distinguish between vertices that have the same d
gree. This corresponds to our degree-based model. In the weigmgdiete graph
case, Angelopoulos proves lower bounds for the complete facility locataiigm
(for both fixed and adaptive priority algorithms) and the dominating setl@nob
(for the more general adaptive priority algorithms). It is not clear if Aageulos’
adaptive priority results can be obtained in the DI adversary model, batitthey
can, this simple restriction on priority algorithms certainly makes it easier toederiv
lower bound proofs. We have presented a number of inapproximatiolsesthe
degree-based fixed priority model by using graph constructions ingphagular
graphs. We believe that all these results (using the same constructiangphds
for the DI model, but will require much more delicate arguments.

With regards to input representation, we note that any priority algorithm iedge
adjacency formulation can be simulated in the vertex adjacency formulation (mak
ing exactly the same set of decisions). In contrast to fixed priority algorjthmost
existing adaptive priority algorithms can function in the edge adjacency farmu
tion; the authors are unable to recall one which does not. However,telgisked

in Theorem 9 (using an example in [12] for showing that memorylessness is re
strictive) that the edge adjacency formulation can be restrictive evesdigtive
algorithms.

For fixed priority algorithms, there is a natural problem which seems to differ
entiate the vertex and edge adjacency formulations. The matching algorithm fo
vertex cover can be realized as a fixed priority algorithm in the vertex elgc
formulation (Theorem 2). However, while the same algorithm can be reaiged
an adaptive algorithm in the edge adjacency formulation (Theorem 1)powetd
believe a fixed priority algorithm can achieve afly1) approximation for vertex
cover in the edge adjacency formulation.

With respect to fixed priority algorithms, we have studied the more restrictive
degree-based model, where the priority given to an input item (vertexyirecéion

of only the degree of the vertex. While it may seem that a fixed priority algorithm
cannot utilize any information about adjacent vertex/edge names whigmiags
priorities, it is not hard to see that such an algorithm can ensure thategsedie
considered in adjacent pairs, for example by placing all the vertices mcidea
certain edge first in the ordering, followed by those incident to anothges,eztc.
However, intuitively this seems like the only additional power such a fixediprio
algorithm has when compared to a degree-based fixed priority algorithrhaVde
not been able to formalize this intuition for our constructions, but we conjectu
that our inapproximation bounds concerning degree-based fixedty&tmorithms
hold for arbitrary fixed priority algorithms in the edge adjacency formulatitia.
should also note that for regular graphs, it may seem that a degred-fivaed pri-
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ority algorithm is essentially just an online algorithm as the adversary hadetamp
control over the order in which the algorithm considers the inputs. Hawievihe
usual online model for graph problems, when an input vestexprovided to the
algorithm, the algorithm only gets to know those vertices adjacenmtitbich have
previously been input, whereas in the degree-based fixed priority mbded|go-
rithm gets to know the entire list of adjacent vertices (or edges). We ndtim tiine
online model, the edge and vertex adjacent formulations are equivaléritolis
that all of our degree-based lower bounds apply to online algorithms.

7 Concluding Remarksand Open Problems

We have considered priority algorithms in the vertex adjacency and e{iyseady
formulations, and it was shown that the edge adjacency formulation can tee mo
restrictive than the vertex adjacency formulation for adaptive priorityrétgos.
Most known priority algorithms, however, can be implemented using the atige a
jacency formulation. Thus, it would be interesting to find natural problems fo
which the input formulations are provably different with respect to the bps
proximation ratio attainable, and, if different, how much better one can dgusin
the vertex adjacency formulation.

With respect to lower bounds for fixed priority algorithms, we considered th
degree-based model. It is unclear if arbitrary fixed priority algorithmsnaoee
powerful than the degree-based model in either the vertex or edgesadyafor-
mulations. We conjecture that the three results we have for degree-fieesed
orderings also hold for arbitrary fixed priority algorithms in the edge adjace
formulation.

For problems where an adaptive priority algorithm makes only accept/mect
cisions for each vertex, acceptances-first algorithms are equitalemmoryless
algorithms. The acceptances-first model was introduced and applied Methie
mum Independent Set and Vertex Cover problems.

Many of the lower bound results do not meet the upper bounds providkadovn
algorithms. It would be interesting to close some of these gaps. For example, in
the result for the unweighted vertex cover, our adaptive priarity/lower bound
meets Clarkson’s result in the case when the maximum degree is three. ¢tpwev
what if the maximum degree is larger than three? Can one prove a better lower
bound? It has long been an open problem whether or not the optimah(polgl

time) approximation ratio for vertex coveris— o(1).
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