
Algorithmica manuscript No.
(will be inserted by the editor)

Online Dominating Set

Joan Boyar · Stephan J. Eidenbenz ·
Lene M. Favrholdt · Michal Kotrbč́ık ·
Kim S. Larsen

Received: date / Accepted: date

Abstract This paper is devoted to the online dominating set problem and its
variants. We believe the paper represents the first systematic study of the effect
of two limitations of online algorithms: making irrevocable decisions while not
knowing the future, and being incremental, i.e., having to maintain solutions
to all prefixes of the input. This is quantified through competitive analyses
of online algorithms against two optimal algorithms, both knowing the entire

A preliminary version of this paper appeared in the 15th Scandinavian Symposium and
Workshops on Algorithm Theory (SWAT), LIPIcs, vol. 53, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016, pp. 21:1–21:15. Most of the work was done while the fourth
author was at the University of Southern Denmark. The first, third, fourth, and fifth au-
thors were supported in part by the Danish Council for Independent Research, Natural
Sciences, grants DFF-1323-00247 and DFF-7014-00041, and the Villum Foundation, grant
VKR023219.

Joan Boyar
Department of Mathematics and Computer Science, University of Southern Denmark,
Odense, Denmark
E-mail: joan@imada.sdu.dk

Stephan J. Eidenbenz
Los Alamos National Laboratory, Los Alamos, NM, USA
E-mail: eidenben@lanl.gov

Lene M. Favrholdt
Department of Mathematics and Computer Science, University of Southern Denmark,
Odense, Denmark
E-mail: lenem@imada.sdu.dk

Michal Kotrbč́ık
School of Mathematics and Physics, University of Queensland, Brisbane, Australia
E-mail: m.kotrbcik@gmail.com

Kim S. Larsen
Department of Mathematics and Computer Science, University of Southern Denmark,
Odense, Denmark
E-mail: kslarsen@imada.sdu.dk



2 Boyar, Eidenbenz, Favrholdt, Kotrbč́ık, Larsen

input, but only one having to be incremental. We also consider the competitive
ratio of the weaker of the two optimal algorithms against the other.

We consider important graph classes, distinguishing between connected
and not necessarily connected graphs. For the classic graph classes of trees,
bipartite, planar, and general graphs, we obtain tight results in almost all
cases. We also derive upper and lower bounds for the class of bounded-degree
graphs. From these analyses, we get detailed information regarding the signif-
icance of the necessary requirement that online algorithms be incremental. In
some cases, having to be incremental fully accounts for the online algorithm’s
disadvantage.

1 Introduction

We consider online versions of a number of NP-complete graph problems,
Dominating Set (DS), and variants hereof. Given an undirected graph G =
(V,E) with vertex set V and edge set E, a set D ⊆ V is a dominating set for G
if for all vertices u ∈ V , either u ∈ D (containment) or there exists an edge
{u, v} ∈ E, where v ∈ D (dominance). The objective is to find a dominating
set of minimum cardinality.

In the variant Connected Dominating Set (CDS), we add the requirement
that D be connected (if G is not connected, D should be connected for each
connected component of G). In the variant Total Dominating Set (TDS), every
vertex must be dominated by another, corresponding to the definition above
with the “containment” option removed. We also consider Independent Dom-
inating Set (IDS), where we add the requirement that D be independent, i.e.,
if {u, v} ∈ E, then {u, v} 6⊆ D. In both this introduction and the preliminaries
section, when we refer to Dominating Set, the statements are relevant to all
the variants unless explicitly specified otherwise.

The study of Dominating Set and its variants dates back at least to sem-
inal books by König [18], Berge [3], and Ore [20]. The concept of domination
readily lends itself to modeling many conceivable practical problems. Indeed,
at the onset of the field, Berge [3] mentions a possible application of keep-
ing all points in a network under surveillance by a set of radar stations, and
Liu [19] notes that the vertices in a dominating set can be thought of as trans-
mitting stations that can transmit messages to all stations in the network.
Several monographs are devoted to domination [13], total domination [14],
and connected domination [11], and we refer the reader to these for further
details.

We consider online [5] versions of these problems. More specifically, we
consider the vertex-arrival model where the vertices of the graph arrive one
at a time and with each vertex, the edges connecting it to previous vertices
are also given. If the online algorithm decides to include a vertex in the set D,
this decision is irrevocable. Note, however, that not just a new vertex but also
vertices given previously may be added to D at any time. An online algorithm
must make this decision without any knowledge about possible future vertices.



Online Dominating Set 3

Note that, since an online algorithm does not know the size of the input graph,
it has to maintain a feasible solution at any time. Since the graph consisting of
a single vertex does not have a total dominating set at all and isolated vertices
do not dominate any vertices, we allow an online algorithm for TDS to not
include isolated vertices in the solution, unlike the other variants of DS.

Defining the nature of the irrevocable decisions is a modeling issue, and one
could alternatively have made the decision that also the act of not including the
new vertex in D should be irrevocable, i.e., not allowing algorithms to include
already given vertices in D at a later time. The main reason for our choice of
model is that it is much better suited for applications such as routing in wireless
networks for which domination is intensively studied; see for instance [9] and
the citations thereof. Indeed, when domination models a (costly) establishment
of some service, there is no reason why not establishing a service at a given
time should have any inherent costs or consequences, such as preventing one
from doing so later. Furthermore, the stricter variant of irrevocability results
in a problem for which it becomes next to impossible for an online algorithm
to obtain a non-trivial result in comparison with an optimal offline algorithm.
Consider, for example, an instance where the adversary starts by giving a
vertex followed by a number of neighbors of that vertex. If the algorithm ever
rejects one of these neighbors, the remaining part of the sequence will consist
of neighbors of the rejected vertex and the neighbors must all be selected.
This shows that, using this model of irrevocability, online algorithms for DS
or TDS would have to select at least n − 1 vertices, while the optimal offline
algorithm selects at most two. For CDS it is even worse, since rejecting any
vertex could result in a disconnected dominating set. A similar observation
is made in [17] for this model, though they focus more on a different model,
where the vertices are known in advance, and all edges incident to a particular
vertex are presented when that vertex arrives.

An online algorithm can be seen as having two characteristics: it maintains
a feasible solution at any time, and it has no knowledge about future requests.
The first is a consequence of the algorithm not knowing the length of the
sequence. We also define a larger class of algorithms: An incremental algorithm
is an algorithm that maintains a feasible solution at any time. It may or may
not know the whole input from the beginning.

We analyze the quality of online algorithms for the dominating set problems
using competitive analysis [21,15]. Thus, we consider the size of the dominating
set an online algorithm computes up against the result obtained by an optimal
offline algorithm, Opt.

As something a little unusual in competitive analysis, we are working with
two different optimal algorithms. This is with the aim of investigating whether
it is predominantly the requirement to maintain feasible solutions or the lack of
knowledge of the future which makes the problem hard. Thus, we define Optinc

to be an optimal incremental algorithm and Optoff to be an optimal offline
algorithm, i.e., it is given the entire input, and then produces a dominating set
for the whole graph. The reason for this distinction is that in order to properly
measure the impact of the knowledge of the future, it is necessary that it is



4 Boyar, Eidenbenz, Favrholdt, Kotrbč́ık, Larsen

the sole difference between the algorithm and Opt. Therefore, Opt has to
solve the same problem and hence the restriction on Optinc. While such an
attention to comparing algorithms to an appropriate Opt already exists in
the literature, to the best of our knowledge the focus also on the comparison
of different optimum algorithms is a novel aspect of our work. Previous results
requiring the optimal offline algorithm to solve the same problem as the online
algorithm include [6] which considers fair algorithms that have to accept a
request whenever possible, and thus require Opt to be fair as well, [7] which
studies k-bounded-space algorithms for bin packing that have at most k open
bins at any time and requires Opt to also adhere to this restriction, and
[4] which analyzes the performance of online algorithms for a variant of bin
packing against a restricted offline optimum algorithm that knows the future,
but has to process the requests in the same order as the algorithm under
consideration.

Given an input sequence I and an algorithm Alg, we let Alg(I) denote the
size of the dominating set computed by Alg on I. Then Alg is c-competitive
if there exists a constant α such that for all input sequences I, Alg(I) ≤
cOpt(I)+α, where Opt may be Optinc or Optoff, depending on the context.
The (asymptotic) competitive ratio of Alg is the infimum over all such c and
we denote this CRinc(Alg) and CRoff(Alg), respectively. If the inequality
above holds without the additive constant α, the algorithm is said to be strictly
c-competitive, and the strict competitive ratio is the infimum over all such c.
When considering competitive ratios that are linear in the input size, n, we will
use the strict competitive ratio. This is mainly to avoid technicalities arising
from the fact that if an algorithm is n/a-competitive for some constant a, then
it is also (n/a− b)-competitive for any constant b.

We consider the four dominating set problem variants on various graph
types, including trees, bipartite, and general graphs and to some extent planar
graphs, obtaining tight results in almost all cases. We also consider graphs of
bounded degree, giving upper and lower bounds as a function of the maximum
degree, ∆. In all cases, we also consider the online variant where the adversary
is restricted to giving the vertices in such a manner that the graph given at any
point in time is connected. In this case, the graph is called always-connected.
One motivation is that graphs in applications such as routing in networks are
most often connected.

The results for online algorithms are summarized in Tables 1 and 2. The
strict upper bound on the competitive ratio against Optinc for general graphs
is n+3

4 . Note that for this, and other strict competitive ratios containing n, we
ignore the additive constant (in the table), writing n/4 in this case. The results
for Optinc against Optoff are identical to the results of Table 2, except that for
DS on trees, CRoff(Optinc) = 2, for DS on always-connected planar graphs,
CRoff(Optinc) = n/2, and for always-connected bounded-degree graphs, the
lower bound that we prove is CRoff(Optinc) ≥ (∆ − 1)/2. The results are
discussed in the conclusion.



Online Dominating Set 5

Graph class DS CDS TDS IDS

Trees 2 1

1

Bipartite
n/4

n/4

Always-connected bipartite [n/6; 2n/9]

Bounded-degree
[∆/2 − 1/4;∆]

[∆/2;∆+ 1] [∆/2;∆]

Always-conn. bounded-degree [∆/3;∆− 1] [∆/3;∆]

General graphs n/4

Table 1 Bounds on the competitive ratio of any online algorithm with respect to Optinc.

Graph class DS CDS TDS IDS

Trees [2; 3] 1 2

nBipartite n
n/2

Always-connected bipartite n/2

Bounded-degree ∆ ∆+ 1
[∆− 1;∆]

∆

Always-conn. bounded-degree [∆− 2;∆] [∆− 2;∆− 1] [∆− 1;∆]

Planar
n n/2 n

Always-connected planar

Table 2 Bounds on the competitive ratio of any online algorithm with respect to Optoff.

2 Preliminaries

Since we are studying online problems, the order in which vertices are given
is important. We assume throughout the paper that the indices of the vertices
of G, v1, . . . , vn, indicate the order in which they are given to the online algo-
rithm, and we use Alg(G) to denote the size of the dominating set computed
by Alg using this ordering. When no confusion can occur, we implicitly as-
sume that the dominating set being constructed by an online algorithm Alg
is denoted by D. We use the phrase select a vertex to mean that the vertex in
question is added to the dominating set in question. We use Gi to denote the
subgraph of G induced by {v1, . . . , vi}. We let Di denote the dominating set
constructed by Alg after processing the first i vertices of the input. When no
confusion can occur, we sometimes implicitly identify a dominating set D and
the subgraph it induces. For example, we may say that D has k components or
is connected, meaning that the subgraph of G induced by D has k components
or is connected, respectively.

Online algorithms must compute a solution for all prefixes of the input
seen by the algorithm, since the input could terminate at any point. Given
the irrevocable decisions, this can of course affect the possible final sizes of a
dominating set. When we want to emphasize that a bound is derived under
this restriction, we use the word incremental to indicate this, i.e., if we discuss
the size of an incremental dominating set D of G, this means that D1 ⊆ D2 ⊆
· · · ⊆ Dn = D and that Di is a dominating set of Gi for each i. Note in



6 Boyar, Eidenbenz, Favrholdt, Kotrbč́ık, Larsen

particular that any incremental algorithm, including Optinc, for DS, CDS, or
IDS must select the first vertex.

Throughout the text, we use standard graph-theoretic notation. In particu-
lar, the path on n vertices is denoted Pn. A star with n vertices is the complete
bipartite graph K1,n−1. In a rooted tree, an internal vertex is a vertex that
has at least one child vertex. For a vertex v, N(v) denotes the set of neighbors
of v. We use c(G) to denote the number of components of a graph G. The size
of a minimum dominating set of a graph G is denoted by γ(G). We use indices
to indicate variants, using γC(G), γT (G), and γI(G) for Connected, Total, and
Independent Dominating Set, respectively. This is an alternative notation for
the size computed by Optoff. We also use these indices on Optinc to indicate
which variant is under consideration. Sometimes, when the problem considered
is clear from the context or we consider more problems at the same time, we
may omit the index. We use ∆ to denote the maximum degree of the graph
under consideration. Similarly, we always let n denote the number of vertices
in the graph.

In many of the proofs of lower bounds on the competitive ratio, when the
path, Pn, is considered, either as the entire input or as a subgraph of the input,
we assume that it is given in the standard order, the order where the first vertex
given is one of the two endpoints, and each subsequent vertex is a neighbor
of the vertex given in the previous step. When the path is a subgraph of the
input graph, we often extend this standard order of the path to an adversarial
order of the input graph – a fixed ordering of the vertices that yields an input
attaining the bound. Typically, the adversarial order consists of a path in the
standard order, followed by one or more high-degree vertices off the path.

In some online settings, we are interested in connected graphs, where the
vertices are given in an order such that the subgraph induced at any point in
time is connected. In this case, we use the term always-connected, indicating
that we are considering a connected graph G, and all the partial graphs Gi
are connected. We implicitly assume that trees are always-connected and we
drop the adjective. Since all the classes we consider are hereditary (that is, any
induced subgraph also belongs to the class), no further restriction of partial
inputs Gi is necessary. In particular, these conventions imply that for trees,
the vertex arriving at any step (except the first) is connected to exactly one
of the vertices given previously, and since we consider unrooted trees, we can
think of that vertex as the parent of the new vertex.

3 The Cost of Being Online

In this section, we analyze the the performance of online algorithms for the
four variants of Dominating Set. We compare the algorithms to Optinc, thus
comparing algorithms restricted to making the same irrevocable decisions,
and thereby investigating the role played by the (absence of) knowledge of the
future. We also compare the online algorithms to Optoff.

We start with Independent Dominating Set.



Online Dominating Set 7

Proposition 1 For any graph G, there is a unique incremental independent
dominating set.

Proof We fix G and proceed inductively. The first vertex has to be selected
due to the online requirement. When the next vertex, vi+1, is given, if it is
dominated by a vertex in Di, it cannot be selected, since then Di+1 would
not be independent. If vi+1 is not dominated by a vertex in Di, then vi+1 or
one of its neighbors must be selected. However, none of vi+1’s neighbors can
be selected, since if they were not selected already, then they are dominated,
and selecting one of them would violate the independence criteria. Thus, vi+1

must be selected. In either case, Di+1 is uniquely defined. ut

Since a correct incremental algorithm is uniquely defined by this proposi-
tion by a forced move in every step, Optinc must behave exactly the same.
This fills the column for Independent Dominating Set in Table 1.

For Dominating Set, Connected Dominating Set, and Total Dominating
Set, we start by using the size of a given dominating set to bound the sizes
of some connected or incremental equivalents. The following theorem does not
address TDS directly, but in many cases, it can be applied to this problem as
well, since any connected dominating set including more than one vertex in
each connected component is a total dominating set.

Theorem 1 Let G be always-connected, let S be a dominating set of G, and
let R be an incremental dominating set of G. Then the following hold:

(i) There is a connected dominating set S′ of G such that |S′| ≤ |S| +
2(c(S)− 1).

(ii) There is an incremental connected dominating set R′ of G such that
|R′| ≤ |R|+ c(R)− 1.

(iii) If G is a tree, there is an incremental dominating set R′′ of G such that
|R′′| ≤ |S|+ c(S).

Moreover, all three bounds are tight for infinitely many graphs.

Proof To obtain the upper bound of (i), we argue that by selecting additionally
at most 2(c(S)− 1) vertices, we can connect all the components in S. We do
this inductively. If there are two components that can be connected by a path
of at most two unselected vertices, we select all the vertices on this path
and continue inductively. Otherwise, assume to the contrary that all pairs of
components require the selection of at least three vertices to become connected.
We choose a shortest such path of length k consisting of vertices u1, . . . , uk,
where ui is dominated by a component Ci for all i. If C1 6= C2, we can connect
them by selecting u1 and u2, which would be a contradiction. If C1 = C2, then
we have found a shorter path between C1 and Ck; also a contradiction. We
conclude that |S′| ≤ |S|+ 2(c(S)− 1), which proves (i).

To see that the bound is tight, consider a path Pn in the standard order,
where n ≡ 0 (mod 3). Clearly, the size of a minimum dominating set S of Pn
is n/3 and c(S) = n/3. On the other hand, the size of any minimum connected
dominating set of Pn is n− 2 and n− 2 = |S|+ 2(c(S)− 1).



8 Boyar, Eidenbenz, Favrholdt, Kotrbč́ık, Larsen

To prove (ii), we label the components of R in the order in which their
first vertices arrive. Thus, let C1, . . . , Ck be the components of R, and, for
1 ≤ i ≤ k, let vji be the first vertex of Ci that arrives. Note that we assume
that vji arrives before vji+1

for each i = 1, . . . , k − 1. We prove that for each
component Ci of R, there is a path of length 2 joining vji with Ch in Gji for
some h < i, i.e., a path with only one vertex not belonging to either component.
Let P = vl1 , . . . , vlm , vji be a shortest path in Gji connecting vji and some
component Ch, h < i, and assume for the sake of contradiction that m ≥ 3.
In Gji , the vertex vl3 is not adjacent to a vertex in any component Ch′ , where
h′ < i, since in that case a shorter path would exist. However, since vertices
cannot be unselected as the online algorithm proceeds, it follows that in Gl3 ,
vl3 is not dominated by any vertex, which is a contradiction. Thus, m ≤ 2
and selecting just one additional vertex at the arrival of vij connects Ci to an
earlier component, and the result follows inductively.

To see that the bound is tight, observe that the optimal incremental con-
nected dominating set of Pn has n − 1 vertices, while for even n, there is an
incremental dominating set of size n/2 with n/2 components.

To obtain (iii), consider an algorithm Alg processing vertices greedily,
while always selecting all vertices from S. That is, v1 and all vertices of S are
always selected, and when a vertex v 6∈ S arrives, it is selected if and only if it
is not dominated by already selected vertices, in which case it is called a bad
vertex. Clearly, Alg produces an incremental dominating set, R′′, of G.

To prove the upper bound on |R′′|, we gradually mark components of S.
For a bad vertex vi, let v be a vertex from S dominating vi, and let C be the
component of S containing v. Mark C. To prove the claim it suffices to show
that each component of S can be marked at most once, since each bad vertex
leads to some component of S being marked.

Assume for the sake of contradiction that some component, C, of S is
marked twice. This happens because a vertex v of C is adjacent to a bad
vertex b, and a vertex v′ (not necessarily different from v) of C is adjacent to
some later bad vertex b′. Since G is always-connected and b′ was bad, b and b′

are connected by a path not including v′. Furthermore, v and v′ are connected
by a path in C. Thus, the edges {b, v} and {b′, v′} imply the existence of a
cycle in G, contradicting the fact that it is a tree.

To see that the bound is tight, let v1, . . . , vm, m ≡ 2 (mod 6), be a path
in the standard order. Let G be obtained from Pm by attaching m pendant
vertices (new vertices of degree 1) to each of the vertices v2, v5, v8, . . . , vm,
where the pendant vertices arrive in arbitrary order, though respecting that
G should be always-connected. Each minimum incremental dominating set of
G contains each of the vertices v2, v5, v8, . . . , vm, the vertex v1, and one of
the vertices v3i and v3i+1 for each i, and thus it has size 2(m + 1)/3. On the
other hand, the vertices v2, v5, v8, . . . , vm form a dominating set S of G with
c(S) = (m+ 1)/3. ut

Theorem 1 is best possible in the sense that none of the assumptions can be
omitted. Indeed, Proposition 11 implies that it is not even possible to bound



Online Dominating Set 9

the size of an incremental (connected) dominating set in terms of the size of
a (connected) dominating set, much less to bound the size of an incremental
connected dominating set in terms of the size of a dominating set. Therefore,
(i) and (ii) in Theorem 1 cannot be combined even on bipartite planar graphs.
The situation is different for trees: Proposition 3 (i) essentially leverages the
fact that any connected dominating set D on a tree can be produced by an
incremental algorithm without increasing the size of D.

3.1 Trees

For DS and CDS, we let Parent denote the following algorithm for trees.
The algorithm selects the first vertex. When a new vertex v arrives, if v is not
already dominated by a previously arrived vertex, then the parent vertex that
v is adjacent to is added to the dominating set. Note that Parent accepts all
internal nodes of the tree rooted at the first vertex, creating an incremental
connected dominating set. For CDS on trees, Parent is 1-competitive, even
against Optoff:

Lemma 1 For CDS on any tree T ,

Parent(T ) ≤

{
γC(T ) + 1, if v1 has degree 1 in T

γC(T ), otherwise.

Proof For CDS, Parent selects no vertices of degree 1, except possibly v1.
Thus, the algorithm selects all vertices of degree at least 2 plus at most one
vertex of degree 0 or 1.

For trees with at most two vertices, the minimum size of a connected
dominating set is 1. For trees with more than two vertices, the minimum size
of a connected dominating set of any tree T equals the number of vertices with
degree at least 2. ut

For TDS, Parent is the same as for DS and CDS, except that it selects
v1 only if v2 arrives, in which case it selects both v1 and v2. Thus, Parent for
TDS selects at most one more vertex than Parent for DS and CDS. To show
that for TDS on trees, Parent is 1-competitive against Optinc, we prove the
following:

Lemma 2 For any incremental total dominating set D for an always-con-
nected graph G, all Di are connected.

Proof For the sake of a contradiction, suppose that for some i, Di is not con-
nected, and let i be the smallest index with this property. It follows that the
vertex vi constitutes a singleton component of Di. Thus, vi cannot be domi-
nated by any other vertex of Di, contradicting that the solution is incremental.

ut

Lemma 3 For TDS on any tree T , Parent(T ) = Optinc
T (T ).



10 Boyar, Eidenbenz, Favrholdt, Kotrbč́ık, Larsen

Proof If T consists of only one vertex, Parent(T ) = Optinc
T (T ) = 0. Other-

wise, Parent selects v1, v2, and all later internal vertices. Optinc also selects
v1 and v2, and by Lemma 2, it has to select all internal vertices. Thus, the two
algorithms select exactly the same set of vertices. ut

Lemma 4 For any online algorithm Alg for DS or CDS, there exist arbi-
trarily large trees T , such that Alg(T ) ≥ n− 1.

Proof We prove that the adversary can construct an arbitrarily large tree,
maintaining the invariant that at most one vertex is not included in the so-
lution of Alg. The algorithm has to select the first vertex, so the invariant
holds initially. When presenting a new vertex vi, the adversary checks whether
all vertices given so far are included in Alg’s solution. If this is the case, vi is
connected to an arbitrary vertex, and the invariant still holds. Otherwise, vi is
connected to the unique vertex not included in Di−1. Now vi is not dominated,
so Alg must select an additional vertex. ut

Proposition 2 For any online algorithm Alg for DS on trees, CRinc(Alg) ≥
2.

Proof We argue that, for any always-connected bipartite graph, G, we have
that Optinc(G) ≤ n+1

2 . Since trees are bipartite, the result then follows from
Lemma 4. The smaller partite set S of any connected bipartite graph G is a
dominating set of G. If the first presented vertex v1 belongs to S, then S is
an incremental dominating set of G. Otherwise, S ∪ {v1} is an incremental
dominating set of G. ut

The adversary strategy used in the proof of Lemma 4 cannot give a lower
bound larger than 2 against Optoff, since the resulting tree may not have any
dominating set with fewer than n/2 vertices. Consider, for example, a cater-
pillar graph where each vertex of the central path has exactly one neighbor
not belonging to the central path.

The following proposition concludes on the results for DS, CDS, and TDS
on trees.

Proposition 3 For trees, the following hold.

(i) For DS, CRinc(Parent) = 2 and CRoff(Parent) = 3.
(ii) For CDS, CRinc(Parent) = CRoff(Parent) = 1.

(iii) For TDS, CRinc(Parent) = 1 and CRoff(Parent) = 2.

Proof We prove (i) first. The lower bound on CRinc(Parent) follows directly
from Proposition 2. For the corresponding upper bound, note that Lemma 1
in combination with Theorem 1(ii) imply that Parent(T ) ≤ γC(T ) + 1 ≤
2 · Optinc(T ), for any tree T . The result on CRoff(Parent) follows from
Theorem 1(i) and the proof that Theorem 1(i) is tight.

Item (ii) follows directly from Lemma 1.
In item (iii), the result on CRinc(Parent) follows directly from Lemma 3.



Online Dominating Set 11

For the upper bound on CRoff(Parent), let S be an optimal total dom-
inating set for a tree T . Assume that |S| ≥ 3 and consider the following
calculations which we argue for below.

Parent(T ) = Optinc
T (T ), by Lemma 3

≤ Optinc
C (T )

≤ Optoff
C (T ) + 1

≤ |S|+ 2(c(S)− 1) + 1,by Theorem 1(i)

≤ 2|S| − 1

The first inequality in the calculations above follows from the fact that any
connected dominating set of size at least 2 is a total dominating set, and since
we assumed that an optimal total dominating set for T has at least three
vertices, any connected dominating set for T must have at least two vertices.

The second inequality follows from Lemma 1, since Parent is an incre-
mental algorithm.

The last inequality follows from the fact that any connected component in
a total dominating set has at least two vertices.

For the lower bound on CRoff(Parent), consider a path v1, v2, . . . , v4n
for a positive integer n. When given in the standard order, Parent will select
the first 4n − 1 vertices, whereas an optimal total dominating set is the set
{v4i+2, v4i+3 | 0 ≤ i ≤ n− 1} of size 2n. ut

3.2 Bipartite, bounded-degree, and general graphs

We extend the Parent algorithm for graphs that are not trees as follows.
When a vertex vi, i > 1, arrives, which is not already dominated by one of
the previously presented vertices, Parent selects any of the neighbors of vi
in Gi. Again, it is easily seen that Parent creates an incremental connected
dominating set. We start with a few positive results for Parent.

Proposition 4 The following hold.

(i) For DS and CDS on always-connected bipartite graphs, for n ≥ 4,

CRoff(Parent) ≤ n/2.

(ii) For DS and CDS on always-connected graphs, for n ≥ 4,

CRoff(Parent) ≤ n− 2.

(iii) For TDS, CRoff(Parent) ≤ n/2.

Proof For item (i), if γ(G) ≥ 2, there is nothing to prove. Therefore, we
assume that there is a single vertex v adjacent to every other vertex. Since
G is bipartite, there is no edge between any of the vertices adjacent to v, so
G is a star. Since Gi is connected for each i, the vertex v arrives either as



12 Boyar, Eidenbenz, Favrholdt, Kotrbč́ık, Larsen

the first or the second vertex. Furthermore, if another vertex arrives after v,
then v is selected by Parent. Once v is selected, all future vertices are already
dominated by v, so no more vertices are selected, implying that Parent(G) ≤
2, which concludes the proof.

For item (ii), we only need to consider the case of γ(G) = 1, since otherwise
there is nothing to prove, and thus there is a vertex v adjacent to every other
vertex of G. Since after the arrival of any vertex, Parent increases the size
of the dominating set by at most one, it suffices to prove that, immediately
after some vertex has been processed, there are two vertices not selected by
Parent. First note that once v is selected, Parent does not select any other
vertex and thus we can assume that v is not the first vertex. Suppose that
v arrives after vi, i ≥ 2. The vertex vi has not yet been selected when v
arrives, and v is dominated by v1, so there are two vertices not selected. The
last remaining case is when v arrives as the second vertex. In this case we
distinguish whether v3 is adjacent to v1, or not. If v3 is adjacent to v1, then
v is not selected, there are two vertices not selected (v and v3), and we are
done. If v3 is not adjacent to v1, then Parent selects v when v3 arrives. No
further vertex will be added to the dominating set, concluding the proof.

For any graph with at least one edge, any total dominating set contains at
least two vertices. Thus, if Parent selects more vertices than Optoff

T , Optoff
T

selects at least two vertices. This proves (iii). ut

The following result shows that Proposition 4(ii) is tight.

Proposition 5 For any online algorithm, Alg, for DS or CDS on always-
connected planar graphs, CRoff(Alg) ≥ n− 2.

Proof By Lemma 4, the adversary can construct a tree on n− 1 vertices, such
that any online algorithm selects at least n− 2 vertices. If the adversary then
gives one vertex connected to all n − 1 vertices in the tree, this last vertex
constitutes a connected dominating set. It is not difficult to see that any such
graph is indeed planar. ut

For DS, let Greedy be the algorithm that selects an arriving vertex, if
and only it is not dominated by a previously selected vertex.

Proposition 6 For graphs of maximum degree ∆, the following hold.

(i) For any algorithm Alg for DS or CDS, CRoff(Alg) ≤ ∆+ 1.
(ii) For DS, CRoff(Greedy) ≤ ∆.

(iii) For any algorithm Alg for TDS, CRoff(Alg) ≤ ∆.
(iv) For any algorithm Alg for CDS on connected graphs, CRoff(Alg) ≤

∆− 1.

Proof For DS and CDS, each vertex can only dominate itself and its at most
∆ neighbors. Thus, γC(G) ≥ γ(G) ≥ n/(∆+ 1), proving item (i).

For item (ii), consider a dominating set S = {s1, s2, . . . , sk} of size k =
γ(G). Partition the vertices of G into k sets V1, V2, . . . , Vk such that si ∈ Vi



Online Dominating Set 13

and all vertices in Vi \ {si} are dominated by si. Clearly, |Vi| ≤ ∆ + 1 and if
Vi has ∆ + 1 vertices, it is called a critical set. If there are exactly d critical
sets, then n ≤ d(∆+ 1) + (k − d)∆. Thus, γ(G) = k ≥ (n− d)/∆.

For each critical set Vi, each vertex in the set is connected to at least one
other vertex. Thus, if Greedy selects the ∆ first vertices of Vi, it will not
select the last vertex of Vi. This shows that, from each critical set, Greedy
will select at most ∆ vertices. Hence, Greedy(G) ≤ n − d, concluding the
proof of item (ii).

For TDS, a vertex can only dominate its at most ∆ neighbors. Thus,
γT (G) ≥ n/∆, proving item (iii).

For item (iv), let D be a minimum connected dominating set of a connected
graph G with |D| = k. The sum of the degrees of vertices in D is bounded by
k∆ which is then also an upper bound on how many vertices D can dominate
outside D. Since D is connected, any spanning tree of D contains k− 1 edges
and each endpoint is adjacent to the other endpoint in the spanning tree.
Thus, no vertices outside D are dominated via these edges. Thus, at most
k∆−(2k−2) vertices not in D can be dominated by D, giving n ≤ k∆−k+2 =
k(∆− 1) + 2 vertices in G. It follows that γC(G) ≥ (n− 2)/(∆− 1) and thus,
for any algorithm Alg for CDS, CRoff(Alg) ≤ ∆− 1. ut

The upper bound of Proposition 6(ii) is almost tight, even for always-
connected bounded-degree graphs:

Proposition 7 For any online algorithm Alg for DS on always-connected
bounded-degree graphs, CRoff(Alg) ≥ ∆− 2.

Proof We adapt the construction in the proof of Lemma 4 to work for bounded-
degree graphs. The adversary first gives n1 vertices inducing a tree. For con-
venience, we let n1 be a multiple of ∆.

For the first n1 vertices, the adversary uses the following strategy. If there is
a vertex v 6∈ Di−1 with degree less than ∆−1, vi is connected to v. Otherwise,
vi is connected to any vertex v ∈ Di−1 with degree less than ∆− 1. Thus, the
following invariant is maintained. At most one vertex v 6∈ Di has degree less
than ∆− 1. After the first n1 vertices, n2 = n1/∆ vertices are given such that
each of the first n1 vertices is adjacent to exactly one of the last n2 vertices.

Let V1 be the set consisting of the first n1 vertices, and let V2 contain the
last n2 vertices. By construction, each vertex in V1\D, except at most one, has
at least ∆−1 neighbors in V1, and for any pair of neighbors, u, v ∈ V1, at least
one of u and v is included in D. Thus, there are more than (|V1\D|−1)(∆−1)
edges between V1 \D and V1 ∩D. Together with the fact that the number of
edges in the subgraph induced by V1 is n1−1, this means that (|V1\D|−1)(∆−
1) ≤ n1− 1, implying |V1 \D| ≤ (n1− 1)/(∆− 1) + 1. Thus, |D| ≥ |D ∩ V1| =
n1 − |V1 \ D| ≥ n1 − (n1 − 1)/(∆ − 1) − 1 > (∆ − 2)n1/(∆ − 1) − 1. Since
V2 constitutes a dominating set of size n1/∆, this proves that the asymptotic
competitive ratio satisfies CRoff(Alg) ≥ ∆(∆− 2)/(∆− 1) > ∆− 2. ut

Our next aim is to show that there exists an algorithm which is n/4-
competitive against Optinc on every graph. Later, in Propositions 8 and 9, we



14 Boyar, Eidenbenz, Favrholdt, Kotrbč́ık, Larsen

prove that this is optimal. For the algorithm, we use layers in a graph G. The
function L assigns layer numbers to vertices as follows: If vi has no neighbors
when it arrives, let L(vi) = 1; otherwise, let

L(vi) = 1 + min {L(vj) | vj is a neighbor of vi in Gi} .

The algorithm, denoted LowParent, is a specialization of Parent. For
each vertex vi, i > 1, if vi is not dominated by one of the already selected
vertices, it selects a neighbor of vi with the smallest layer number. For CDS,
if the vertex vi connects two or more connected components, the algorithm
also adds a minimum-sized set of vertices to D to make it connected. This will
include the current vertex and at most one neighbor in each component being
connected. Furthermore, for DS and CDS, the algorithm also adds the first
vertex to arrive in each of layers 3 and 5.

The pseudocode for LowParent for DS and CDS is given in Algorithm 1.

Algorithm 1: Algorithm LowParent for DS and CDS.

1 D ← ∅
2 while a vertex vi is presented do
3 if vi has no neighbors in Gi then
4 L(vi)← 1
5 D ← D ∪ {vi}
6 else
7 L(vi)← 1 + min{L(vj) | vj is a neighbor of vi in Gi}
8 if there is no vj ∈ D such that vj dominates vi then
9 Choose a neighbor vj of vi with L(vj) = L(vi)− 1

10 D ← D ∪ {vj}
11 if the problem is CDS then
12 if vi connects vertices belonging to different connected

components in Gi−1 then
13 Add a minimum-sized set of vertices to D connecting the

corresponding components of D
14 if L(vi) ∈ {3, 5} then
15 if |{vj ∈ Gi | L(vj) = L(vi)}| = 1 then
16 D ← D ∪ {vi}

The pseudocode for LowParent for TDS is given in Algorithm 2. Al-
gorithm 2 is obtained from Algorithm 1 by omitting lines 5 and 11–16 and
adding the following (lines 10–11): For each vertex in layer 1, its first neighbor
v to arrive is added to D.

We prove that LowParent is asymptotically optimal in most cases. We
consider DS and CDS first.



Online Dominating Set 15

Algorithm 2: Algorithm LowParent for TDS.

1 D ← ∅
2 while a vertex vi is presented do
3 if vi has no neighbors in Gi then
4 L(vi)← 1
5 else
6 L(vi)← 1 + min{L(vj) | vj is a neighbor of vi in Gi}
7 if there is no vj ∈ D such that vj dominates vi then
8 Choose a neighbor vj of vi with L(vj) = L(vi)− 1
9 D ← D ∪ {vj}

10 if vi has an undominated neighbor then
11 D ← D ∪ {vi}

Lemma 5 Consider a graph G and an incremental algorithm Alg for DS or
CDS. For each connected component, H, of the subgraph Gi of G, the following
hold.

(i) Alg selects all vertices of the first layer of H.
(ii) For any two consecutive layers, j and j+1 of H, if no vertices in layer j

are included in the final solution, the first vertex of layer j+ 1 is selected
by Alg.

(iii) If H has at least 2k+ 1 layers, k ∈ Z, Alg accepts at least k+ 1 vertices
in H.

Proof Item (i) follows immediately from the fact that each vertex in layer 1 is
isolated when it arrives.

For item (ii), note that when the first vertex v of layer j + 1 arrives, it
is only connected to vertices in layer j, and hence it is not dominated. Since
Alg does not select any vertices from layer j, v must be selected.

Item (iii) follows directly from items (i) and (ii). ut

Theorem 2 For DS and CDS, CRinc(LowParent) ≤ (n+ 3)/4.

Proof First, if Optinc(G) ≥ 4, then LowParent(G) ≤ n ≤ n
4 Optinc(G).

Furthermore, if Optinc(G) = 1, then LowParent(G) = Optinc(G). Thus,
we need only consider graphs, G, with 2 ≤ Optinc(G) ≤ 3.

We distinguish several cases according to the number, `, of layers of G.
If ` ≤ 2, then LowParent(G) = Optinc(G). If ` ≥ 7, then by Lemma 5,
Optinc(G) ≥ 4. Hence, we only need to consider the range 3 ≤ ` ≤ 6.

We consider DS first. For i ≥ 1, let ni denote the size of the ith layer and
si the number of vertices in the ith layer selected by LowParent in Line 5
or 10 (thus, not including the selections in Line 16). Note that s` = n`+1 = 0.

Since each vertex in layer i + 1 causes at most one vertex in layer i to be
selected,

si ≤ ni+1, for i ≥ 2, and si ≤ ni, for i ≥ 1.



16 Boyar, Eidenbenz, Favrholdt, Kotrbč́ık, Larsen

From these two inequalities independently, we get

`−1∑
i=2

i− 1

`− 1
si ≤

`−1∑
i=2

i− 1

`− 1
ni+1 =

∑̀
i=3

i− 2

`− 1
ni and

`−1∑
i=2

`− i
`− 1

si ≤
`−1∑
i=2

`− i
`− 1

ni .

Adding these two inequalities, we obtain

`−1∑
i=2

si ≤
∑̀
i=2

`− 2

`− 1
ni .

Let n′ be the total number of vertices selected in lines 5 and 16. If 3 ≤ ` ≤ 4,
then n′ = n1 + 1. Finally, if ` ≥ 5, then n′ = n1 + 2.

Since LowParent(G) = n′ +
∑`−1
i=2 si, we get

LowParent(G)− n′ =

`−1∑
i=2

si ≤
`− 2

`− 1

∑̀
i=2

ni =
`− 2

`− 1
(n− n1) . (1)

We consider always-connected graphs first, for which n1 = 1.
For ` = 3, Inequality (1) yields LowParent(G) ≤ (n−1)/2+2 = (n+3)/2.

Since Optinc(G) ≥ 2, LowParent(G)/Optinc(G) ≤ (n+ 3)/4.
For ` = 4, Inequality (1) gives LowParent(G) ≤ 2(n− 1)/3 + 2 = (2n+

4)/3. If Optinc(G) = 3, then LowParent(G)/Optinc(G) ≤ (2n + 4)/9 <
(n+3)/4. If Optinc(G) = 2, it follows from Lemma 5 that the vertices selected
by Optinc are the first vertices in layers 1 and 3. Since these vertices are
selected on arrival by LowParent as well, LowParent selects the same
vertices as Optinc, plus a parent of the first vertex in layer 3. Thus, it selects
3/2Optinc vertices. This ratio is smaller than (n+ 3)/4, since n ≥ 4.

For ` = 5, Inequality (1) yields LowParent(G) ≤ 3(n− 1)/4 + 3 = (3n+
9)/4. By Lemma 5, Optinc(G) ≥ 3 and hence, LowParent(G)/Optinc(G) ≤
(3n+ 9)/12 = (n+ 3)/4.

For ` = 6, it follows from Lemma 5 that Optinc(G) = 3 and the vertices
selected by Optinc are the first vertices in layers 1, 3, and 5. Since these
vertices are selected on arrival by LowParent as well, LowParent selects
the same vertices as Optinc, plus a parent of the first vertex in layer 3 and a
parent of the first vertex in layer 5. Thus, it selects 5/3Optinc vertices. This
ratio is smaller than (n+ 3)/4, since n ≥ 6.

We now consider graphs which are not always-connected. Note that we still
assume that Optinc(G) ≤ 3, and Inequality (1) still holds. If G is given in a dis-
connected order, layer 1 contains at least two vertices and by Lemma 5, Optinc,
just as LowParent, accepts all vertices of layer 1. Therefore, if Optinc(G) =
2, then ` ≤ 2, and LowParent(G) = Optinc(G). Moreover, if layer 1 contains
three vertices, then ` ≤ 2, and Optinc(G) = 3 = LowParent(G). Hence, we
only need to consider the case where Optinc(G) = 3 and the first layer contains
exactly two vertices. Note that, in this case, 3 ≤ ` ≤ 4.

If ` = 3, then by Inequality (1), LowParent(G) ≤ (n − 2)/2 + 3 =
(n+4)/2. It follows that LowParent(G)/Optinc(G) ≤ (n+4)/6 < (n+3)/4.



Online Dominating Set 17

If ` = 4, then by Inequality (1), LowParent(G) ≤ 2(n−2)/3 + 3 = (2n+
5)/3. It follows that LowParent(G)/Optinc(G) ≤ (2n+ 5)/9 < (n+ 3)/4.

We now consider CDS. If the graph is always-connected, LowParent for
CDS selects the same vertices as for DS, so the calculations for DS also hold
for CDS. Thus, we only need to consider graphs that are not always-connected.

If layer 1 contains three vertices, then the graph cannot have an incremen-
tal CDS with fewer than four vertices, contradicting Optinc(G) ≤ 3. Thus, we
can assume that the graph never has more than two connected components
and that the two components arrive in an always-connected manner. If the two
components remain unconnected, the above analysis for DS holds for each com-
ponent. Otherwise, Optinc connects the two components by selecting exactly
one vertex, v, and since Optinc is incremental, the two components must be
unconnected until the arrival of v. Thus, the vertices selected by LowParent
are exactly the three vertices selected by Optinc and the first vertex of layer 3,
if it arrives. Hence, LowParent(G)/Optinc(G) ≤ 4/3 < n+3

4 , since n ≥ 3.
ut

We now consider TDS. For general graphs, we obtain an upper bound of
approximately n/4, as we did for DS and CDS. For always-connected graphs,
the upper bound is improved to approximately 2n/9.

Theorem 3 For TDS, CRinc(LowParent) ≤ (n + 2)/4, and for TDS on
always-connected graphs, (2n+ 1)/9 ≤ CRinc(LowParent) ≤ (2n+ 2)/9.

Proof We use the same notation as in the proof of Theorem 2. Thus, ni denotes
the size of the ith layer, si denotes the number of vertices in the ith layer
selected by LowParent, and ` is the total number of layers.

Since the first vertex in each layer i > 1 is only connected to vertices in
layer i−1, and choosing that first vertex does not dominate it, any incremental
algorithm must choose at least one vertex in each layer, except the last. Hence,
Optinc(G) ≥ ` − 1. Since LowParent(G) ≤ n, this means that for general
graphs, we can assume ` ≤ 4. For always-connected graphs, we can assume
` ≤ 5, since ` ≥ 6 implies a ratio of at most n/5 < 2n/9.

If ` = 1, LowParent(G) = Optinc(G) = 0. Hence, it suffices to consider
` ≥ 2.

We use inequalities similar to those for DS:

s1 ≤ n1 and s1 ≤ n2
s2 ≤ n2 and s2 ≤ n1 + n3

si ≤ ni and si ≤ ni+1, for i ≥ 3

Before using the inequalities, we strengthen the inequality s2 ≤ n1 + n3.
When the first vertex of layer 2 arrives, Optinc as well as LowParent will
select this vertex and a vertex from layer 1. If LowParent selects one more
vertex from layer 2, Optinc will also have to select an additional vertex, and
hence, Optinc(G) ≥ 3. Thus,

s2 = 1, if Optinc(G) = 2 .



18 Boyar, Eidenbenz, Favrholdt, Kotrbč́ık, Larsen

Note that no vertex in layer 1 has a neighbor outside of layer 2. Consider a
vertex u in layer 1. When the first neighbor, v, of u arrives, any incremental
algorithm has to select v. Thus, the vertices in layer 2 that LowParent selects
in order to dominate vertices in layer 1 are also selected by Optinc. Hence,
since Optinc selects at least one vertex in layer 1,

s2 ≤ Optinc(G)− 1 + n3 .

We consider general graphs first. Recall that for general graphs, we only
need to consider 2 ≤ ` ≤ 4.

For ` = 2,

LowParent(G) = s1 + s2

≤
(

1

2
n1 +

1

2
n2

)
+ (Optinc(G)− 1 + n3)

=
1

2
(n− 2) + Optinc(G), since n3 = 0.

Hence, LowParent(G)/Optinc(G) ≤ 1
4 (n− 2) + 1 = 1

4 (n+ 2).
For ` = 3, we first consider the case Optinc(G) = 2. In this case, s2 = 1.

Hence,

LowParent(G) = s1 + s2 ≤
(

1

2
n1 +

1

2
n2

)
+ 1 <

1

2
n+ 1 .

and LowParent(G)/Optinc(G) < 1
4 (n + 2). For Optinc(G) = 3, we note

that

LowParent(G) = s1 + s2

≤
(

3

4
n1 +

1

4
n2

)
+

(
1

2
n2 +

1

2
(Optinc(G)− 1 + n3)

)
<

3

4
n+

1

2
Optinc(G) .

Thus, LowParent(G)/Optinc(G) < 1
4n+ 1

2 = 1
4 (n+ 2).

For ` = 4, Optinc ≥ 3 and

LowParent(G)

= s1 + s2 + s3

≤
(

3

4
n1 +

1

4
n2

)
+

(
1

2
n2 +

1

2
(Optinc(G)− 1 + n3)

)
+

(
1

4
n3 +

3

4
n4

)
<

3

4
n+

1

2
Optinc(G) .

Thus, LowParent(G)/Optinc(G) < 1
4n+ 1

2 = 1
4 (n+ 2).

We now consider always-connected graphs, for which s1 = n1 = 1. We have
argued that for the upper bound, it is sufficient to consider 2 ≤ ` ≤ 5.

If ` = 2, LowParent(G) = Optinc(G) = 2.



Online Dominating Set 19

For ` = 3, we consider Optinc(G) = 2 first. In this case, LowParent(G) =
s1 + s2 = 1 + 1 = Optinc(G). For Optinc(G) ≥ 3, note that

LowParent(G) = s1 + s2

≤ 1 +

(
1

2
n2 +

1

2
(n3 + 1)

)
= 1 +

1

2
n

=
n+ 2

2
.

Thus, LowParent(G)/Optinc(G) ≤ (n+ 2)/6 < (2n+ 2)/9, since n > 2.
If ` = 4, then Optinc(G) ≥ 3. Moreover,

LowParent(G) = s1 + s2 + s3

≤ 1 +

(
2

3
n2 +

1

3
(n3 + 1)

)
+

(
1

3
n3 +

2

3
n4

)
=

4

3
+

2

3
(n− 1)

=
2n+ 2

3
.

Thus, LowParent(G)/Optinc(G) ≤ 2n+2
9 .

If ` = 5, then Optinc(G) ≥ 4. Moreover,

LowParent(G)

= s1 + s2 + s3 + s4

≤ 1 +

(
3

4
n2 +

1

4
(n3 + 1)

)
+

(
1

2
n3 +

1

2
n4

)
+

(
1

4
n4 +

3

4
n5

)
=

5

4
+

3

4
(n− 1)

=
3n+ 2

4
.

Thus, LowParent(G)/Optinc(G) ≤ 3n+2
16 < 2n

9 , since n ≥ 5.
Finally, we prove the lower bound for always-connected graphs, using the

following adversarial input sequence defining a graph G with four layers. The
first layer consists of the vertex u. The following three layers each have m ver-
tices, for some large integer m. The vertices of the second, third, and fourth
layers are called v1, . . . , vm, w1, . . . , wm, and x1, . . . , xm, respectively. The ver-
tices are given layer by layer, in the order according to their numbering.

No vertex in the second layer is connected to any other vertex in the same
layer. In the third layer, w1 is connected to v1, and for 2 ≤ i ≤ m, wi is
connected to vi and w1. In the fourth layer, for 1 ≤ i ≤ m− 1, xi is connected
to w1 and wi+1, and xm is connected w1.

Optinc selects the three vertices u, v1, and w1.



20 Boyar, Eidenbenz, Favrholdt, Kotrbč́ık, Larsen

LowParent selects u and v1 on arrival. For 2 ≤ i ≤ m, it selects vi when
wi arrives. Hence, when the first three layers have arrived, all vertices of lay-
ers 1 and 2 have been selected. Each vertex x1, . . . , xm−1 can be dominated
by either w1 or wi+1. If LowParent always chooses the latter, it will se-
lect all vertices w2, . . . , wm, and when xm arrives, it must select w1. In total,
LowParent selects 1 + 2m = 1 + 2(n− 1)/3 = (2n+ 1)/3, yielding a ratio of
LowParent(G)/Optinc(G) = (2n+ 1)/9. ut

Figure 1 A three-layer construction; the minimum connected dominating set is indicated
by the black vertices (Proposition 8).

Proposition 8 On bipartite graphs, the following hold for any online algo-
rithm Alg for DS or CDS.

(i) For DS and CDS on always-connected graphs, CRinc(Alg) ≥ n/4.
(ii) For DS on always-connected bounded-degree graphs,

CRinc(Alg) ≥ ∆/2− 1/4.

(iii) For CDS on always-connected bounded-degree graphs,

CRinc(Alg) ≥ ∆/3.

(iv) For CDS on bounded-degree graphs, CRinc(Alg) ≥ ∆/2.

Proof For items (i) and (iv), we prove that for any integer ∆ ≥ 2, there is
an always-connected bipartite graph, G, with maximum degree ∆ such that
Alg(G) ≥ ∆ = n/2 and Optinc(G) = Optinc

C (G) = 2.
The graph G consists of three layers. The first layer contains only one

vertex u, and the second layer contains ∆−1 vertices v1, . . . , v∆−1 adjacent to
u. After the entire second layer is presented to the algorithm, the vertices of the
second layer are indistinguishable to the algorithm. The last layer consists of
∆−1 vertices w1, . . . , w∆−1, which will be given in that order, with adjacencies
as follows: For i = 1, . . . ,∆−1, wi is connected to ∆− i vertices of the second
layer in such a way that N(wi+1) ⊂ N(wi) and N(wi) contains as few vertices
from Di−1 as possible. An example of this construction for ∆ = 4 is depicted
in Figure 1.

Consider the situation when the vertex wi arrives. If the set N(wi) does
not contain a vertex from Di−1, then Alg must select at least one additional



Online Dominating Set 21

vertex at this time. Thus, Alg selects at least ∆−1 = (n−1)/2 vertices from
the second and third layer, plus the root. Since there is a vertex v in the second
layer that is adjacent to all vertices in the third layer, {u, v} is an incremental
connected and total dominating set of G, concluding the proof of (i). Since
the adversary can use any number of copies of G, this also finishes the proof
of (iv).

For items (ii) and (iii), note that the adversary can use any number of
copies of G, with one vertex in the third layer of copy k connected to the
vertex in the first layer of copy k + 1.

For DS, note that for any given algorithm Alg, G is constructed in such a
way that Alg must select at least one vertex from layers 1 and 2 and at least
∆− 1 vertices from layers 2 and 3 in each copy of G. Thus, if Alg selects all
∆− 1 vertices of layer 3 in some copy of G, it selects at least ∆ vertices from
this copy. Otherwise, the adversary can connect the next copy of G to a vertex
w not selected by Alg. In this case, the algorithm will have to select w or the
first vertex of the next copy of G. Hence, from two consecutive copies of G,
Alg selects at least 2∆− 1 vertices. On the other hand, choosing two vertices
from each copy as described above will result in an incremental dominating
set. This proves (ii).

For CDS, the adversary will connect adjacent copies of G in the following
way. The vertex in layer 3 connected to all vertices in layer 2 will be connected
to the first vertex of the following copy of G. Thus, an incremental connected
dominating set can be created by selecting one vertex from each of layers 1
and 2 as described above plus the vertex in layer 3 connected to the next copy
of G. Again, Alg will select at least ∆−1 vertices from layers 2 and 3 in each
copy of G, and to make the dominating set connected, it will also select the
vertex in layer 1. This proves (iii). ut

The above adversary strategy does not work for TDS, since Optinc needs
to accept the two first vertices of the graph G. Thus, we use a slightly different
graph to prove the following proposition.

Proposition 9 On bipartite graphs, the following hold for any online algo-
rithm Alg.

(i) For TDS, on always-connected graphs,

CRinc(Alg) ≥ n/6 and CRinc(Alg) ≥ ∆/3.

(ii) For TDS, CRinc(Alg) ≥ n/4 and CRinc(Alg) ≥ (∆+ 1)/2.

Proof For item (i), we use a graph, G′, identical to the graph G used in the
proof of Proposition 8, except that the second layer has ∆ vertices, and no
vertex in layer 3 is connected to the first vertex of layer 2. For bounded-degree
graphs, the adversary gives many copies of G′, and for each copy except the
last, the first vertex of layer 2 is connected to the first vertex of layer 2 in the
following copy. In all copies of G′, except the first, the first vertex of layer 2 is
given before the vertex of layer 1.



22 Boyar, Eidenbenz, Favrholdt, Kotrbč́ık, Larsen

For each copy of G′, any incremental algorithm for TDS will select the
vertex of layer 1 and the first vertex of layer 2, and Alg will also select the
remaining ∆− 1 vertices of layer 2. Among the last ∆− 1 vertices selected by
Alg, Optinc will only select the last one to be selected by Alg. This proves
item (i).

For item (ii), we use a graph consisting of only two layers. The vertices
of layer 1 are given first. Then, the following is repeated. As long as there is
a vertex in layer 1 not selected by Alg, a vertex is given which is adjacent
to exactly the vertices in layer 1 not yet selected by Alg. For each of these
vertices, Alg has to select a vertex in layer 1. It follows that layer 1 contains
∆ ≥ n/2 vertices, and Alg selects at least ∆+1 vertices, all of those in layer 1
and the first in layer 2. On the other hand, Optinc chooses only the first vertex
of layer 2 and the last vertex of layer 1 to be included in Alg’s dominating
set. This proves (ii). ut

4 The Cost of Being Incremental

This section is devoted to comparing the performance of incremental algo-
rithms and Optoff. Since Optoff performs at least as well as Optinc and
Optinc performs at least as well as any online algorithm, each lower bound in
Table 2 is at least the maximum of the corresponding lower bound in Table 1
and the corresponding lower bound for CRoff(Optinc). Similarly, each upper
bound in Table 1 is at most the corresponding upper bound in Table 2. In
both cases, we mention only bounds that cannot be obtained in this way from
cases considered already. We first give two positive results.

Proposition 10 For DS, the following hold.

(i) On trees, CRoff(Optinc) ≤ 2.
(ii) On always-connected graphs, CRoff(Optinc) ≤ dn/2e.

Proof Item (i) follows directly from Theorem 1(iii).

We now consider item (ii). For a fixed ordering of the vertices of G, consider
the layers L(v) assigned to vertices of G. It is easy to see that the set of vertices
in the odd layers is an incremental solution for DS and similarly for the set
of vertices in even layers plus the vertex v1. Therefore, Optinc can select the
smaller of these two sets, which necessarily has at most b(n−1)/2c+1 = dn/2e
vertices. ut

The remaining results are negative results.

Proposition 11 On bipartite planar graphs, the following hold.

(i) For DS, CRoff(Optinc) ≥ ∆ and CRoff(Optinc) ≥ n− 1.
(ii) For CDS, CRoff(Optinc) ≥ ∆+ 1 and CRoff(Optinc) ≥ n.



Online Dominating Set 23

Proof We prove that for each ∆ ≥ 3, i > 0, and n = i(∆ + 1), there is a
bipartite planar graph G with n vertices and maximum degree ∆ such that

Optinc(G) =
∆

∆+ 1
n , Optinc

C (G) = n , and

γ(G) = γC(G) =
n

∆+ 1
,

implying the first lower bound of both (i) and (ii). Letting i = 1, and hence
n = ∆+ 1, gives the second lower bound of both (i) and (ii).

Let G consist of i disjoint copies of the star on ∆ + 1 vertices, with the
center of each star arriving as the last vertex among the vertices of that par-
ticular star. Clearly, γ(G) = γC(G) = n/(∆ + 1). On the other hand, any
incremental dominating set has to contain every vertex, except the last vertex
of each star, since all these vertices are pairwise non-adjacent. In addition, any
incremental connected dominating set has to contain the centers of the stars
to preserve connectedness of the solution in each component. It follows that
for Dominating Set, Optinc selects n∆/(∆ + 1) vertices, and for Connected
Dominating Set, it selects all n vertices. ut

Proposition 12 For IDS on bipartite planar graphs, the following hold.

(i) On always-connected graphs, CRoff(Optinc) ≥ n− 1.
(ii) On bounded-degree graphs, CRoff(Optinc) ≥ ∆.

(iii) On always-connected bounded-degree graphs, CRoff(Optinc) ≥ ∆− 1.

Proof For (i), let G be a star, where the second vertex to arrive is the center
vertex. Clearly, γI(G) = 1. Since the first vertex is always selected by any
incremental algorithm, the center vertex cannot be selected. Consequently, all
n − 1 vertices of degree 1 have to be selected in the dominating set, which
proves the lower bound of the first part.

For (ii), note that the adversary can give any number of copies of G.
For (iii), note that the adversary can make arbitrarily many copies of G

and connect two consecutive copies by identifying two vertices of degree 1, one
from each copy. ut

Proposition 13 For IDS, CRoff(Optinc) ≤ ∆ ≤ n− 1

Proof To prove the upper bound of ∆, consider any graph, G, with maximum
degree ∆, and let S = {s1, . . . , sk} be an independent dominating set of G of
size k = γI(G).

Let R1, . . . , Rk be a partition of V such that all vertices in Ri are dom-
inated by si. Let R′i = Ri \ {si} and note that R′1, . . . , R

′
k is a partition of

V \ {s1, . . . , sk}. For each i, the vertex si can be in an independent dom-

inating set D only if R′i ∩ D = ∅. Thus, |D| ≤
∑k
i=1 max{|{si}|, |R′i|} =∑k

i=1 max{1, |R′i|}, and |D|/|S| is bounded by the maximum possible size of
R′i, which is ∆. Since ∆ ≤ n − 1 for all simple graphs, this concludes the
proof. ut



24 Boyar, Eidenbenz, Favrholdt, Kotrbč́ık, Larsen

Lemma 6 For any positive integer n ≥ 3 and Pn given in the standard order,

Optinc(Pn) = dn/2e and Optinc
C (Pn) = Optinc

T (Pn) = n− 1 .

Proof The result for Optinc follows from Lemma 5(iii) and the fact that se-
lecting the vertices with odd index results in an incremental dominating set.

For Optinc
C , note that v1 must be selected and hence, each vi, 2 ≤ i ≤ n−1,

must be selected no later than when vi+1 arrives.
The result on Optinc

T follows from Lemma 2 and the result on Optinc
C . ut

A fan of degree ∆ is the graph obtained from a path P∆ by addition of
a vertex v that is adjacent to all vertices of the path, as in Figure 2. The
adversarial order of a fan is defined by the standard order of the underlying
path, followed by the vertex v.

Figure 2 A fan of degree 4 (Proposition 14).

Proposition 14 For always-connected planar graphs, the following hold.

(i) For DS, CRoff(Optinc) ≥ n/2.
(ii) For CDS, CRoff(Optinc) ≥ n− 2.

(iii) For TDS, CRoff(Optinc) ≥ n/2− 1.

Proof LetG be a fan of degree∆ = n−1, where n is even, given in the adversar-
ial order. By Lemma 6, Optinc(G) = n/2 and Optinc

C (G) = Optinc
T (G) = n−2.

Furthermore, γ(G) = γC(G) = 1, and γT (G) = 2, since vn forms a connected
dominating set of size 1, and {v1, vn} is a total dominating set of size 2. This
proves (i)–(iii). ut

An alternating fan with k fans of degree ∆ consists of k copies of the
fan of degree ∆, where the individual copies are joined in a path-like manner
by identifying some of the vertices of degree 2, as in Figure 3. Thus, n =
k(∆+ 1)− (k− 1) and k = (n− 1)/∆. The adversarial order of an alternating
fan is defined by the concatenation of the adversarial orders of the underlying
fans.

A bridge of degree ∆ with k sections is obtained from a path of k(∆−2) ver-
tices v1, v2, . . . , vk(∆−2), in that order, together with k vertices u1, u2, . . . , uk.
For 1 ≤ i ≤ k, ui is connected to the ∆− 2 vertices

v(i−1)(∆−2)+1, v(i−1)(∆−2)+2, . . . , vi(∆−2),

and for 1 ≤ i ≤ k − 1, ui is connected to ui+1. See Figure 4 for an example.
The adversarial order of a bridge of degree ∆ with k sections is v1, v2, . . . ,
vk(∆−2), u1, u2, . . . , uk.



Online Dominating Set 25

Figure 3 An alternating fan with 3 fans of degree 4 (Proposition 15(i)).

Figure 4 A bridge of degree 6 with 4 sections (Proposition 15(ii)).

For even k, a modular bridge of degree ∆ with k sections is the same as a
bridge of degree ∆−1 with k sections, except that for even i, the edge between
ui and ui+1 is not present.

Figure 5 A modular bridge of degree 5 with 4 sections (Proposition 15(iii)).

Proposition 15 For always-connected bounded-degree planar graphs, the fol-
lowing hold.

(i) For DS, CRoff(Optinc) ≥ (∆− 1)/2.
(ii) For CDS, CRoff(Optinc) ≥ ∆− 2.

(iii) For TDS, CRoff(Optinc) ≥ ∆− 1.

Proof For (i), let G be an alternating fan with k fans of degree ∆, for any ∆ ≥
4, given in the adversarial order. We prove that Optinc(G) > n(∆− 1)/(2∆)
and γ(G) ≤ (n−1)/∆. Starting with the latter, a fan consists of ∆+1 vertices,
but the fans share one vertex, so a new one starts every ∆ vertices, except for
the final vertex which accounts for the −1. For the former claim, in Figure 3,
the vertices belonging to a dominating set of size k = (n − 1)/∆ are filled
in (black). Since, by Lemma 6, any incremental dominating set on a path P
in the standard order has at least d|V (P )|/2e vertices, Optinc must select at
least d(n − k)/2e vertices of G. Inserting k = (n − 1)/∆ into (n − k)/2 gives
(n(∆− 1) + 1)/(2∆), resulting in a ratio larger than (∆− 1)/2.

For (ii), let G be a bridge of degree ∆ with k sections, given in the ad-
versarial order, and let m = k(∆ − 2). By Lemma 6, we have Optinc(G) ≥
Optinc(Pm) = k(∆− 2)− 1. The last k vertices form a connected dominating
set of G and, thus, γC(G) ≤ k.



26 Boyar, Eidenbenz, Favrholdt, Kotrbč́ık, Larsen

For (iii), let G be a modular bridge of degree ∆ with k sections given in
the adversarial order. Let m = k(∆− 1). By Lemma 6, we have Optinc(G) ≥
Optinc(Pm) = k(∆− 1)− 1. Clearly, γT (G) ≤ k, and the result follows. ut

For any n ≥ 2, a two-sided fan of size n is the graph obtained from a
path on n − 2 vertices by attaching two additional vertices, one to the even-
numbered vertices of the path and the other to the odd-numbered vertices of
the path. The two additional vertices are connected by an edge. An adversarial
order of a two-sided fan is defined by the standard order of the path, followed
by the two additional vertices in any order. See Figure 6 for an illustration of
a two-sided fan of size 10.

Figure 6 A two-sided fan of size 10 (Proposition 16).

Proposition 16 For both CDS and TDS on always-connected bipartite planar
graphs, we have CRoff(Optinc) ≥ (n− 3)/2.

Proof Let Gn be a two-sided fan of size n, given in an adversarial order.
It suffices to prove that Optinc

C (Gn) = Optinc
T (Gn) = n − 3 and γ(Gn) =

γC(Gn) = γT (Gn) = 2. This is straightforward from the facts that the first
n − 2 vertices of G induce a path and any incremental connected or total
dominating set on Pn−2 given in the standard order has size at least n−3. ut

5 Conclusion and Open Problems

Online algorithms for four variants of the dominating set problem are analyzed
using competitive analysis comparing to Optinc and Optoff, two reasonable
alternatives for the optimal algorithm having knowledge of the entire input.
Several graph classes are considered, and tight results are obtained in most
cases.

The difference between Optinc and Optoff is that Optinc is required to
maintain an incremental solution (as any online algorithm), while Optoff is
only required to produce a solution for the final graph. The online algorithms
are compared to both Optinc and Optoff, and Optinc is compared to Optoff,
in order to investigate why all online algorithms tend to perform poorly against
Optoff. Is this due only to the requirement to be incremental, or is it more
generally because of the lack of knowledge of the future?

Inspecting the results in the tables, perhaps the most striking conclusion is
that the competitive ratios of any online algorithm and Optinc, respectively,



Online Dominating Set 27

against Optoff, are almost identical. This indicates that the requirement to
maintain an incremental dominating set is a severe restriction, which can be
offset by the full knowledge of the input only to a very small extent. On
the other hand, when we restrict our attention to online algorithms against
Optinc, it turns out that the handicap of not knowing the future still presents
a barrier, leading to competitive ratios of the order of n or ∆ in most cases.

One could reconsider the nature of the irrevocable decisions, which origi-
nally stemmed from practical applications. Which assumptions on irrevocabil-
ity are relevant for practical applications, and which irrevocability components
make the problem hard from an online perspective? We expect that these con-
siderations will apply to many other online problems as well.

There is relatively little difference observed between three of the variants of
Dominating Set considered: Dominating Set, Connected Dominating Set, and
Total Dominating Set. In fact, the results for Total Dominating Set generally
followed directly from those for Connected Dominating Set as a consequence
of Lemma 2. The results for Independent Dominating Set were significantly
different from the others. It can be viewed as the minimum maximal inde-
pendent set problem since any maximal independent set is a dominating set.
This problem has been studied in the context of investigating the performance
of the greedy algorithm for the independent set problem. In fact, the unique
incremental independent dominating set is the set produced by the greedy
algorithm for independent set.

In yet another orthogonal dimension, we compare the results for various
graph classes. Dominating Set is a special case of Set Cover and is notoriously
difficult in classical complexity, being NP-hard [16], W [2]-hard [10], and not
approximable within c log n for any constant c on general graphs [12]. On the
positive side, on planar graphs, the problem is FPT [1] and admits a PTAS [2],
and it is approximable within log∆ on bounded-degree graphs [8]. On the
other hand, the relationship between the performance of online algorithms
and structural properties of graphs is not particularly well understood. In
particular, there are problems where the absence of knowledge of the future
is irrelevant; examples of such problems in this work are CDS and TDS on
trees, and IDS on any graph class. As expected, for bounded-degree graphs,
the competitive ratios are of the order of ∆, but closing the gap between
∆/2 and ∆ seems to require additional ideas. On the other hand, for planar
graphs, the problem, rather surprisingly, seems to be as difficult as the general
case when compared to Optoff. When online algorithms for planar graphs are
compared to Optinc, we suspect there might be an algorithm with constant
competitive ratio. At the same time, this case is the most notable open problem
directly related to our results. Drawing inspiration from classical complexity,
one may want to eventually consider more specific graph classes in the quest for
understanding exactly what structural properties make the problem solvable.
From this perspective, our consideration of planar, bipartite, and bounded-
degree graphs is a natural first step.



28 Boyar, Eidenbenz, Favrholdt, Kotrbč́ık, Larsen

Acknowledgment

The authors would like to thank an anonymous referee for constructive sug-
gestions.

References

1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter
algorithms for dominating set and related problems on planar graphs. Algorithmica
33(4), 461–493 (2002)

2. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs.
Journal of the ACM 41(1), 153–180 (1994)

3. Berge, C.: Theory of Graphs and its Applications. Meuthen, London (1962)
4. Böhm, M., Sgall, J., Veselý, P.: Online colored bin packing. In: E. Bampis, O. Svensson

(eds.) 12th International Workshop on Approximation and Online Algorithms (WAOA),
Lecture Notes in Computer Science, vol. 8952, pp. 35–46. Springer (2015)

5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge
University Press (1998)

6. Boyar, J., Larsen, K.S.: The seat reservation problem. Algorithmica 25(4), 403–417
(1999)

7. Chrobak, M., Sgall, J., Woeginger, G.J.: Two-bounded-space bin packing revisited. In:
C. Demetrescu, M.M. Halldórsson (eds.) 19th Annual European Symposium (ESA),
Lecture Notes in Computer Science, vol. 6942, pp. 263–274. Springer (2011)

8. Chvátal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations
Research 4(3), 233–235 (1979)

9. Das, B., Bharghavan, V.: Routing in ad-hoc networks using minimum connected dom-
inating sets. In: IEEE International Conference on Communications (ICC), vol. 1, pp.
376–380 (1997)

10. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: Basic
results. SIAM Journal on Computing 24(4), 873–921 (1995)

11. Du, D.Z., Wan, P.J.: Connected Dominating Set: Theory and Applications. Springer,
New York (2013)

12. Feige, U.: A threshold of lnn for approximating set cover. Journal of the ACM 45(4),
634–652 (1998)

13. Haynes, T.W., Hedetniemi, S., Slater, P.: Fundamentals of Domination in Graphs. Mar-
cel Dekker, New York (1998)

14. Henning, M., Yao, A.: Total Domination in Graphs. Springer, New York (2013)
15. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy caching.

Algorithmica 3, 79–119 (1988)
16. Karp, R.M.: Reducibility among combinatorial problems. In: R.E. Miller, J.W. Thatcher

(eds.) Complexity of Computer Computations, The IBM Research Symposia Series, pp.
85–103. Plenum Press, New York (1972)

17. King, G.H., Tzeng, W.G.: On-line algorithms for the dominating set problem. Informa-
tion Processing Letters 61(1), 11–14 (1997)

18. König, D.: Theorie der Endlichen und Unendlichen Graphen. Chelsea, New York (1950)
19. Liu, C.L.: Introduction to Combinatorial Mathematics. McGraw-Hill, New York (1968)
20. Ore, O.: Theory of Graphs, Colloquium Publications, vol. 38. American Mathematical

Society, Providence (1962)
21. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Com-

munications of the ACM 28(2), 202–208 (1985)


