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Abstract We study two versions of graph coloring, where the goal is to assign a positive integer color to each
vertex of an input graph such that adjacent vertices do not receive the same color assignment. For classic vertex
coloring, the goal is to minimize the maximum color used, and for the sum coloring problem, the goal is to
minimize the sum of colors assigned to all input vertices. In the offline variant, the entire graph is presented at
once, and in online problems, one vertex is presented for coloring at each time, and the only information is the
identity of its neighbors among previously known vertices. In batched graph coloring, vertices are presented in
k batches, for a fixed integer k ≥ 2, such that the vertices of a batch are presented as a set, and must be colored
before the vertices of the next batch are presented. This last model is an intermediate model, which bridges
between the two extreme scenarios of the online and offline models. We provide several results, including a
general result for sum coloring and results for the classic graph coloring problem on restricted graph classes: We
show tight bounds for any graph class containing trees as a subclass (forests, bipartite graphs, planar graphs, and
perfect graphs, for example), and an interesting result for interval graphs and k = 2, where the value of the (strict
and asymptotic) competitive ratio depends on whether the graph is presented with its interval representation or
not.
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1 Introduction

We study several graph coloring problems in a model where the input is given in batches. In this model of
computation, an adversary reveals the input graph one batch at a time, with the batches constituting a partition
of the vertex set. Each batch is revealed together with edges connecting vertices of the batch to other vertices of
the same or previous batches. After a batch is revealed the algorithm is asked to color the vertices of this batch
with colors which are positive integers, the coloring must be valid or proper, i.e., neighbors are colored using
distinct colors, and this coloring cannot be modified later. To the best of our knowledge, this is the first time the
batch model has been applied to graph coloring.

The batch scenario is somewhere between online and offline. In an offline problem, there is only one batch,
while for an online problem, the requests arrive one at a time and have to be handled as they arrive without any
knowledge of future events, so each request is a separate batch. Many applications might fall between these two
extremes of online and offline. For example, a situation where there are two (or more) deadlines can lead to
batches.

When considering a combinatorial problem using batches, we assume that the requests arrive grouped into
a constant number k of batches. Each batch must be handled without any knowledge of the requests in future
batches. The number k of batches may be known or unknown to the algorithm. As with online problems, we do
not consider the execution times of the algorithms used within one batch; the focus is on the performance ratios
attainable. Therefore, our goal is to quantify the extent to which the performance of the solution deteriorates
due to the lack of information regarding the requests of future batches. We also investigate how much advance
knowledge of the number of batches can help.

The quality of the algorithms is evaluated using competitive analysis. Let A(σ) denote the cost of the so-
lution returned by algorithm A on request sequence σ , and let OPT(σ) denote the cost of an optimal (offline)
solution. Note that for the classic coloring problem, OPT(G) = χ(G), where χ(G) is the chromatic number of
the graph G. An online coloring algorithm A is ρ-competitive if there exists a constant b such that, for all fi-
nite request sequences σ , A(σ)≤ ρ ·OPT(σ)+b. The competitive ratio (also called the asymptotic competitive
ratio) of algorithm A is inf{ρ | A is ρ-competitive}. If the inequality holds with b = 0, the algorithm is strictly
ρ-competitive and the strict competitive ratio is inf{ρ | A is strictly ρ-competitive}.

The First-Fit algorithm for coloring a graph traverses the list of vertices given in an arbitrary order, and
assigns each vertex the minimal color not assigned to its neighbors that appear before it in the list of vertices.
When used as an online algorithm, the order chosen is the order in which the vertices are presented.

Other combinatorial problems have been studied previously using batches. The study of bin packing with
batches was motivated by the property that all known lower bound instances have the form that items are pre-
sented in batches. The case of two batches was first considered in [11], an algorithm for this case was presented
in [7], and better lower bounds were found in [3]. A study of the more general case of k batches was done in [8],
and recently, a new lower bound on the competitive ratio of bin packing with three batches was presented in [2].
The scheduling problem of minimizing makespan on identical machines where jobs are presented using two
batches was considered in [23].

Graph classes containing trees. The first coloring problem we consider using batches is that of coloring graph
classes containing trees as a subclass (e.g., forests, bipartite graphs, planar graphs, perfect graphs, and graphs
in general), minimizing the number of colors used. Offline, finding a proper coloring of bipartite graphs is
elementary and only (at most) two colors are needed. However, there is no online algorithm with a constant (strict
or asymptotic) competitive ratio, even for trees. Gyárfás and Lehel [12] show that for any online tree coloring
algorithm A and any n ≥ 1, there is a tree on n vertices for which A uses at least blognc+ 1 colors. The lower
bound is matched exactly by First-Fit [13], and hence, the optimal competitive ratio on trees is Θ(logn). Albers
and Schraink [1] show that for chordal, planar, bipartite, inductive, bounded treewidth, and disk graphs, the
optimal competitive ratio is also Θ(logn), even if the algorithm is randomized and a look-ahead of O(n/ logn)
vertices is allowed, and this holds for the asymptotic competitive ratio. For general graphs, Halldórsson and
Szegedy [15] have shown that the competitive ratio is Ω(n/ log2 n), even for randomized graphs and with various
relaxations of the online model such as a look-ahead of log2 n vertices.

We show that any algorithm for coloring trees in k batches uses at least 2k colors in the worst case, even if
the number of batches is known in advance. Since trees are 2-colorable, this gives a lower bound of k on the strict
competitive ratio of any algorithm coloring trees in k batches. The lower bound is tight, since (on any graph, not
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only trees), a strictly k-competitive algorithm can be obtained by coloring each batch optimally with colors not
used in previous batches. Thus, for graph classes containing trees as a subclass, k is the optimal strict competitive
ratio. For graph classes that are colorable in polynomial time, this algorithm is polynomial.

Coloring interval graphs in two batches. Next we consider coloring interval graphs in two batches, minimizing
the number of colors used. An interval graph is a graph which can be defined as follows: The vertices represent
intervals on the real line, and two vertices are adjacent if and only if their intervals overlap (have a nonempty
intersection). If the maximum clique size of an interval graph is ω , it can be colored optimally using ω colors
by using First-Fit on the interval representation of the graph, with the intervals sorted by nondecreasing left
endpoints, breaking ties arbitrarily. For the online version of the problem, Kierstead and Trotter [17] provided an
algorithm which uses at most 3ω−2 colors and proved a matching lower bound for any online algorithm. Thus,
the optimal (strict as well as asymptotic) competitive ratio is 3.

The algorithm presented in [17] does not depend on the interval representation of the graph, and the lower
bound applies even if the interval representation is known to the algorithm, so in the online case the optimal
competitive ratio is the same for these two representations (see [16,20] for the current best results regarding the
strict competitive ratio of First-Fit for coloring interval graphs). In contrast, when there are two batches, there is a
difference. We show tight upper and lower bounds of 2 for the case when the interval representation is unknown
and 3/2 when it is known, respectively. Our results apply to both the asymptotic and the strict competitive ratio.

Note that when the interval representation of the graph is used, the batches consist of intervals on the real
line (and it is not necessary to give the edges explicitly).

Sum coloring. The sum coloring problem (also called chromatic sum) was introduced in [19] (see [18] for a
survey of results on this problem). The problem is to give a proper coloring to the vertices of a graph, where the
colors are positive integers, so as to minimize the sum of these colors over all vertices (that is, if the coloring is
defined by a function C, the objective is to minimize ∑v∈V C(v)).

Bar-Noy et al. [4] study the problem, motivated by the following application: Consider a scheduling problem
on an infinite capacity batched machine where all jobs have unit processing time, but some jobs cannot be run
simultaneously due to conflicts for resources. The time when a job finishes is called its completion time, and
the goal is to minimize the average completion time of the jobs. Note that the conflicts can be given by a graph
where the jobs are vertices and an edge exists between two vertices, if the corresponding jobs cannot be executed
simultaneously. A schedule without idle time is then feasible if and only if there is a coloring of the conflict
graph such that the completion time of each job is given by the color of the corresponding vertex. Hence, the
value s of the optimal sum coloring of the graph gives the sum of the completion times of all jobs in an optimal
schedule. Dividing by the number of jobs gives the average completion time (response time). The problem when
restricted to interval graphs is also motivated by VLSI routing [21]. The first problem seems more likely to come
in batches than the second.

The sum coloring problem is NP-hard for general graphs [19] and cannot be approximated within n1−ε for
any ε > 0 unless ZPP = NP [4]. It is also NP-hard for interval graphs [22]. Interestingly, there is a linear time
algorithm for trees, even though there is no constant upper bound on the number of different colors needed for the
minimum sum coloring of trees [19]. For online algorithms, there is a lower bound of Ω(n/ log2 n) for general
graphs with n vertices [14].

We show tight upper and lower bounds of k on the (strict and asymptotic) competitive ratio when there
are k batches and k is known in advance to the algorithm. The (strict as well as the asymptotic) competitive
ratio is higher if k is unknown in advance to the algorithm. We do not give a closed form expression for the
competitive ratio in this case, but give tight upper and lower bounds on the order of growth of the competitive
ratio and the strict competitive ratio. For any nondecreasing function f , with f (1)≥ 1, the optimal (strict as well
as asymptotic) competitive ratio for k batches is O( f (k)) if the series ∑

∞
i=1

1
f (i) converges, and it is Ω( f (k)) if

the series diverges. Thus, for example, it is Ω(k logk log logk) and O(k logk(log logk)δ ), for any δ > 1.
Restricting to trees, First-Fit is strictly 2-competitive for the online problem. Thus, First-Fit gives a (strict)

competitive ratio of 2 regardless of the number of batches. See for example [6] for results on the strict competitive
ratio of First-Fit for other graph classes.



4 J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, A. Levin

2 Graph Classes Containing Trees

In this section, we study the problem of coloring trees in k batches. The results hold for any graph class that
contains trees as a special case, including bipartite graphs, planar graphs, perfect graphs, and the class of all
graphs. If we want the algorithm to be polynomial time, then we are restricted to graph classes where optimal
offline coloring is possible in polynomial time (e.g., perfect graphs [10]).

The construction proving the following lemma resembles that of the lower bound of Ω(logn) for the com-
petitive ratio for online coloring of trees [12].

Lemma 1 For any integer k ≥ 1, any algorithm for k-batch coloring of trees can be forced to use at least 2k
colors, even if k is known in advance.

Proof After each batch, the graph will be a forest. If at some point, at least 2k+ 1 distinct colors are used, no
further batches will be introduced (that is, any remaining batches will be empty). Thus, in the discussion for each
batch, we assume that the vertices of the batch are colored with at most 2k colors.

Batch i, 1≤ i≤ k, contains ai = 2 · (8k3)k−i new vertices. After batch i, the graph will contain ai/2 disjoint
level i trees. The level of a tree is simply an index and the number of vertices grows quickly with the level. Each
level i tree consists of an edge, called the base edge, with each endpoint connected to two good level j trees, for
1≤ j ≤ i−1. Note that the endpoints of the base edge belong to batch i (and the other vertices do not). A good
level j tree is a level j tree with at least one vertex of each color 1,2, . . . ,2 j. Thus, a good level 1 tree is just one
edge, with colors 1 and 2 on its endpoints.

We now explain how the batches are constructed. In particular, we prove that there are enough good level j
trees, for each j, 1≤ j ≤ k. Once this is in place, we have proven that, after the kth batch, each color 1,2, . . . ,2k
has been used.

Note that the more batches, the more vertices are needed in the first batches. In particular, if k = 2, then
a1 = 128 and a2 = 2, and if k = 3, then a1 = 93,312, a2 = 432, and a3 = 2.

The first batch is a matching over its vertices. The vertices incident to each edge of the first batch must be
colored with two different colors. Since we are assuming that at most 2k colors are used, there are less than 2k2

distinct pairs of colors. Thus, there are at least g1 = a1/(4k2) edges having the same pair of colors assigned to
its vertices. We rename the colors such that these are colors 1 and 2. These edges are then the good level 1 trees
and these are the base edges.

In batch i ≥ 2, there are ai/2 new base edges. Furthermore, for each j, 1 ≤ j ≤ i− 1, each of the ai new
vertices is connected to a vertex of color 2 j−1 in a good level j tree and to a vertex of color 2 j in another good
level j tree (see Figure 1 for an illustration). Each good level j tree is connected to at most one new vertex, and
if it is connected to a new vertex it stops being a good level j tree. Thus, the graph remains a forest. Therefore,
the endpoints of each batch i base edge must be colored with two different colors not in {1,2 . . . ,2i− 2}. With
at most 2k colors used, more than gi = ai/(4k2) of these base edges have the same pair c,c′ of colors on their
endpoints. We rename the colors larger than 2i−2 such that these two colors are called 2i−1 and 2i.

To complete the proof, we now show that there are enough good level j trees, for 1≤ j≤ k. For k = 1, this is
clearly true, since ak = 2 and one base edge suffices to force the algorithm to use two colors. For k ≥ 2, we note
that, for 1≤ j < k, good level j trees are used to construct trees in all later batches. In each batch i > j, exactly
2ai such trees are used as every base edge is connected to four good level j trees (two such trees are connected to
each of the endpoints of a base edge). Thus, using that k ≥ 2, and counting over all values of i, the total number
of good level j trees needed is

k

∑
i= j+1

2ai =
k

∑
i= j+1

4 · (8k3)k−i = 4 ·
k− j−1

∑
i=0

(8k3)i = 4 · (8k3)k− j−1
8k3−1

<
(8k3)k− j

k3 =
a j

2k3 ≤
a j

4k2 = g j,

where g j is the lower bound that we calculated on the number of good level j trees.
If a connected graph is required, one vertex can be added to the last batch, connecting all trees remaining in

the forest. ut

The construction in Lemma 1 can be changed to use fewer vertices when considering bipartite graphs, rather
than restricting to trees (in fact, even for trees it is possible to reduce the size of the construction, making the
proof more complicated).

The following lemma holds for any graph, not only trees.
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Fig. 1 The single edge on the left hand side (top) is a good level 1 tree. The tree on the left hand side (bottom) is a good level 2 tree.
The tree on the right hand side is a good level 3 tree. For k = 3, there are 46,656 level 1 trees, 216 level 2 trees, and one level 3 tree.
Moreover, there are at least 1,296 good level 1 trees, at least six good level 2 trees, and one good level 3 tree.

Lemma 2 There is a strictly k-competitive algorithm for k-batch coloring, even if k is not known in advance.

Proof Consider a graph G presented in k batches and let χ = χ(G). Since each batch of vertices induces a
subgraph of G, each batch can clearly be colored with at most χ colors. Thus, using the colors (i−1)χ +1,(i−
1)χ +2, . . . ,(i−1)χ +χ for batch i yields a strictly k-competitive algorithm. ut

Theorem 1 below follows directly from Lemmas 1 and 2.

Theorem 1 For any graph class containing trees as a special case, the optimal strict competitive ratio for k-
batch coloring is k, regardless of whether or not k is known in advance.

3 Interval Coloring in Two Batches

Since not all trees are interval graphs, the lower bound from the previous section does not apply here. In par-
ticular, the trees constructed for k ≥ 2 in the proof of Lemma 1 are not interval graphs. For the case of interval
graphs we show that while coloring in two batches has a tight bound of 2 on the (asymptotic and strict) com-
petitive ratio, the problem becomes easier if we assume that the vertices of the graph are revealed together with
their interval representation (and this interval representation of vertices of the first batch cannot be modified in
the second batch). The standard results for online coloring of interval graphs do not make this distinction: The
lower bound is obtained for the (a priori easier) case where the interval representation of a vertex is revealed
to the algorithm when the vertex is revealed, while the upper bound holds even if such a representation is not
revealed (the online algorithm only computes a maximum clique size containing the new vertex and applies the
First-Fit algorithm on a subset of the vertices). Throughout this section, our lower bounds are with respect to the
asymptotic competitive ratio while our upper bounds are for the strict competitive ratio, and thus the results are
tight for both measures.

3.1 Unknown interval representation

We start with a study of the case where the algorithm is guaranteed that the resulting graph (at the end of every
batch) will be an interval graph, but the interval representation of the vertices of the first batch is not revealed to
the algorithm (and may depend on the actions of the algorithm). We show that in this case 2 is the best (strict or
asymptotic) competitive ratio that can be achieved by an online algorithm.

Theorem 2 For the problem of 2-batch coloring of interval graphs with unknown interval representation, the
optimal (strict and asymptotic) competitive ratio is 2.



6 J. Boyar, L. Epstein, L. M. Favrholdt, K. S. Larsen, A. Levin

Proof The upper bound follows from Lemma 2. Each of the two induced subgraphs is an interval graph, and it
can be colored optimally in polynomial time even if the interval representation is not given.

Next, we show a matching lower bound. For a given q ∈ N, let N1 =
(4q

q

)
+1 and N2 =

(4q
2q

)
+1. In the first

batch, the adversary gives N1 +N2 pairwise nonoverlapping cliques: N1 cliques of size q and N2 cliques of size
2q.

Assume that an algorithm uses at most 4q colors for the first batch. By the pigeonhole principle, there are two
cliques of size q that are colored with the same set C1 of colors. The vertices of these two cliques will correspond
to the intervals [5,6] and [9,10], respectively. Similarly, there are two cliques of size 2q that are colored with the
same set C2 of colors. For one of these cliques, q vertices will correspond to the interval [0,1] and the remaining
q vertices will correspond to the interval [0,3]. If any of these 2q vertices are colored with colors from C1,
they will correspond to the interval [0,1]. We let C ′2 denote the set of colors used on the vertices corresponding
to the interval [0,3]. Restricting our attention to the selected cliques in this manner, C1 ∩C ′2 = /0, and hence,
|C1∪C ′2|= 2q. For the other of these two cliques, the q vertices colored with C ′2 will correspond to the interval
[12,15] and the remaining q vertices will correspond to the interval [14,15]. In the interval representation, all
other intervals are placed to the right of the point 15 (on the real axis) so that they do not overlap with any of the
four cliques just described.

The second batch consists of q vertices corresponding to the interval [2,8] and q vertices corresponding to
the interval [7,13]. All of these 2q intervals overlap with each other and with intervals of all colors in C1 ∪C ′2.
Thus, the algorithm uses at least 4q colors.

No clique is larger than 2q vertices, so OPT uses 2q colors. Since q can be arbitrarily large, no deterministic
online algorithm can be better than 2-competitive, even when considering the asymptotic competitive ratio. ut

3.2 Known interval representation

We now assume that the vertices are revealed to the algorithm together with their interval representation. For
this case, we show an improved (strict and asymptotic) competitive ratio of 3

2 . We first state the following lower
bound whose proof is a special case of the lower bound proof of Kierstead and Trotter [17].

Lemma 3 For the problem of 2-batch coloring of interval graphs with known interval representation, no algo-
rithm can achieve an asymptotic competitive ratio strictly smaller than 3

2 .

Proof This is a special case of the lower bound of Kierstead and Trotter [17]. The construction is as follows.
For a given q ∈ N, let N =

(3q
2q

)
. In the first batch, the adversary gives 2q vertices corresponding to the interval

[4i,4i+1], for i = 0,1, . . . ,N. Thus, the first batch consists of N+1 pairwise nonoverlapping cliques. The clique
of intervals [4i,4i+1] is called clique i.

Assume that an algorithm colors the first batch using at most 3q colors. Since there are more than N cliques,
there must be two cliques, clique k and clique `, colored with the same 2q colors. Assume that the cliques are
named such that k < `.

In the second batch, the adversary gives 2q vertices corresponding to each of the intervals [4k,4k+ 3] and
[4k+2,4`+1]. To color the second batch vertices, the algorithm will need 4q colors different from the 2q colors
used on clique k and clique `. Thus, the algorithm uses at least 6q colors in total.

Since there is no clique larger than 4q vertices, OPT uses only 4q colors. Since q can be chosen arbitrarily
large, this shows that no deterministic online algorithm can be better than 3

2 -competitive. ut

For the matching upper bound, we define a polynomial time algorithm, TWOBATCHES, which is strictly
3
2 -competitive, using Algorithm 1 to color the first batch of intervals and Algorithm 2 to color the second batch.
Algorithm 2 can be replaced by an optimal extension of the coloring of the first batch intervals to a coloring of
all intervals. Though the precoloring extension problem is NP-hard, even when restricted to interval graphs [5],
our Algorithm 2 runs in polynomial time as it is based on an optimal coloring of the subgraph induced by the
second batch intervals. Since interval graphs can be colored optimally in polynomial time, it is easily verified
that both algorithms we suggest are polynomial.

Let ω denote the maximum clique size in the full graph consisting of intervals from both batches. For any
interval I, let color(I) denote the color assigned to I by TWOBATCHES. Similarly, for a set I of intervals,
color(I ) denotes the set of colors used to color the intervals in I .
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Intervals can be open, closed, or semi-closed. Each endpoint of a first batch interval I is called an event
point, and this event point is associated with I. If there is a point that is an endpoint of several intervals, we have
multiple copies of this point as event points each of which is associated with a different interval.

We define a total order, T , on the event points. For two event points p and p′, if p< p′ (this being the standard
ordering on the reals), then p appears before p′ in the total order. For the case p = p′, let I and I′ be the two
intervals such that p and p′ are associated with I and I′, respectively. We consider a total order satisfying the
following properties.

1. If p and p′ are both right endpoints, p /∈ I, and p′ ∈ I′, then p appears before p′ in the total order of the event
points.

2. Otherwise, if p is a left endpoint and p′ is an right endpoint, then:
– If p /∈ I, then p′ appears before p in the total order of the event points.
– If p ∈ I and p′ /∈ I′, then p′ appears before p in the total order of the event points.
– If p ∈ I and p′ ∈ I′, then p appears before p′ in the total order of the event points.

3. Otherwise (that is, p and p′ are both left endpoints), then if p ∈ I and p′ /∈ I′, then p appears before p′ in the
total order of the event points.

We fix one particular total order, T , on the event points satisfying all these conditions. Observe that this total
order is a refinement of the standard order “≤” on the real numbers. If an event point p appears before another
event point q in T , we write p <T q. If p, q, and p′ are event points, we say that q is between p and p′, if and
only if p <T q <T p′. In this case, we will also sometimes say that q is to the right of p and to the left of p′.

For any three points p, q, and p′, where q is not an event point, we say that q is between p and p′, if and only
if p < q < p′. In this case, we will also sometimes say that q is to the right of p and to the left of p′.

3.2.1 First batch.

It is well-known that one can color an interval graph with a maximum clique size of ω using ω colors [9]. If
an interval representation is known, this can be done by maintaining a set of available colors, and traversing
the event points according to the total order T : Each time a left endpoint is considered, we color its interval
with a color in the set of available colors (removing it from this set); each time a right endpoint is considered,
its interval’s color is returned to the set of available colors. One often considers the First-Fit rule of using the
minimum color in the set of available colors as a tie-breaking rule when the set of available colors contains more
than one color. However, in order to establish the improved bound of 3

2 on the strict competitive ratio (or even for
the asymptotic competitive ratio) of the algorithm for two batches, we need to use a different tie-breaking rule,
namely the rule defined by using a stack, as we describe below. An example of why one cannot use an arbitrary
optimal coloring for the first batch is built using a similar structure of intervals to that of the proof of Theorem 2.
For a given value of t, consider t intervals of each of the forms [0,2], [1,4], [6,7], [10,11], [13,16], and [15,17].
Consider an algorithm that colors the sets of intervals of the forms [0,2], [6,7], [10,11], and [15,17] with colors
1,2, . . . , t and colors the sets of intervals of the forms [1,4] and [13,16] with colors t+1, t+2, . . . ,2t. The second
batch contains t intervals of each of the forms [3,9] and [8,14]. The clique size in this second batch is 2t, and
each interval in the second batch has an intersection with one interval of the first batch of each color. Thus, an
additional 2t colors will be used in any coloring of the second batch intervals.

Algorithm 1 processes the event points in the order given by T , that is, from left to right. When a right
endpoint is processed, we say that the color of the associated interval is released. It is then available until it is
used again. When processing a left endpoint, the associated interval is colored with the most recently released
available color (or a new color, if necessary). Thus, a stack ordering is used for the colors. Pseudo-code for the
algorithm is given in Algorithm 1. The operations Push() and Pop() operate on the stack in the standard manner.

For ease of presentation, we insert 2ω dummy intervals into the first batch: one clique of size ω before all
input intervals and one clique of size ω after all input intervals. Since these dummy cliques do not overlap with
any other intervals, each will be colored with the colors 1,2, . . . ,ω , and they will not influence the behavior of
Algorithm 1 on the rest of the first-batch intervals.

Before analyzing the algorithm, we introduce some additional terminology. Maximal cliques always refer
only to first-batch intervals. For each maximal clique, we choose a point, called a clique point, contained in all
intervals of the clique. If a clique point p appears to the right of another clique point q, we say that the clique
corresponding to p appears to the right of the clique corresponding to q, and vice versa.
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Algorithm 1 Coloring the first-batch intervals.
1: ω1← maximum clique size in the first batch
2: Initialize an empty stack of colors // The stack will contain available colors
3: for i← ω1 down to 1 do
4: Push(i)
5: for each event point, p, in the order given by T do
6: if p is a left endpoint of an interval I then
7: color(I)← Pop()
8: else if p is a right endpoint of an interval I then
9: Push(color(I))

For each maximal clique, I , we order the intervals of the clique by left and right endpoints, respectively,
resulting in two orderings, LI (·) and RI (·): For each interval I ∈I , LI (I) = i, if the left endpoint of I appears
as the ith in T among the left endpoints associated with intervals in I . Similarly, RI (I) = j, if the right endpoint
of I appears as the jth last in T among the right endpoints associated with intervals in I . As an example,
consider the clique I consisting of the three intervals a = [1,6], b = [2,4], and c = [3,5]. For this clique, we
have LI (a) = 1, LI (b) = 2, LI (c) = 3 and RI (a) = 1, RI (b) = 3, RI (c) = 2.

The following lemma is illustrated in Figure 2.

p` pr

IrI`

I` Ir

Fig. 2 Illustration of Lemma 4, with h = 3. The intervals of I ′ are drawn with dashed lines.

Lemma 4 Consider a maximal clique, I`, of size m and an interval I` ∈ I` such that RI`
(I`) = h. Let I h

` ={
I ∈I` | RI`

(I)< h
}

be the h−1 intervals in I` with the rightmost right endpoints. Let Ir be the first maximal
clique of size at least h to the right of I` and let Ir ∈ Ir be such that LIr (Ir) = h. Finally, let p` be the right
endpoint of I`, let pr be the left endpoint of Ir, and consider the set I ′ of first-batch intervals containing a point
p with p` < p < pr or an endpoint p with p` <T p <T pr. Then, color(I ′)⊆ color(I h

` ) .

Proof For the intervals in I h
` , the lemma follows trivially.

We now consider the intervals in I ′ \I h
` . Note that we can assume p` <T pr, since otherwise I ′ is empty,

and the lemma follows trivially.
Assume for the sake of contradiction that some interval I′ ∈I ′ \I h

` has an endpoint to the left of p`. This
interval would overlap with all intervals in I h

` , contradicting the assumption that p` <T pr. Hence, we only need
to consider intervals with a left endpoint between p` and pr.

Consider any interval with a left endpoint p such that p` <T p <T pr. It follows from the definition of Ir and
Ir that there are more right endpoints than left endpoints between p` and p (note that h > 1 in this case). Thus, at
p, the most recently released available color is a color in color(I h

` ), and therefore, the interval associated with
p is colored with a color in color(I h

` ). ut

3.2.2 Second batch.

We now describe the algorithm, Algorithm 2, given in pseudo-code below, for coloring the second batch intervals.
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A chain is a set of nonoverlapping second batch intervals. The algorithm starts with partitioning the second-
batch intervals into ω chains (some of which may be empty). Since the graph is ω-colorable, we can simply
choose any optimal coloring of the subgraph induced by the second batch intervals and define our chains to be
all intervals of the same color.

The second batch intervals are colored in iterations, two chains per iteration. The algorithm keeps a counter, i,
which is incremented once in each iteration, and maintains the set BATCH2-COLORED of second batch intervals
that the algorithm has already colored. In each iteration, a set of nonoverlapping first-batch intervals is processed.
The algorithm maintains the invariant that, at the beginning of each iteration, any maximal first-batch clique of
size h contains exactly min{h,ω− i} unprocessed intervals.

A first-batch maximal clique of size at least ω − i+ 1 as well as its clique point is said to be active. The
part of the real line between two neighboring active clique points is called a region. Throughout the execution
of Algorithm 2, the number of regions is nondecreasing, and whenever a region is split, the chains of the region
are also split by a simple projection onto each region and each resulting region will contain its boundary active
clique points (in particular, this means that active clique points may belong to two regions). In each iteration,
each region and its chains are treated separately.

The algorithm maintains the invariant that no uncolored second batch interval overlaps with more than one
region. This is the key property, allowing the algorithm to consider one region at a time in a given iteration of
the algorithm. First-batch intervals overlapping with more than one region will be cut into more intervals, with a
cutting point at each active clique point contained in the interval. Thus, by cutting the intervals of an active clique
of size h, the clique is replaced by two cliques of size h in neighboring regions. When a first-batch interval is cut
into parts, the different parts of the interval may be processed in different iterations, but no new event points are
introduced.

In the ith iteration, one chain in each region is colored with the color of a first-batch interval in the region
being processed in this iteration, and another chain of the region will be colored with the color ω + i, which has
not been used in the region before. For any point p, let dp be the number of second batch intervals containing p.
We say that p is covered by a set S of intervals, if there are min{dp, i} second batch intervals in S containing p.

Next, we define a set P of representative points, such that each interval between two neighboring clique
points is represented by one point. To this end, we define the following equivalence relation between points on
the real line. For a pair of points p and p′, we say that p is equivalent to p′ if the following conditions hold:

– For every clique point q, either both p≤ q and p′ ≤ q or both p≥ q and p′ ≥ q (this in particular means that
p and p′ belong to a common region).

– For every interval I of either the first batch or the second batch, we have that either p, p′ ∈ I or the two points
p and p′ are to a common side of I.

Observe that the number of equivalence classes of this relation is linear in the number of intervals of the input.
The set of representative points P is defined such that each equivalence class has exactly one member in P ,
chosen arbitrarily. We use the following observation.

Observation 3 For a given set S of intervals, at any point after line 9 in Algorithm 2, we have that all points are
covered by S if and only if all points in P are covered by S.

For a region R, we denote by PR the set of representative points contained in region R.
We use the following loop invariant for each region to establish that TWOBATCHES is correct and strictly

3/2-competitive. The proof shown below of the invariant I is based on induction on the value of i.

Invariant I:

(I1) All points p are covered by the set BATCH2-COLORED.
(I2) No color used for an unprocessed first-batch interval contained in a region R has been used for a second

batch interval intersecting region R so far.
(I3) Each active clique has exactly ω− i unprocessed intervals.
(I4) For each region R, CHAINR has at most ω−2i chains.

Lemma 5 I is an invariant for the while-loop in Algorithm 2.

Proof We prove by induction on i that the invariant holds at the start of every iteration of the while-loop.
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Algorithm 2 Coloring the second batch intervals.
1: Mark all first-batch intervals as unprocessed
2: Create an optimal coloring of the subgraph induced by the second-batch intervals, using a set C of ω colors
3: R← (−∞,∞) // Initially, there is only one region
4: CHAINSR← /0
5: PR← the set of representative points in region R
6: for each color c ∈ C do
7: CHAINSR← CHAINSR∪{{I | I is a second batch interval with color c}}
8: BATCH2-COLORED← /0 // Set of colored second batch intervals
9: i← 0

10: while i < bω/2c do // Invariant I
11: // Color two chains:
12: i← i+1
13: Split all regions (incl. the assoc. chains and sets of repr. points) at all active clique points
14: for each region R containing at least one nonempty chain do
15: (CHAIN1,CHAIN2)← CREATECHAINS(R) // See Algorithm 3
16: // Color intervals in CHAIN1 and CHAIN2 using a first batch color and a new color:
17: I`← the unprocessed first-batch interval of the earliest event point in R
18: Ir← the unprocessed first-batch interval of the latest event point in R
19: Mark I` and Ir as processed
20: Give all intervals in CHAIN1 the color of I`
21: Give all intervals in CHAIN2 the color ω + i
22: BATCH2-COLORED← BATCH2-COLORED∪CHAIN1∪CHAIN2
23: CHAINR← CHAINR \{CHAIN1,CHAIN2}
24: // If ω is odd, each region may have one chain left to color:
25: for each region R where CHAINSR contains a nonempty chain CHAIN do
26: I← the unprocessed first-batch interval with the earliest event point in R
27: Give the intervals of CHAIN the color of I

Algorithm 3 CREATECHAINS(R)
1: CHAIN1 ← a chain in CHAINSR containing the leftmost left endpoint
2: CHAIN2 ← any other chain from CHAINSR
3: while some point in PR is not covered by BATCH2-COLORED∪CHAIN1∪CHAIN2 do
4: p← the leftmost point in PR not covered by BATCH2-COLORED∪CHAIN1∪CHAIN2
5: CHAIN3 ← a chain from CHAINSR containing p
6: if for all points q < p in PR, q is contained in CHAIN3 or in both CHAIN1 and CHAIN2 then
7: CHAIN2 ← CHAIN3
8: else
9: q← the rightmost point in PR left of p violating the condition

10: CHAIN← one of CHAIN1 or CHAIN2 not containing q
11: // Do a crossover of CHAIN and CHAIN3 at the point q, modifying CHAIN and CHAIN3 in CHAINSR:
12: TAIL←{I ∈ CHAIN | I starts to the right of q}
13: TAIL3←{I ∈ CHAIN3 | I starts to the right of q}
14: CHAIN← (CHAIN \TAIL)∪TAIL3
15: CHAIN3← (CHAIN3 \TAIL3)∪TAIL

16: return (CHAIN1,CHAIN2)

(I1) By Observation 3, it suffices to show that the set BATCH2-COLORED covers all points in P .
At the beginning of the first iteration, i = 0, so (I1) is trivially true. At the beginning of each of the fol-
lowing iterations, it follows from (I1) that each point p is contained in at least min{dp, i} intervals in
BATCH2-COLORED. In line 22, all intervals of CHAIN1 ∪CHAIN2 are added to BATCH2-COLORED. Thus,
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we only need to prove that, if p is not covered after the increment of i in line 12, the while loop in lines 3–15
of Algorithm 3 will add at least one interval containing p to CHAIN1∪CHAIN2.
Consider a region R and let p` and pr be defined as in Lemma 4, with h = ω − i+ 1. Any point in R to
the left of p` or to the right of pr is contained in at least h first-batch intervals. Hence, by the induction
assumption (I1), there cannot be any uncovered points in R to the left of p` or to the right of pr.
As long as some point p in PR is not covered by BATCH2-COLORED ∪ CHAIN1 ∪ CHAIN2, it follows
from (I1) and the definition of covered that CHAINSR contains p and that CHAIN1∪CHAIN2 does not contain
p. Thus, CHAIN3 of line 5 of Algorithm 3 exists.
If for all points q < p in PR, CHAIN3 contains q or both CHAIN1 and CHAIN2 contain q, swapping any of
CHAIN1 or CHAIN2 with CHAIN3 will ensure that CHAIN1∪CHAIN2 contains all points q≤ p in PR.
Otherwise, there is a point q < p in PR not contained in CHAIN3 and not contained in both CHAIN1 and
CHAIN2. The algorithm chooses q as the rightmost such point among the points in PR. The algorithm then
chooses a CHAIN ∈ {CHAIN1,CHAIN2} such that CHAIN does not contain q. Since neither CHAIN nor
CHAIN3 contains q, all intervals in CHAIN∪CHAIN3 appear strictly before or after q. Thus it is possible to
cut each of CHAIN and CHAIN3 into two sets, “head” and “tail” consisting of the intervals ending before q
or starting after q, respectively, and let the two chains swap tails, while maintaining the property that no two
intervals within a chain overlap. We refer to this tails swapping operation as a crossover.
After this crossover operation, p is contained in CHAIN. Neither CHAIN1 nor CHAIN2 is changed to the
left of q. Since all points between q and p were contained in CHAIN3 or both CHAIN1 and CHAIN2 before
the crossover, all such points are still contained in CHAIN1∪CHAIN2 after the crossover. Thus, the leftmost
point in PR not covered by BATCH2-COLORED∪CHAIN1 ∪CHAIN2 now occurs at or to the right of the
leftmost point in PR to the right of p. This means that, after O(n) iterations of the while loop of lines 3–15
of Algorithm 3, all points in P are covered by BATCH2-COLORED∪CHAIN1∪CHAIN2.

(I2) At the beginning, the statement is trivially true, since no second-batch interval has been colored.
Since no unprocessed first-batch intervals in a region are colored with color(I`), according to Lemma 4, and
since no first-batch intervals are colored with ω + i, (I2) is maintained.

(I3) At the beginning of the first iteration, (I3) is trivially true, since every active clique has ω first-batch intervals,
and all first-batch intervals are unprocessed.
In each iteration, the cliques of size ω− i+1 are added to the set of active cliques, and one interval of each
active clique is processed. Hence, (I3) is maintained.

(I4) At the beginning, the statement holds as an optimal coloring of the subgraph induced by the second batch
intervals uses at most ω colors and the number of chains in CHAINR after line 7 is the number of colors used.
In each iteration of the while loop in lines 3–15 of Algorithm 3, the number of chains in CHAINR is not
modified, as in each such iteration we replace two chains by another pair of chains covering the same set
of second batch intervals. Invariant (I4) is maintained because the number of chains in CHAINR is modified
once in every iteration in line 22, where it is decreased by two.

ut

We use the invariant I to prove that for any input σ , TWOBATCHES produces a proper coloring using at most⌊ 3
2 OPT(σ)

⌋
colors.

Lemma 6 For any input σ , the algorithm TWOBATCHES produces a proper coloring using at most
⌊ 3

2 OPT(σ)
⌋

colors.

Proof We first note that, by (I1), no chain in CHAINSR can contain an active clique point. Thus, the splitting of
chains done in line 13 is possible.

In each of the bω/2c iterations of the while loop of lines 10–23 of Algorithm 2, two chains are colored and
the number of chains in CHAINR is decreased by two. If ω is odd, one additional chain may be colored in line 27
(and at this point CHAINR consists of a single chain by invariant (I4)). Thus, all of the ω chains containing all
second batch intervals are colored.

The actual coloring happens in lines 20 and 21, and possibly in line 27. In line 20, the color used is the color,
c, of the earliest event point associated with the unprocessed first-batch interval, I`, in the region R. By Lemma 4
and (I3), I` and Ir are the only first-batch intervals overlapping with R that are colored with c. By invariant (I1)
and the definition of I` and Ir, no interval in CHAINSR overlaps with I` and Ir in R. By invariant (I2), no second
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batch interval in R has been colored with c in earlier iterations. Thus, coloring the intervals of CHAIN1 results in
a legal coloring of these intervals. The same arguments hold for the possible coloring done in line 27. Since the
color ω + i has never been used before, the coloring of CHAIN2 is also legal.

In summary, in Algorithm 1, ω colors are used. In Algorithm 2, the colors are used again for some intervals
and only bω/2c new colors are used. ut

Combining Lemmas 3 and 6 shows that the optimal (strict and asymptotic) competitive ratio for the problem
is 3

2 :

Theorem 4 TWOBATCHES has a strict competitive ratio of 3
2 .

4 Sum Coloring of Graphs in Multiple Batches

Now, we turn our attention to the study of the sum coloring problem. We study two cases separately: the case
where the number of batches is known to the algorithm from the beginning, and the case where it is not. Once
again, our lower bounds are for the asymptotic competitive ratio and our upper bounds are for the strict compet-
itive ratio.

4.1 Number of batches known in advance

We start our study of sum coloring by examining the case where the algorithm knows the number of batches k in
advance. Recall that we do not require that algorithms used within one batch be polynomial time.

Lemma 7 There is a strictly k-competitive algorithm for sum coloring in k batches, if k is known in advance.

Proof For each batch, the algorithm, k-BATCHCOLOR, applies an optimal procedure, COLOR, to compute an
optimal sum coloring for the subgraph induced by the set of vertices of batch i, separately from previous batches.
In order to construct the solution of the input graph, k-BATCHCOLOR applies the following transformation: For
every vertex v of batch i, if COLOR colors v with color c, then k-BATCHCOLOR colors v using color f (i,c) =
k · (c− 1)+ i. This function f satisfies f (i,c) ≡ i (mod k), so if f (i,c) = f (i′,c′), for some 1 ≤ i, i′ ≤ k, then
i = i′. Moreover, if f (i,c) = f (i,c′), then k(c− c′) = 0, and therefore c = c′. Thus, vertices of different batches
have different colors, and two vertices of the same batch have the same color after the transformation if and
only if they had the same color in the solution returned by COLOR. As any proper coloring of the graph provides
proper colorings for the k induced subgraphs, the total cost of the k outputs of COLOR does not exceed the cost of
an optimal coloring of the entire graph. For any color c and batch i, f (i,c)≤ k · c. Thus, the cost of the output is
at most k times the total cost of the k solutions returned by COLOR (for the k vertex disjoint induced subgraphs).

ut

We prove a matching lower bound for this case, which holds even for the asymptotic competitive ratio.

Lemma 8 No algorithm for sum coloring in k batches has an asymptotic competitive ratio strictly smaller than
k, even if k is known in advance.

Proof Assume for the sake of contradiction that there is a value of k and an online algorithm A for sum coloring
of graphs in k batches whose asymptotic competitive ratio ρ ′ is strictly smaller than k. Let ρ be such that
ρ ′ < ρ < k. Then there exists an integer M such that for all instances with at least M vertices, the ratio between
the cost of the solution returned by A and the cost of an optimal solution is at most ρ . Without loss of generality,
we assume that M > max{2k2, 2ρ

k−ρ
}.

The algorithm will be presented with k batches, such that after every batch i (1≤ i≤ k) the input either stops
(the remaining k− i batches will be empty), or one vertex of batch i (currently the last batch), which will be
denoted by vi, is selected as a designated vertex, and it will be used for constructing the other batches.

Batch i (for i = 1,2, . . . ,k) is constructed as follows: The batch consists of a set Vi of Mi vertices, each of
which has i−1 neighbors that are v1,v2, . . . ,vi−1 (thus, the vertices of Vi form an independent set and the vertices
v1,v2, . . . ,vi form a clique). For i ≤ k− 1, if the algorithm colors all vertices of batch i with colors of value at
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least k, then the input stops. Otherwise, one vertex whose color is in {1,2, . . . ,k−1} is selected to be vi, and the
set of vertices of the next batch, Vi+1, is presented. If the input consists of j batches, V = ∪ j

i=1Vi.
We compute an upper bound on the optimal sum of colors, if the input stops after the first j batches (we

describe solutions which are not necessarily optimal). If the input consists of j batches, we next show that the
set V \ {v1,v2, . . . ,v j−1} is independent. Consider a vertex v of batch i. This vertex is presented with edges
to {v1,v2, . . . ,vi−1}. If v does not become vi, it will not have any further edges. Thus, it is possible to assign
color 1 to each such vertex, and use color i+ 1 for vi. We show that, for 1 ≤ j ≤ k, this gives a total cost of
O j ≤M j + 2M j−1. For j = 1 and j = 2, we obtain O1 = M and O2 = M2 +M + 1 ≤M2 + 2M. For j ≥ 3, the
total cost of this solution is

O j =
j

∑
i=1

(Mi−1)+1+
j−1

∑
i=1

(i+1) =
j

∑
i=1

Mi +
j−1

∑
i=1

i =
M j+1−1

M−1
−1+

j( j−1)
2

<
M j+1

M−1
+ k2 <

M j+1

M−1
+M j−2, as j−2≥ 1.

We find that

M j+1

M−1
+M j−2 ≤M j +2M j−1

⇔ M3

M−1
+1≤M2 +2M

⇔ M3 +M−1≤M3 +2M2−M2−2M

⇔ 3M ≤M2 +1, which holds for any M ≥ 3.

If the input stops after j < k batches, then A has colored M j vertices with colors of at least k, and its cost
is at least k ·M j. Otherwise, consider batch k. Each of the vertices v1,v2, . . . ,vk−1 was given a color no larger
than k−1, and since they induce a clique, each of the colors {1,2, . . . ,k−1} is used exactly once on these k−1
vertices. When the set Vk is presented, each vertex of Vk is connected to each vertex in {v1,v2, . . . ,vk−1}, so every
vertex of Vk must be colored with a color that is at least k. Thus, in this batch the total cost of the algorithm is at
least k ·Mk.

We showed that if the input stops after batch j (for 1 ≤ j ≤ k), the cost of the algorithm is at least k ·M j,
while the cost of an optimal solution does not exceed M j +2M j−1. The performance ratio is thus at least

k ·M j

M j +2M j−1 =
k

1+2/M
>

k
1+2(k−ρ)/(2ρ)

=
2ρk

2ρ +2k−2ρ
= ρ ,

as M > 2ρ

k−ρ
. This contradicts the assumption that the ratio between the cost of A and the optimal cost is at most

ρ . ut

Combining Lemmas 7 and 8 gives the following result:

Theorem 5 For sum coloring in k batches, with k known in advance, the optimal (strict and asymptotic) com-
petitive ratio is k.

Remark 1 Observe that the graph in the proof of Lemma 8 for the case k = 2 has no cycles. Thus, there is no
online algorithm for sum coloring of forests in k batches with (strict or asymptotic) competitive ratio strictly
smaller than 2. The statement can be strengthened to hold for trees by adding one extra vertex in the second
batch which is adjacent to all the isolated vertices from the first batch.

Theorem 6 For sum coloring of trees in k batches, First-Fit is strictly 2-competitive, and for k ≥ 2, this is the
best possible (strict and asymptotic) competitive ratio, even if k is known in advance.

Proof The lower bound of 2 holds by Remark 1. To prove the upper bound of First-Fit, we will show by induction
on t that when First-Fit is used for coloring a tree (a connected subgraph) on t vertices, the sum of the colors of
the vertices is at most 2t−1. Obviously, no algorithm can have a cost below t (in fact, if t > 1, then any coloring
has cost at least t +1).
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For t = 1, the claim follows trivially as a single vertex is assigned color 1. Assume that the claim holds for
all t ′ < t and we prove it for t. Consider the last vertex to be colored by First-Fit. This vertex will be connected
to some number of existing trees (connected components of the graph prior to this iteration), and we denote this
number (of components) by X . If X = 0, then the new vertex gets color 1 and becomes a singleton (so t = 1 and
the sum of colors is 1 = 2t−1). If X > 0, then for every j = 1,2, . . . ,X , the j-th tree with t j vertices had the sum
of colors 2t j−1 (or less). The new vertex has a color not exceeding X +1 (as the new vertex is connected to one
vertex of each of the X existing trees), and we have ∑

X
j=1 t j = t− 1. We find that the total cost of the solution

returned by First-Fit does not exceed ∑
X
j=1(2t j−1)+X +1 = 2(t−1)−X +(X +1) = 2t−1. ut

4.2 Number of batches unknown in advance

Next, we consider the case where the number of batches k is not known in advance. Thus, to obtain a given
competitive ratio, this ratio must be obtained after each batch. Note that the algorithm described in the proof of
Lemma 7 cannot be used in this case. While the algorithm is not well defined if k is not known to the algorithm
in advance, it may seem that modifying the value of k by doubling would result in an asymptotic competitive
ratio of O(k), but no such algorithm exists. We prove that for any positive nondecreasing sequence f (i), which
is defined for integer values of i (where f (i) ≥ 1 for i ≥ 1), no algorithm with asymptotic competitive ratio
O( f (k)) can be given if the series S f = ∑

∞
i=1

1
f (i) is divergent. On the other hand, we show that if this series

is convergent, then such an algorithm with a strict (and asymptotic) competitive ratio of O( f (k)) can be given.
This shows, in particular, that the best possible competitive ratio is O(k logk(log logk)2) (since the series for this
function converges according to the Cauchy condensation test), and it is Ω(k logk log logk) (since the series for
this function diverges according to the Cauchy condensation test). In fact it is O(k logk log logk · · · (log(x) k)δ )
for δ > 1 and Ω(k logk log logk · · · log(x) k), for any positive integer x.

The claims above follow by applying the Cauchy condensation test, which states that a series ∑
∞
i=1 f (i)

converges if and only if ∑
∞
i=1 2i f (2i) converges. For example, the sum ∑

∞
i=3

1
i log i log log i converges if and only if

the sum ∑
∞
i=3

2i

2i log(2i) log log(2i)
= ∑

∞
i=3

1
i log i converges, and by repeating this, it converges if and only if ∑

∞
i=3

1
i

converges, which it does not. Inductively, this works for any number x of repeated logarithms. In addition, if the
last term is raised to the power δ > 1, it does converge, since its convergence is equivalent to the convergence of
∑

∞
i=3

1
iδ

, which converges.
Consider a sequence f (i) for which S f is convergent, and let c f be its limit. We present an algorithm,

BATCHCOLOR f , for this variant of sum coloring. Initially, all colors are declared available. When coloring
the ith batch, its induced subgraph is first colored using an optimal procedure, COLOR. Let ti denote the maxi-
mum color used by COLOR for batch i. For each j = 1,2, . . . , ti in increasing order, vertices that COLOR gives
color j will be colored using the largest available color among the colors 1,2, . . . ,b j · c f · f (i)c. Then, this color
is declared taken. This color is now unavailable for vertices of future batches and for vertices of the current batch
that were assigned a color larger than j by COLOR. If this process is successful (there always exists an available
color), then we say that batch i is feasible.

Assuming that all batches are feasible, using arguments similar to those used for Lemma 7, we obtain an
upper bound on the strict competitive ratio of BATCHCOLOR f as follows. Since a color used by COLOR in a
particular batch is assigned to an available color by BATCHCOLOR f , if all batches are feasible, each pair, (i, j),
where i is a batch number and j is a color assigned by COLOR in batch i, is given a different color. Since COLOR

produces a proper coloring, BATCHCOLOR f does too. The function f is nondecreasing, so the color assigned to
a given vertex by BATCHCOLOR f is at most c f · f (k) times the color assigned by COLOR.

Lemma 9 Consider sum coloring in k ≥ 2 batches, where the value of k is not known in advance. If for all
1≤ i≤ k, batch i is feasible, then the strict competitive ratio of BATCHCOLOR f is at most c f · f (k).

Lemma 10 All batches for the algorithm BATCHCOLOR f are feasible.

Proof Assume that the algorithm has an infeasible batch, let i be the minimal index of a batch that is not feasible,
and j be the smallest color that was used by COLOR, for which BATCHCOLOR f cannot find an available color
among the first b j · c f · f (i)c colors. Let t + 1 be the smallest available color at the time when BATCHCOLOR f
tries to select a color for vertices that COLOR gives color j in batch i. That is, all the t smallest colors were
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selected earlier (during the first i− 1 batches or earlier during batch i), and color t + 1 is still available. By
definition, t +1 > b j · c f · f (i)c.

The color t + 1 was available when previous colors were selected. Consider a pair j′, ` such that ` ≤ i,
1≤ j′ ≤ t, and j′ < j if `= i. If t +1≤ b j′ · c f · f (`)c, then the color selected by BATCHCOLOR f for COLOR’s
color j′ for batch ` is above t +1, since the maximum available color no larger than b j′ · c f · f (`)c was selected.
Thus, all colors 1,2, . . . , t were selected for pairs j′, ` satisfying b j′ · c f · f (`)c ≤ t, and thus j′ · c f · f (`)< t +1.
For a given value of `, the number of suitable values of j′ is smaller than t+1

c f ḟ (`) . As the color t + 1 cannot
be selected for COLOR’s color j for batch i, j is one such value for batch i, so for this batch the number of
values of j′ whose selected colors are no larger than t is smaller than t+1

c f ḟ (i) − 1. The total number of colors
strictly below t +1 selected in the first i batches just before COLOR’s color j for batch i is considered is strictly
below ∑

i
`=1

t+1
c f ḟ (`) − 1 ≤ t+1

c f
∑

∞
`=1

1
f (`) − 1 = t, where the last inequality holds since the series converges to c f ,

contradicting the assumption that all the first t colors were already selected. ut

By Lemmas 9 and 10, we obtain:

Theorem 7 Consider sum coloring in at most k batches and let f be any nondecreasing function with f (i) ≥
1 for all i ≥ 1, whose series S f converges to c f . Then, the algorithm BATCHCOLOR f is strictly (c f · f (k))-
competitive, even if the value k is not known in advance.

Now, we provide the lower bound.

Theorem 8 Consider sum coloring in k batches, where the value of k is not known in advance. Let f (i) be a
nondecreasing sequence with f (i) ≥ 1 for all i ≥ 1, whose series S f is divergent. Then, there is no constant c
such that an asymptotic competitive ratio of at most c · f (k) can be obtained for all k ≥ 1.

Proof Assume for the sake of contradiction that there exists a constant c′ > 1 and an algorithm A, such that A
is (c′ · f (k))-competitive, for any number k ≥ 1 of batches. Fix a constant c > c′. Let C = max{2c,10}. Let k
be such that ∑

k
i=1 1/ f (i) > 11C (where k must exist as the series S f is divergent). By definition there exists an

integer M such that if a graph consisting of at least M vertices is revealed to the algorithm in i ≤ k batches,
then the cost of the coloring returned by A on this graph is at most c · f (i) times the optimal cost for this graph.
Without loss of generality assume that M > 130 ·C2 · f (k)2. We say that a color a is small if a≤ 10CM.

We now describe an adversarial input. Batch i of the input consists of Mi−1 cliques of size 3bM/ f (i)c. There
are no edges between vertices in different cliques of the same batch. A vertex that A colors with a small color is
called a cheap vertex. For each batch i, if there is at least one clique containing at least M/ f (i) cheap vertices,
then one such clique is chosen, and the cheap vertices of this clique are called special vertices. In each batch,
all vertices are connected to all special vertices of previous batches and to no other vertices in previous batches.
Thus, no colors used for special vertices can be used in later batches, and there is at most one special vertex for
each small color.

The input will contain at most k batches. If, after some batch i < k, the sum of colors used by A is larger
than c · f (i) times the optimal sum of colors, there will be no more batches. Otherwise, all k batches are given.
Thus, if there are fewer than k batches, the theorem trivially follows. Below, we consider the case where there
are exactly k batches.

We first give an upper bound on the optimal sum of colors for the first i batches, for 1≤ i≤ k.
Claim: For every value of i (such that 1 ≤ i ≤ k), the optimal sum of colors for the first i batches is at most

19Mi+1/( f (i))2.
We now prove the claim: Consider the following proper coloring. For each clique K, let nK denote the number

of vertices in K that are not special. These vertices are colored using the colors 1,2, . . . ,nK . Each special vertex
v is given the color 3M + b, where b is the color assigned to v by A. As the vertices of each clique are only
connected to special vertices of previous batches, and they are not connected to vertices of other cliques of the
same batch, this coloring is proper.

For i = 1, there is only one clique, and the sum of colors in the coloring, where there is one vertex of every
color in {1,2, . . .3b M

f (i)c}, is
3b M

f (i) c

∑
`=1

` <
9M2

( f (i))2 <
19Mi+1

( f (i))2 .
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For i≥ 2, the sum of the colors of special vertices is at most

3M+10CM

∑
`=3M+1

` < (10CM)(3M+10CM)< 130C2M2 <
M3

( f (k))2 ≤
M3

( f (i))2 ≤
Mi+1

( f (i))2 ,

and the sum of the colors of the remaining vertices is at most

i

∑
j=1

M j−1
3b M

f ( j) c

∑
`=1

` <
i

∑
j=1

M j−1 9M2

( f ( j))2 =
i

∑
j=1

9M j+1

( f ( j))2 <
18Mi+1

( f (i))2 ,

where the last inequality follows by showing that for every j ≤ i we have 9M j+1

( f ( j))2 ≤ 9Mi+1

( f (i))2 · 1
2i− j by induction on

i− j. For i− j = 0, the claim trivially holds. Assume that it holds for i− j and denote j′ = j−1, we will show it
for i− j′. We have

9M j′+1

( f ( j′))2 =
9M j+1

( f ( j))2 ·
( f ( j))2

M · ( f ( j′))2 ≤
9M j+1

( f ( j))2 ·
( f (i))2

M
≤ 1

2
· 9M j+1

( f ( j))2 ≤
9Mi+1

( f (i))2 ·
1

2i− j′

where the first inequality holds because 1 ≤ f ( j′) ≤ f ( j) ≤ f (i), the second inequality holds by our choice of
M, and the last inequality holds by the induction assumption. Thus, for this coloring, the total sum of the colors
is less than 19Mi+1/( f (i))2.

This concludes the proof of the claim.
We now show that, by the assumption that the cost of the coloring returned by A is at most c · f (i) times the

optimal cost of the graph consisting of i batches, 1≤ i≤ k, each batch i must have a clique with at least M/ f (i)
cheap vertices. Assume for the sake of contradiction that some batch i does not contain a clique with at least
M/ f (i) cheap vertices. Then, each clique in the batch contains at most bM/ f (i)c cheap vertices and hence at
least 2bM/ f (i)c vertices with colors larger than 10CM. Thus, the sum of colors used for this batch is more than
Mi−1 · 2bM/ f (i)c · 10CM > 10CMi+1/ f (i) ≥ 20cMi+1/ f (i). By the claim, this gives a ratio between the two
costs of more than

20cMi+1/ f (i)
19Mi+1/( f (i))2 > c · f (i) .

Thus, the total number of special vertices is at least ∑
k
i=1 M/ f (i)> 11CM, contradicting the fact that there is at

most one special vertex for each small color. ut
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2. J. Balogh, J. Békési, G. Dósa, G. Galambos, and Z. Tan. Lower bound for 3-batched bin packing. Discrete Optimization,

21:14–24, 2016.
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