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Abstract. Though competitive analysis is often a very good tool for the
analysis of online algorithms, sometimes it does not give any insight and
sometimes it gives counter-intuitive results. Much work has gone into
exploring other performance measures, in particular targeted at what
seems to be the core problem with competitive analysis: the comparison
of the performance of an online algorithm is made to a too powerful
adversary. We consider a new approach to restricting the power of the
adversary, by requiring that when judging a given online algorithm, the
optimal offline algorithm must perform as well as the online algorithm,
not just on the entire final request sequence, but also on any prefix
of that sequence. This is limiting the adversary’s usual advantage of
being able to exploit that it knows the sequence is continuing beyond
the current request. Through a collection of online problems, including
machine scheduling, bin packing, dual bin packing, and seat reservation,
we investigate the significance of this particular offline advantage.

1 Introduction

An online problem is an optimization problem where requests from a request
sequence I are given one at a time, and for each request an irrevocable decision
must be made for that request before the next request is revealed. For a min-
imization problem, the goal is to minimize some cost function, and if Alg is
an online algorithm, we let Alg(I) denote this cost on the request sequence I.
Similarly, for a maximization problem, the goal is to maximize some value func-
tion (a.k.a. profit), and if Alg is an online algorithm, we let Alg(I) denote this
value on the request sequence I.

1.1 Performance Measures

Competitive analysis [34, 27] is the most common tool for comparing online algo-
rithms. For a minimization problem, an online algorithm is c-competitive if there
exists a constant α such that for all input sequences I, Alg(I) ≤ cOpt(I) + α.
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Here, Opt denotes an optimal offline algorithm. The (asymptotic) competitive
ratio of Alg is the infimum over all such c. Similarly, for a maximization prob-
lem, an online algorithm is c-competitive if there exists a constant α such that for
all input sequences I, Alg(I) ≥ cOpt(I)− α. Again, Opt denotes an optimal
offline algorithm. The (asymptotic) competitive ratio of Alg is the supremum
over all such c. In both cases, if the inequality can be established using α = 0,
we refer to the result as being strict (some authors use the terms absolute or
strong). Note that for maximization problems, we use the convention of compet-
itive ratios smaller than 1.

For many online problems, competitive analysis gives useful and meaningful
results. However, researchers also realized from the very beginning that this is not
always the case: Sometimes competitive analysis does not give any insight and
sometimes it even gives counter-intuitive results, in that it points to the worse of
two algorithms as the better one. A recent list of examples with references can be
found in [21]. Much work has gone into exploring other performance measures,
in particular targeted at what seems to be the core problem with competitive
analysis that the comparison of the performance of an online algorithm is made
to a too powerful adversary, controlling an optimal offline algorithm.

Four main techniques for addressing this have been employed, sometimes
in combination. We discuss these ideas below. No chronological order is im-
plied by the order the techniques are presented in. First, one could completely
eliminate the optimal offline algorithm by comparing algorithms to each other
directly. Measures taking this approach include max/max analysis [8], relative
worst order analysis [12], bijective and average analysis [3], and relative interval
analysis [20]. Second, one could limit the resources of the optimal offline algo-
rithm, or correspondingly increase the resources of the online algorithm, as is
done in extra resource analysis [31, 34]. Thus, the offline algorithm’s knowledge
of the future is counter-acted by requiring that it solves a harder version of the
problem than the online algorithm. Alternatively, the online algorithm could be
given limited knowledge of the future in terms of some form of look-ahead, as has
been done for paging. In those set-ups, one assumes that the online algorithm
can see a fixed number ℓ of future requests, though it varies whether it is simply
the next ℓ requests, or, for instance, the next ℓ expensive requests [36], the next
ℓ new requests [16], or the next ℓ distinct requests [1]. Third, one could limit
the adversary’s control over exactly which sequence is being used to give the
bound by grouping sequences and/or considering the expected value over some
set as has been done with the statistical adversary [33], diffuse adversary [30],
random order analysis [29], worst order analysis [12], Markov model [28], and
distributional adversary [25].

Finally, one could limit the adversary’s choice of sequences it is allowed to
present to the online algorithm. An early approach to this, which at the same
time addressed issues of locality of reference, was the access graph model [9],
where a graph defines which requests are allowed to follow each other. Another
locality of reference approach was taken in [2], limiting the maximum number
of different requests allowed within some fixed-sized sliding window. Both of
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these models were targeted at the paging problem, and the techniques are not
meant to be generally applicable to online algorithm analysis. A resource-based
approach is taken in [14], where only sequences that could be fully accommo-
dated given some resource are considered, eliminating some pathological worst-
case sequences. A generalization of this, where the competitive ratio is found
in the limit, appears in [15, 13]. All of these approaches are aimed at removing
pathological sequences from consideration such that the worst-case (or, in prin-
ciple, expected case) behavior is taken over a smaller and more realistic set of
sequences, thereby obtaining results corresponding better with observed behav-
ior in practice. A similar concept for scheduling problems is the “known-Opt”
model, where the cost of an optimal offline solution is known in advance [6].
Finally, loose competitive analysis [37] allows for a a set of sequences, asymptot-
ically smaller than the whole infinite set of input sequences, to be disregarded,
while the remaining sequences should either be c-competitive or have small cost.
In this way, infrequent pathological as well as unimportant (due to low cost)
sequences can be eliminated.

1.2 Online Bounded Analysis

Much work can be done in all of these four categories. In this paper, we consider
a new approach to restricting the power of the adversary that does not really
fit into any of the known categories. Given an online algorithm, we require that
the optimal offline algorithm perform as well as the online algorithm, not just
on the entire final request sequence, but also on any prefix of that sequence. In
essence, this is limiting the adversary’s usual advantage of being able to exploit
that it knows the sequence is continuing beyond the current request, without
completely eliminating this advantage. Since the core of the problem of the
adversary’s strength is its knowledge of the future, is seems natural to try to
limit that advantage directly.

This new measure is generally applicable to online problems, since it is only
based on the objective function. Comparing with other measures, it is a new
element that the behavioral restriction imposed on the optimal offline algorithm
is determined by the online algorithm, which is the reason we name this tech-
nique online bounded analysis. It is adaptive in the sense that online algorithms
attempting non-optimal behavior face increasingly harder conditions from the
adversary the farther the online algorithm goes in the direction of non-optimality
(on prefixes). The measure judges greediness more positively than does competi-
tive analysis, since making greedy choices limits the adversary’s options more, so
the focus shifts towards the quality of a range of greedy or near-greedy decisions.

Behavioral restrictions on the optimal offline algorithm have been seen before,
as in [17], where it is used as a tool to arrive at the final result. Here they first
show a O(1)-competitive result against an offline algorithm restricted to, among
other things, using shortest remaining processing time for job selection. Later
they show that this gives rise to a schedule at most three times as bad as for an
unrestricted offline algorithm. Thus, the end goal is the usual competitive ratio,
and the restriction employed in the process is problem specific.
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1.3 Our New Measure

If I is an input sequence for some optimization problem and A is a deterministic
online algorithm for this problem, we let A(I) denote the objective function
value returned by A on the input sequence I.

We let OptA denote the offline algorithm which is optimal under the re-
striction that it can never be worse than A on any prefix of an input sequence,
i.e., for all sequences I, and all prefixes I ′ of I, for a minimization problem
OptA(I

′) ≤ A(I ′) (for a maximization problem, OptA(I
′) ≥ A(I ′)), and no

algorithm with that property is strictly better than OptA on any sequence. We
say that OptA is the online bounded optimal solution (for A).

For a minimization problem, if for some constant, c, it holds for all sequences I
that A(I) ≤ cOptA(I), then we say that A has an online bounded ratio of at
most c. The online bounded ratio of A is the infimum over all such c. Similarly,
for a maximization problem, if for some constant, c, it holds for all sequences I
that A(I) ≥ cOptA(I), then we say that A has an online bounded ratio of at
least c. The online bounded ratio of A is the supremum over all such c. Note that
we use the convention that an online bounded ratio for a minimization problem
is at least 1, while this ratio for a maximization problem is at most 1.

1.4 Results

Through a collection of online problems, including machine scheduling, bin pack-
ing, dual bin packing, and seat reservation, we investigate the workings of online
bounded analysis. As is apparent from the large collection of measures that have
been defined, there is not any one measure which is best for everything. With
our approach, we try to learn more about the nature of online problems, greedi-
ness, and robustness. As a first approach, we study this new idea in the simplest
possible setting, but many measures combine ideas, so in future work, it would
be natural to investigate this basic idea in combination with elements from other
measures.

First, we observe that some results from competitive analysis carry over.
Then we note that some problem characteristics imply that a greedy algorithm
is optimal.

For machine scheduling, we obtain the following results. For minimizing
makespan onm ≥ 2 identical machines, we get an online bounded ratio of 2− 1

m−1

for Greedy. Though this is smaller than the competitive ratio of 2− 1

m [26], it
is a comparable result, demonstrating that non-greedy behavior is not the key
to the adversary performing better by a factor close to two for large m. For two
uniformly related machines, we prove that Greedy has online bounded ratio
1. This is consistent with competitive ratio results, where Greedy has been
proven optimal [24, 18]. For the case where the faster machine is at least φ (the
golden ratio) times faster than the slower machine, competitive analysis finds
that Greedy and Fast, the algorithm that only uses the faster machine, are
equally good. Using relative worst order analysis, Greedy is deemed the bet-
ter algorithm [23], which seems reasonable since Greedy is never worse on any



Online Bounded Analysis 5

sequence than Fast, and sometimes better. We also obtain this positive distinc-
tion, establishing the online bounded ratios 1 and s+1

s (if the faster machine is
s times faster than the slower one) for Greedy and Fast, respectively.

For the Santa Claus machine scheduling problem [7], we prove that Greedy

is optimal for identical machines with respect to the online bounded ratio. For
two related machines with speed ratio s, we present an algorithm with an online
bounded ratio better than 1

s and show that no online algorithm has a higher
online bounded ratio. For this problem, it is known that the best possible com-
petitive ratio for identical machines is 1

m , and the best possible competitive ratio
for two related machines is 1

s+1
[35, 5, 22].

For classic bin packing, we show that any Any-Fit algorithm has an online
bounded ratio of at least 3

2
. We observe that for bin covering, the best online

bounded ratio is equal to the best competitive ratio [19]. For these problems,
asymptotic measures are used. We show a connection between results concerning
the competitive ratio on accommodating sequences and the online bounded ratio.
For dual bin packing (namely, the multiple knapsack problem with equal capacity
knapsacks and unit weights items), we show that the online bounded ratio is the
same as the competitive ratio on accommodating sequences (that is, sequences
where Opt packs all items) for a large class of algorithms including First-Fit,
Best-Fit, and Worst-Fit. It then follows from results in [13] that any algorithm
in this class has an online bounded ratio of at least 1

2
. Furthermore, the online

bounded ratio of First-Fit and Best-Fit is 5

8
, and that of Worst-Fit is 1

2
. We

also note that, for any dual bin packing algorithm, an upper bound on the
competitive ratio on accommodating sequences is also an upper bound on the
online bounded ratio. Using a result from [13], this implies that any (possibly
randomized) algorithm has an online bounded ratio of at most 6

7
.

For seat reservation, we have preliminary results, and conjecture that results
are similar to machine scheduling for identical machines, in that ratios similar
to but slightly better than those obtained using competitive analysis can be
established.

We found that the new measure sometimes leads to the same results as the
standard competitive ratio, and in some cases it leads to a competitive ratio of 1.
However, there are problem variants for which we obtain an intermediate value,
which confirms the relevance of our approach.

The proofs which have been omitted can be found in the full paper [10].

2 Online Bounded Analysis

Before considering concrete problems, we discuss some generic properties.

2.1 Measure Properties

The online bounded ratio of an algorithm is never further away from 1 than the
competitive ratio, since the online algorithm’s performance is being compared
to a (possibly) restricted “optimal” algorithm.
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Since algorithms are compared with different optimal algorithms, one might
be concerned that two algorithms, A and O, could have online bounded ratio 1,
and yet one algorithm could do better on some sequences than the other. This
is not possible. To see this, consider some sequence I and assume that A does
better than O on I, yet both algorithms have online bounded ratio 1.

If their online bounded ratio is 1, there is no point where one algorithm
makes a decision which changes the objective value more than the other does,
since the adversary could end the sequence there and the one algorithm would
not have online bounded ratio 1. Thus, both algorithms have the same objective
function value at all points, so they always compete against the same adversary.
If algorithm A performs better than algorithm O on I, then algorithm O does
not have online bounded ratio 1.

For some problems, such as paging, OptA is the same as Opt under com-
petitive analysis for all algorithms A, because Opt’s behavior on any sequence
is also optimal on any prefix of that sequence. Thus, the competitive analysis
results for paging and similar problems also hold with this measure, giving the
same online bounded ratio as competitive ratio.

2.2 Greedy is Sometimes Optimal

It is sometimes the case that there is one natural greedy algorithm that always
has a unique greedy choice in each step. In such situations, the greedy algorithm
is optimal with respect to this measure, having online bounded ratio 1. For
example, consider the weighted matching in a graph where the edges arrive
in an online fashion (the edge-arrival model) and the algorithm in each step
decides if the current edge is added to the matching or discarded. Here, the
greedy algorithm, denoted by Greedy, adds the current edge if adding the edge
will keep the solution feasible (that is, its two end-vertices are still exposed by
the matching that the algorithm created so far) and the weight of the edge is
strictly positive. Note that indeed the online bounded ratio of Greedy is 1, as
the solution constructed by OptGreedy must coincide with the solution created
by Greedy. The last claim follows by a trivial induction on the number of edges
considered so far by both Greedy and OptGreedy. If Greedy adds the current
edge, then by the definition of OptGreedy, we conclude that OptGreedy adds
the current edge. If Greedy discards the current edge because at least one of
its end-vertices is matched, then OptGreedy cannot add the current edge either
(using the induction assumption). Last, if Greedy discards the current edge
since its weight is non-positive, then we can remove the edge from the bounded
optimal solution, OptGreedy, if it was added (removing it from OptGreedy will
not affect the future behavior of OptGreedy since OptGreedy must accept an
edge whenever Greedy does). Similar proofs hold in other cases when there
is a unique greedy choice for Opt in each step. Note that for the weighted
matching problem where vertices arrive in an online fashion and when a vertex
arrives the edge set connecting this vertex to earlier vertices is revealed with
their weights (the vertex-arrival model), the standard lower bound for weighted
matching holds as can be seen in the following lower bound construction. The
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first three vertices arrive in the order 1, 2, 3 and when vertex 3 arrives, two edges
{1, 3}, {2, 3} are revealed each of which has weight of 1 (vertices 1 and 2 are not
connected). At this point, an online algorithm with a finite online bounded ratio
must add one of these edges to the matching. Then, either 1 or 2 are matched
in the current solution, and in the last step, vertex 4 arrives with an edge of
weight M connecting 4 to the vertex among 1 and 2 that was matched by the
algorithm. Observe that when vertex 3 arrives, the algorithm adds an edge to
the matching while the bounded optimal solution can add the other edge, and
this will allow the bounded optimal solution to add the last edge as well.

The argument for the optimality of Greedy for the weighted matching
problem in the edge-arrival model clearly holds if all weights are 1 also. This
unweighted matching problem in the edge-arrival model is an example of a max-
imization problem in the online complexity class Asymmetric Online Covering
(AOC) [11]:

Definition 1. An online accept-reject problem, P , is in Asymmetric Online
Covering (AOC) if, for the set Y of requests accepted:

For minimization (maximization) problems, the objective value of Y is |Y |
if Y is feasible and ∞ (−∞) otherwise, and any superset (subset) of a feasible
solution is feasible.

For all maximization problems in the class AOC, there is an obvious greedy
algorithm,Greedy, which accepts a request whenever acceptance maintains fea-
sibility. The argument above showing that the online bounded ratio of Greedy

is 1 for the weighted matching problem in the edge-arrival model generalizes to
all maximization problems in AOC.

Theorem 1. For any maximization problem in AOC, the online bounded ratio
of Greedy is 1. Thus, Greedy is optimal according to online bounded analysis
for Online Independent Set in the vertex-arrival model, Unweighted Matching in
the edge-arrival model, and Online Disjoint Path Allocation where requests are
paths.

Note that this does not hold for all minimization problems in AOC. For
example, Cycle Finding in the vertex-arrival model, the problem of accepting
as few vertices as possible, but accepting enough so that there is a cycle in the
induced subgraph accepted, is AOC-Complete. However, consider the first vertex
requested in a graph with only one cycle. Greedy is forced to accept it, since
the vertex could be part of the unique cycle, but OptGreedy will reject the vertex
if it is not in that cycle.

However, there are online bounded optimal greedy algorithms for minimiza-
tion problems in AOC, such as Vertex Cover, which are complements of maxi-
mization problems in AOC (Independent Set in the case of Vertex Cover). By
complement, we mean that set S is a maximal feasible set in the maximiza-
tion problem if and only if the requests not in S are a feasible solution for
the minimization problem. The greedy algorithm in the case of these minimiza-
tion problems would be the algorithm that accepts exactly those requests that
Greedy for the complementary maximization problem rejects.
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3 Machine Scheduling: Makespan

We consider the load balancing problem of minimizing makespan for online job
scheduling on m identical machines without preemption, and analyze the classic
greedy algorithm (also known as list scheduling). At any point, Greedy sched-
ules the next job on a least loaded machine. Since the machines are identical,
ties can be resolved arbitrarily without loss of generality. It is known that the
competitive ratio of Greedy is 2 − 1

m [26]. With the more restricted optimal
algorithm, we get a smaller value of 2 − 1

m−1
as the online bounded ratio of

Greedy.

Lemma 1. For the problem of minimizing makespan for online job scheduling
on m identical machines, Greedy has online bounded ratio of at most 2− 1

m−1
.

Proof. Consider a sequence I. Let j be the first job in I that is completed at the
final makespan of Greedy, and assume that it has size w. Let t and s be the
starting times of j in OptGreedy and Greedy, respectively, and let ℓ and ℓ′ be
the makespans of OptGreedy and Greedy, respectively, just before the arrival
of j. Let V denote the total size of the jobs in I just before j arrives.

We have the following inequalities: OptGreedy ≥ t + w and OptGreedy ≥ ℓ.
In addition, since, just before j arrived, the machine where OptGreedy placed j
had load t and the other machines had load at most ℓ, V ≤ t+ (m− 1)ℓ. Since
m− 1 ≥ 1, V ≤ (m− 1)(t+ ℓ).

Because Greedy placed j on its least loaded machines, all machines had load
at least s before j arrived. At least one machine had load ℓ′, so V ≥ (m−1)s+ℓ′.
By the definition of online bounded analysis, ℓ ≤ ℓ′. Thus, V ≥ (m − 1)s + ℓ.
Combining the upper and lower bounds on V gives (m−1)s ≤ (m−1)t+(m−2)ℓ
and s ≤ t+ m−2

m−1
ℓ. We now bound Greedy’s makespan:

Greedy(I) = s+ w = (s− t) + (t+ w)

≤
(

m−2

m−1

)

· ℓ+OptGreedy(I) ≤
(

2− 1

m−1

)

OptGreedy(I)

⊓⊔

Lemma 2. For the problem of minimizing makespan for online job scheduling
on m identical machines, Greedy has online bounded ratio of at least 2− 1

m−1
.

By Lemmas 1 and 2 we find the following.

Theorem 2. For the problem of minimizing makespan for online job scheduling
on m identical machines, Greedy has online bounded ratio 2− 1

m−1
.

Most interestingly, Theorem 2 establishes the existence of an online algo-
rithm, Greedy, for makespan minimization on two identical machines with an
online bounded ratio of 1. Next, we generalize this last result to the case of two
uniformly related machines. Note that for two uniformly related machines we
can assume that machine number 1 is strictly faster than machine number 2,
and the two speeds are s > 1 and 1.
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We define Greedy as the algorithm that assigns the current job to the
machine such that adding the job there results in a solution of a smaller makespan
breaking ties in favor of assigning the job to the slower machine (that is, to
machine number 2). If an algorithm breaks ties in favor of assigning the job
to the faster machine (let this algorithm be called Greedy

′), then its online
bounded ratio is strictly above 1, as the following example implies. The first job
has size s − 1 (and it is assigned to machine 1), and the second job has size 1
(and assigning it to any machine will result in the current makespan 1). The first
job must be assigned to machine 1 by OptGreedy′ , and it assigns the second job
to the second machine. A third job of size s+ 1 arrives. This job is assigned to
the first machine by OptGreedy′ , obtaining a makespan of 2. Greedy

′ will have
a makespan of at least min{2 + 1/s, s+ 1} > 2 as s > 1.

Theorem 3. For the problem of minimizing makespan for online job scheduling
on two uniformly related machines, Greedy has online bounded ratio 1.

We now consider the algorithm Fast that simply schedules all jobs on the
faster machine. In contrast to Greedy, Fast does not have an online bounded
ratio of 1. This also contrasts with competitive analysis, since Fast has an

optimal competitive ratio for s ≥ φ, where φ = 1+
√
5

2
≈ 1.618.

Theorem 4. For two related machines with speed ratio s, Fast has an online
bounded ratio of s+1

s .

By Theorem 2, the result of Theorem 3 cannot be extended to three or more
identical machines for Greedy. We conclude this section by proving that such
a generalization is impossible, not only for Greedy, but for any deterministic
online algorithm.

Theorem 5. Let m ≥ 3. For the problem of minimizing makespan for online
job scheduling on m identical machines, any deterministic online algorithm A
has online bounded ratio of at least 4

3
.

An obvious next step would be to try to match the general lower bound
of 4

3
by designing an algorithm that places each job on the most loaded machine

where the bound of 4

3
would not be violated. However, even form = 3, this would

not work, as seen by the input sequence I = 〈 3
4
, 1

4
, 5

12
, 1

6
, 7

12
, 5

6
〉. The algorithm

would combine the first two jobs on one machine and the following two on
another machine. Since the optimal makespan at this point is 3

4
, the algorithm

will schedule the fifth job on the third machine. When the last job arrives, all
machines have a load of at least 7

12
, resulting in a makespan of 17

12
> 1.4. Note

that I can be scheduled such that each machine has a load of exactly 1. Since the
algorithm has a makespan of 1 already after the second job, the online bounded
restriction is actually no restriction on Opt for this sequence.
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4 Machine Scheduling: Santa Claus

In contrast to makespan, the objective in Santa Claus scheduling is to maximize
the minimum load. Traditionally, the algorithmGreedy for this problem assigns
any new job to a machine achieving a minimum load in the schedule that was
created up to the time just before the job is added to the solution (breaking ties
arbitrarily). For identical machines, this algorithm is equivalent to the greedy
algorithm for makespan minimization. Unlike the makespan minimization prob-
lem, where this algorithm has online bounded ratio of 1 only for two identical
machines, here we show that Greedy has an online bounded ratio of 1 for any
number of identical machines.

Theorem 6. For the Santa Claus problem on m identical machines, Greedy

has online bounded ratio 1.

Proof. Let a configuration be a multi-set of the current loads on all of the
machines, i.e., without any annotation of which machine is which. As long as
OptGreedy also assigns each job to a machine with minimum load, the configu-
rations of Greedy and OptGreedy are identical.

Consider the first time OptGreedy does something different from Greedy.
If, when that job j arrives, there is a unique machine with minimum load,
OptGreedy would have a worse objective value than Greedy after placing j,
so, by definition of online bounded analysis, this cannot happen. Now consider
the situation where k ≥ 2 machines have minimum load. Then, after process-
ing j, Greedy has k − 1 machines with minimum load, whereas OptGreedy

has k. In that case, no more than k − 2 further jobs can be given. This is seen
as follows: If k − 1 jobs were given, Greedy would place one on each of its
k − 1 machines with minimum load, and, thus, raise the minimum. OptGreedy,
on the other hand, would not be able to raise (at this step) the minimum of all
of its k machines with minimum load, and would therefore not be optimal; a
contradiction.

Thus, OptGreedy can only have a different configuration than Greedy after
Greedy (and OptGreedy) have obtained their final (and identical) objective
value, and so, the online bounded ratio of Greedy is 1. ⊓⊔

Next, we show that unlike the makespan minimization problem, for which
there is an online algorithm with online bounded ratio of 1 even for the case of
two uniformly related machines (Theorem 3), such a result is impossible for the
Santa Claus problem on two uniformly related machines.

Theorem 7. For the Santa Claus problem on two uniformly related machines
with speed ratio s, no deterministic online algorithm has an online bounded ratio
larger than 1

s .

Proof. For any online algorithm A, we consider a setting of two uniformly related
machines with speeds 1 and s. The input consists of exactly two jobs. After the
first job is assigned by A, the objective function value remains zero, and only if
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the algorithm assigns the two jobs to distinct machines, will it have a positive
objective function value. Thus, when there are only two jobs, OptA is simply
the optimal solution for the instance. The first job is of size 1. If A assigns the
job to the machine of speed s, then the next job is of size s. At this point OptA

has value 1 (by assigning the first job to the slower machine and the second to
the faster machine), but A has either zero value (if both jobs are assigned to the
faster machine) or a value of 1

s . In the second case where A assigns the first job
(of size 1) to the slower machine of speed 1, the second job has size 1

s . At this
point OptA has value 1

s (by assigning the first job to the faster machine and
the second to the slower machine), but A has either zero value (if both jobs are

assigned to the slower machine) or a value of 1/s
s . ⊓⊔

Interestingly, the online bounded ratio of the following simple algorithm
matches this bound. The algorithm G assigns each job to the least loaded ma-
chine. While for identical machines, this algorithm and Greedy are equivalent,
for related machines this is not the case. The same algorithm is the one that
achieves the best possible competitive ratio 1

s+1
[22].

Theorem 8. For the Santa Claus problem on two uniformly related machines
with speed ratio s, the online bounded ratio of G is 1

s .

5 Classic Bin Packing and Bin Covering

In classic bin packing, the input is a sequence of items of sizes s, 0 < s ≤ 1,
that should be packed in as few bins of size 1 as possible. We say that a bin is
open if at least one item has been placed in the bin. An Any-Fit algorithm is
an algorithm that never opens a new bin if the current item fits in a bin that is
already open. In this section, we use the asymptotic online bounded ratio. Thus,
we allow for an additive constant, exactly as with the asymptotic (non-strict)
competitive ratio.

Theorem 9. Any Any-Fit algorithm has an online bounded ratio of at least 3

2
.

In classic bin covering, the input is as in bin packing, and the goal is to assign
items to bins so as to maximize the number of bins whose total assigned size is
at least 1. For this problem, it is known that a simple greedy algorithm (which
assigns all items to the active bin until the total size assigned to it becomes 1
or larger, and then it moves to the next bin and defines it as active) has the
best possible competitive ratio 1

2
. The negative result [19] is proven using inputs

where the first batch of items consists of a large number of very small items, and
it is followed by a set of large identical items of sizes close to 1 (where the exact
size is selected based on the actions of the algorithm). The total size of the very
small items is strictly below 1, so as long as large items were not presented yet,
the value of any algorithm is zero. An optimal offline solution packs the very
small items such that packing every large item results in a bin whose contents
have a total size of exactly 1. Thus, no algorithm can perform better on any
prefix, and this construction shows that the online bounded ratio is at most 1

2
.
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6 Dual Bin Packing

As in the previous section, we use the asymptotic online bounded ratio here. Dual
bin packing is like the classic bin packing problem, except that there is only a
limited number, n, of bins and the goal is to pack as many items in these n bins
as possible. Known results concerning the competitive ratio on accommodating
sequences can be used to obtain results for the online bounded ratio.

In general, accommodating sequences [14, 15] are defined to be those se-
quences for which Opt does not get a better result by having more resources.
For the dual bin packing problem, accommodating sequences are sequences of
items that can be fully accommodated in the n bins, i.e., Opt packs all items.

We show that, for a large class of algorithms for dual bin packing containing
First-Fit and Best-Fit, the online bounded ratio is the same as the competitive
ratio on accommodating sequences. To show that this does not hold for all algo-
rithms, we also give an example of a 2

3
-competitive algorithm on accommodating

sequences that has an online bounded ratio of 0.
Dual bin packing is an example of a problem in a larger class of problems

which includes the seat reservation problem discussed below. A problem is an
accept/reject accommodating problem if algorithms can only accept or reject
requests, the goal is accept as many requests as possible, and the accommodating
sequences are those where Opt accepts all requests.

Theorem 10. For any online algorithm Alg for any accept/reject accommo-
dating problem, the competitive ratio of Alg on accommodating sequences is
equal to the online bounded ratio of Alg on accommodating sequences.

Note that this result applies to all algorithms for dual bin packing. Since any
accommodating sequence is also a valid adversarial sequence for the case with no
restrictions on the sequences, we obtain the following corollary of Theorem 10.

Corollary 1. For any online algorithm Alg for any accept/reject accommodat-
ing problem, any upper bound on the competitive ratio of Alg on accommodating
sequences is also an upper bound on the online bounded ratio of Alg.

A fair algorithm for dual bin packing is an algorithm that never rejects an
item that it could fit in a bin. A rejection-invariant algorithm is an algorithm
that does not change its behavior based on rejected items.

Theorem 11. For any fair, rejection-invariant dual bin packing algorithm Alg,
the online bounded ratio of Alg equals the competitive ratio of Alg on accom-
modating sequences.

One algorithm which is fair and rejection-invariant is First-Fit, which packs
each item in the first bin it fits in (and rejects it if no such bin exists). Another
example of a fair, rejection-invariant algorithm is Best-Fit, which packs each
item in a most full bin that can accommodate it. Worst-Fit is the algorithm
that packs each item in a most empty bin.
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Corollary 2. Best-Fit and First-Fit have online bounded ratios of 5

8
. Worst-Fit

has an online bounded ratio of 1

2
.

Corollary 3. Any fair, rejection-invariant dual bin packing algorithm has an
online bounded ratio of at least 1

2
. Any (possibly randomized) dual bin packing

algorithm has an online bounded ratio of at most 6

7
.

The algorithm Unfair-First-Fit (Uff) defined in [4] is designed to work well
on accommodating sequences. Whenever an item larger than 1

2
arrives, Uff

rejects the item unless it will bring the number of accepted items below 2

3
of the

total number of items that are accepted by an optimal solution of the prefix of
items given so far (for an accommodating sequence this is the number of items in
the prefix). The competitive ratio of Uff on accommodating sequences is 2

3
[4].

We show that, in contrast to Theorem 11, Uff has an online bounded ratio of 0.

Theorem 12. Unfair-First-Fit has an online bounded ratio of 0.

7 Unit Price Seat Reservation

Since even the unit price seat reservation problem has a terrible competitive
ratio, depending on the number of stations, this problem has often been studied
using the competitive ratio on accommodating sequences, which for the seat
reservation problem restricts the input sequences considered to those where Opt

could have accepted all of the requests. By Theorem 10, for accommodating
sequences, the competitive ratio and the online bounded ratio are identical.

The unit price seat reservation problem has competitive ratio Θ(1/k), where
k is the number of stations. This does not change for the online bounded ratio,
even though, both the original proof, showing that no deterministic fair online
algorithm (that does not reject an interval if it is possible to accept it) for the
unit price problem is more than 8

k+5
-competitive [14], and the proof improving

this to 4

k−2
√
k−1+4

[32], used an optimal offline algorithm which rejected some

requests before the online algorithm did. The main ideas in these proofs was
that the adversary could give small request intervals which Opt could place
differently from the algorithm, allowing it to reject some long intervals and still
be fair. Rejecting long intervals allowed it to accept many short intervals which
the algorithm was forced to reject. By using small intervals involving only the
last few stations, one can arrange that the online algorithm has to reject intervals
early. Then, giving nearly the same sequence as for the 8

k+5
bound, using two

fewer stations, Opt can still reject the same long intervals and do just as badly
asymptotically. Note that we reuse the [k − 3, k − 2) intervals.

Theorem 13. No deterministic fair online algorithm for the unit price seat
reservation problem has an online bounded ratio of more than 11

k+7
.

Using a similar proof, one can show that the online bounded ratios of First-
Fit and Best-Fit are at least 5

k+1
. The major difference is that in the first part,
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First-Fit and Best-Fit each reject n/2 intervals, so in the second part, O can also
reject n/2 intervals. Since any fair online algorithm for the unit price problem
is 2/k-competitive, any fair online algorithm for the unit price problem has an
online bound ratio of at least 2/k.
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