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Abstract The paging algorithm Least Recently Used Second Last Request (LRU-2) was proposed for use
in database disk buffering and shown experimentally to perform better than Least Recently Used (LRU).
We compare LRU-2 and LRU theoretically, using both the standard competitive analysis and the newer
relative worst order analysis. The competitive ratio for LRU-2 is shown to be 2k for cache sizek, which is
worse than LRU’s competitive ratio ofk. However, using relative worst order analysis, we show thatLRU-2
and LRU are comparable in LRU-2’s favor, giving a theoretical justification for the experimental results.
Many of our results for LRU-2 also apply to its generalization, Least Recently UsedKth Last Request.

Keywords On-line algorithms· relative worst order analysis· paging· competitive ratio· LRU · LRU-2 ·
LRU-K.

1 Introduction

On many layers in a computer system, one is faced with maintaining a subset of memory units from a
relatively slow memory in a significantly smaller fast memory. For ease of terminology, we refer to the fast
memory as thecache and to the memory units aspages. The cache will have sizek, meaning that it can
hold at mostk pages at any time. Pages are requested by the user (possibly indirectly by an operating or
a database system) and the requests must be treated one at a time without knowledge of future requests.
This makes the problem anon-line problem. If a requested page is already in cache, this is referred to as a
hit. Otherwise, it is apage fault. When a page fault occurs, the requested page must be brought into cache.
Thus, the only freedom is the choice of a page to evict from cache in order to make room for the requested
page in the case of a page fault. An algorithm for this problemis referred to as apaging algorithm. Other
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names for this in the literature are “eviction strategy” or “replacement policy”. Various cost models for
this problem have been studied. We focus on the classic modelof minimizing the number of page faults.
The problem is of great importance in database systems whereit is often referred to as thedatabase disk
buffering problem. See [2] for an overview of the paging problem, cost models, and paging algorithms in
general.

Probably the most well-known paging algorithm is LRU (Least-Recently-Used), which on a page fault
evicts the least recently used page from cache. Experience from real-life request sequences, according
to [18], is that overall LRU performs better than all other paging algorithms which have been proposed
up until the introduction of LRU-K. On a page fault, LRU-K evicts the page with the least recentKth
last request. In other words, for each page, a list of times ismaintained for theK most recent requests to
that page. The first element of the list corresponds to the most recent access, the second corresponds to
the access before that, etc. So to choose which page to evict,LRU-K compares theKth (last) elements of
these lists, and chooses the page whoseKth element is oldest. (If there are pages in cache which have been
requested fewer thanK times, the least recently used of these is evicted.) Compelling empirical evidence is
given in [18] in support of the superiority of LRU-2 over LRU in database systems. We return to this issue
below. From a statistical point of view, LRU-K has been shownto be optimal under the independent page
reference model [19]. Since the introduction of LRU-K, there have been other proposals for better paging
algorithms; for example [13].

In the on-line community, there were, to our knowledge, no published results on LRU-K before the
preliminary conference version of this paper [4]. We assumethat this was because it had not been possible
to explain the experimental results using older on-line algorithmic techniques. In this paper, we provide
a possible theoretical justification of LRU-2’s superiority over LRU. More specifically, we show using
relative worst order analysis [5] that LRU-2 and LRU are comparable in LRU-2’s favor. In establishing
this result, we prove a general result giving an upper bound on how well any algorithm can perform relative
to LRU.

After the earlier version of this paper [4], other researchers have continued the investigation of the
LRU-2 algorithm, but have not obtained the same positive results for LRU-2.

In [10], a technique called relative interval analysis, which reflects the range of the difference between
the fault rate of two algorithms, is used to investigate paging algorithms. The results regarding LRU-2 are
inconclusive, but the partial result in [10] states that forexactlyk+1 pages in slow memory, LRU is better
than LRU-2. The authors conclude from this that further assumptions need to be made in the model they
use to reflect the behavior of these algorithms which is seen in practice.

In [8], parameterized analysis is applied to a series of paging algorithms. The parameter used is the
amount of locality of reference in a given sequence, using a natural measure for the amount of locality of
reference. The results obtained suggest that the performance of LRU is approximately twice as good as that
of LRU-2 on sequences with the same amount of locality of reference.

In the operating systems community, further developments of paging algorithms have been studied
and evaluated experimentally. A prominent example of this is the Adaptive Replacement Policy [17]. This
algorithm tries to balance the key concepts of recency and frequency in a dynamic fashion, but allowing a
varying amount of space for pages seen only once and pages seen at least twice recently. For an eviction
strategy, this algorithm is quite complicated, which is probably one reason that an online analysis of the
algorithm has not appeared yet, though experimental evidence suggests that it could be superior to LRU-2.

It is well-known that analysis of the paging problem is particularly problematic for the most standard
quality measure for on-line algorithms, the competitive ratio [15,20]. This has led researchers to investigate
alternative methods. See a long list of these in [1,9]. A few of the measures described there have been
applied to more than one online problem, but most of these methods are only applicable to the paging
problem.

In contrast, it has been demonstrated that relative worst order analysis is applicable to many on-line
problems. In most cases, relative worst order analysis makes the same distinction between algorithms as
competitive analysis does. However, the following is a listof results, where relative worst order analysis
has distinguished between algorithms in a situation where competitive analysis cannot distinguish or even
in some cases favors the ”wrong” algorithm. This is not an exclusive list; we merely highlight one result
from each of these on-line problems. Each of these results holds according to relative worst order analysis:
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– For classical bin packing, Worst-Fit is better than Next-Fit [5].
– For dual bin packing, First-Fit is better than Worst-Fit [5].
– For paging, LRU is better than FWF (Flush-When-Full) and look-ahead helps [6].
– For scheduling, minimizing makespan on two related machines, a post-greedy algorithm is better than

scheduling all jobs on the fast machine [12].
– For bin coloring [16], a natural greedy-type algorithm is better than just using one open bin at a

time [11].
– For proportional price seat reservation, First-Fit is better than Worst-Fit [7].

We refer the reader to the referenced papers for details and more results. Here, we merely want to point
out that relative worst order analysis is an appropriate tool to apply to on-line problems in general. After
the definitions for relative worst order analysis, we present some intuitive justification for why it also gives
interesting results in comparing LRU and LRU-K.

For completeness, we mention that there does exist a result with relative worst order analysis which
ranks algorithms in the reverse order from what one would guess. Best-Fit is recognized as being better
than First-Fit in practice for the classical bin packing problem. Neither the competitive ratio nor relative
worst order analysis separate them, but relative worst order analysis says that First-Fit is better than Best-Fit
for the closely related dual bin packing problem [5].

Our paper is structured as follows: LRU-K, along with previous results and testing of the algorithm, is
described in Section 2. Its competitive ratio is proven to beKk in Section 3, showing that LRU-K has a
suboptimal competitive ratio in comparison to LRU’s competitive ratio ofk. However, in Section 4, relative
worst order analysis is applied showing that LRU-2 is comparable to LRU in LRU-2’s favor, providing the
theoretical justification for LRU-2’s superiority. For LRU-K in general, we show the slightly weaker result
that LRU-K and LRU are resource-asymptotically comparablein LRU-K’s favor. However, most of our
results are shown to hold for LRU-K. Two results which may be of independent interest are, first, a bound
on cu(LRU,A), the factor by which any algorithmA can be better than LRU using relative worst order
analysis, and secondly, a proof that the resource-asymptotically comparable relation is transitive.

In this paper, we usek as well asK, which is a little unusual. In the online algorithms community, k is
always used for the size of the cache, and we believe it would be confusing to use something else. Previous
authors have named their algorithm LRU-K, and the algorithmis in the title of this paper, so it would also
be odd to change that. We hope the reader can bear with this slight inconvenience.

2 LRU-2 and Experimental Results

In [18], a new family of paging algorithms, LRU-K, is defined.Here, K is a constant which defines the
specific algorithm in the family. On a page fault, LRU-K evicts the page with the least recentKth last request
(LRU-1 is LRU). If there are pages in cache which have been requested fewer than K times, then some
subsidiary policy must be employed for those pages. In [18],LRU is suggested as a possible subsidiary
policy. However, it would also be natural to recursively useLRU-(K-1). For the case of K= 2, this is the
same. The results in this paper are independent of the choiceof subsidiary policy.

The authors’ motivation for considering LRU-2 (or LRU-K in general for various K) is that LRU does
not discriminate between pages with very frequent versus very infrequent references. Both types can be
held in cache for a long time once they are brought in. This canbe at the expense of pages with very
frequent references.

The algorithm LFU (Least-Frequently-Used) which evicts the page which is least frequently used is
the ultimate algorithm in the direction of focusing on frequency, but this algorithm appears to adjust too
slowly to changing patterns in the request sequence, according to competitive analysis [20]. The family
of algorithms, LRU= LRU-1, LRU-2, LRU-3, . . . with recursive subsidiary policies can be viewed as
approaching the behavior of LFU.

A conscientious testing in [18] of particularly LRU-2 and LRU-3 up against LRU and LFU led the
authors to conclude that LRU-2 is the algorithm of choice in database systems. The algorithms are tested
in a real database system environment using random references from a Zipfian distribution, using real-life
data from a CODASYL database system, and finally using data generated to simulate request sequences
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which would arise from selected applications where LRU-2 isexpected to improve performance. LRU-2
and LRU-3 perform very similarly and in all cases significantly better than the other algorithms. Many
test results are reported which can be viewed in different ways. If one should summarize the results in
one sentence, we would say that LRU and LFU need 50–100% extracache space in order to approach the
performance of LRU-2.

Further testing of modifications of LRU-2 which require lessextra memory [21,14], have found that
these variants are also superior to LRU.

It is not a coincidence that most of the testing of LRU-K algorithms have taken place in a database
setting. In the fastest end of the memory hierarchy, betweentwo levels of cache for instance, algorithms
must be fast. Additionally, since data units are relativelysmall, not much space should be used for adminis-
tration. The LRU-K algorithms are relatively complicated and need additional space for recording the last
K accesses to a data unit, so LRU-K algorithms are not well suited for those levels. Using a few words for
administration (when using LRU-2 or LRU-3) is not a problem in a database application with units of 8
KB of data, for instance. Also, page faults are very costly since they give rise to additional disk accesses,
so running a more complicated algorithm to make better eviction decisions could be well worth the effort.

3 Competitive Analysis

Let A(I) denote the number of page faults a paging algorithmA has on request sequenceI. The standard
measure for the quality of on-line algorithms is thecompetitive ratio. The competitive ratio ofA is

CR(A) = inf {c | ∃b : ∀I : A(I)≤ c ·OPT(I)+b} ,

where OPT denotes an optimal off-line algorithm [15,20].
Conservative algorithms are those which incur at mostk faults on any consecutive input subsequence

containing at mostk distinct pages. Ak-phase partitioning of a sequence is the recursive partitioning
of the sequence into maximal subsequences (each referred toas ak-phase) containing exactlyk distinct
pages [3]. Suppose that all pages are unmarked at the beginning of everyk-phase and then marked the first
time they are requested within ak-phase. Amarking algorithm is one which never evicts marked pages.
Neither of the properties “conservative” or “marking” imply the other. For instance, Flush-When-Full is
a marking algorithm, but is not conservative, while First-In-First-Out is conservative, but not a marking
algorithm. LRU is known to be both a conservative algorithm [22] and a marking algorithm [3]. Both types
of algorithms have competitive ratiok.

To see that LRU-K belongs to neither of these classes, consider the request sequence,

I = 〈pK
1 , pK

2 , ..., pK
k+1, p1, p2, p1, p2〉.

The firstK(k+1) requests ensure that theKth last request to each of the pages is well defined, sop1 is
evicted when the first request topk+1 occurs. This leads to a fault onp1 and the eviction ofp2, since at
this point itsKth last request is the(K +1)st request inI. Next p2 is requested, giving a page fault, and
evicting p1, because itsKth last request is currently the second request inI. The next to last request is a
fault on p1, causingp2 to be evicted, since at this point itsKth last request is the(K +2)nd request inI.
Finally, there is a fault onp2. The subsequence starting with the first request top4 and continuing to the
end of the sequence contains onlyk distinct requests, but hask+2 faults, so LRU-K is not conservative.
The secondk-phase begins with the first request topk+1, markingpk+1. The following requests top1 and
p2 mark them. The last two requests are part of this secondk-phase, so no marking algorithm would fault
on them. Thus, LRU-K is not a marking algorithm.

Since LRU-K is neither a conservative nor a marking algorithm, it is not obvious that its competitive
ratio isk. In fact, the lemma below shows that it is larger thank.

Lemma 1 The competitive ratio of LRU-K is at least Kk, for k ≥ 2.

Proof Assume that there arek+1 distinct pages,p1, p2, ..., pk+1, in slow memory, and assume without loss
of generality that the pagesp1, p2, . . . , pk are both in OPT and LRU-K’s caches.
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Let
P0 = 〈(p1, p2, . . . , pk−1)

K
, pK

k 〉

and letP1 beK repetitions ofp1, p2, . . . , pk−1, interleaved withK requests forpk+1 such that the first, third,
fifth, etc. request is forpk+1, until K requests forpk+1 have been made:

P1 = 〈pk+1, p1, pk+1, p2, . . . , pk+1, pk−1, pk+1, p1, pk+1, p2, pk+1, p3, p4, p5, . . . , pk−1
︸ ︷︷ ︸

exactlyK requests forpk+1

〉

It is clear that neither LRU-K nor OPT faults on any request inP0, since all these requests are to the
pages they initially have in cache. On the first request forpk+1 in P1, both LRU-K and OPT fault. OPT
will evict pk and consequently not fault on any further requests inP1. For LRU-K, on the other hand, since
pk hasK requests just beforeP1, making itsKth last request newer than any others until theKth request
to each page inP1. The first time there arek−1 other pages with newerKth last pages thanpk is at the
last request, so LRU-K will not evictpk until the last request inP1. Hence, due to the cyclic repetition of
p1, p2, . . . , pk−1 at the beginning ofP0, at a request forpi (1≤ i ≤ k−1), LRU-K will evict pk+1 until it has
hadK requests andpi+1 (or p1 if i = k−1) after that. Each request forpk+1 will evict the following page
in P1 (pagepi+1). It follows that LRU-K faults on allKk requests inP1.

After P1, neither OPT nor LRU-K havepk in cache. Hence, we can now repeat the above request
sequence (possibly with renaming of pages) arbitrarily often, and the result follows.

Lemma 2 LRU-K is Kk-competitive.

Proof Consider any sequence,I = 〈r1,r2, . . . ,rn〉, and itsk-phase partition. We prove that in eachk-phase,
LRU-K faults at mostK times on each of thek different pages requested in that phase.

Suppose, for the sake of contradiction, that LRU-K faults more thanK times on some page in a phase
P. Let p be the first page inP with more thanK faults inP. At some point between theKth and(K +1)st
faults onp, p must have been evicted by a requestri to some other pageq. The pageq is one of thek pages
in P. Since there are onlyk different pages inP andp is not in cache just afterri, there must be some page
w in cache just afterri which is not inP. TheKth last request tow must be before the start ofP and thus
before theKth last request top. Hence,p could not have been evicted atri. This gives a contradiction, so
there are at mostKk faults in anyk-phase.

The following theorem follows immediately from the previous two results:

Theorem 1 CR(LRU-K) = Kk.

4 Relative Worst Order Analysis

Now we give the theoretical justification for the empirical result that LRU-2 performs better than LRU. In
order to do this, we use a different measure for the quality ofon-line algorithms, the relative worst order
ratio [5,6], which has previously [5,6,12,7] proven capable of differentiating between algorithms in other
cases where competitive analysis failed to give the “correct” result. Instead of comparing on-line algorithms
to an optimal off-line algorithm (and then comparing their competitive ratios), two on-line algorithms are
compared directly. However, instead of comparing their performance on the exact same sequence, they are
compared on their respective worst permutations of the samesequence:

Definition 1 Let σ(I) denote a permutation of the sequenceI, let A andB be paging algorithms, and let
AW (I) = maxσ{A(σ(I))}. Define

cl(A,B) = sup{c | ∃b : ∀I : AW (I)≥ cBW (I)−b} and

cu(A,B) = inf{c | ∃b : ∀I : AW (I)≤ cBW (I)+b}.

Therelative worst order ratio WRA,B of algorithmA to algorithmB is defined as:

If cl(A,B)≥ 1, then WRA,B = cu(A,B) and

if cu(A,B)≤ 1, then WRA,B = cl(A,B).

Otherwise, WRA,B is undefined.
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Intuitively, cl(A,B) andcu(A,B) can be thought of as tight lower and upper bounds, respectively, on
the cost ofA relative toB. When eithercl(A,B)≥ 1 orcu(A,B)≤ 1 holds, the relative worst order ratio is
a bound on how much better the one algorithm can be, i.e., if WRA,B < 1, algorithmsA andB are said to
be comparable inA’s favor. Similarly, if WRA,B > 1, the algorithms are said to be comparable inB’s favor.

In some cases, however, the first algorithm can do significantly better than the second, while the second
can sometimes do marginally better than the first. In such cases, we use the following definitions (from [6],
but restricted to the paging problem here) and show that the two algorithms are resource-asymptotically
comparable in favor of the first algorithm.

Definition 2 Let A andB be paging algorithms, and letcu andcl be defined as above. When the limits
exist, define

c∞
l (A,B) = lim

k→∞
{cl(A,B)} and c∞

u (A,B) = lim
k→∞

{cu(A,B)}.

If c∞
u (A,B)≤ 1 orc∞

l (A,B)≥ 1, the algorithms areresource-asymptotically comparable and the resource-
asymptotic relative worst-order ratio WR∞

A,B
of A toB is defined. Otherwise, WR∞

A,B
is undefined.

If c∞
u (A,B)≤ 1, then WR∞

A,B = c∞
l (A,B) and

if c∞
l (A,B)≥ 1, then WR∞

A,B = c∞
u (A,B).

If WR∞
A,B

< 1, algorithmsA andB are said to be resource-asymptotically comparable inA’s favor.
Similarly, if WR∞

A,B
> 1, the algorithms are said to be resource-asymptotically comparable inB’s favor.

The relation, being resource-asymptotically comparable in the first algorithm’s favor, is transitive, so it
gives a well-defined means of comparing on-line algorithms.

Lemma 3 Resource-asymptotically comparable in an on-line algorithm’s favor is a transitive relation.

Proof Assume that three algorithmsA, B, andC, for the same minimization problem (the proof is easily
adapted to maximization problems), are related such thatA is resource-asymptotically comparable toB in
A’s favor andB is resource-asymptotically comparable toC in B’s favor.

We need to show thatA is resource-asymptotically comparable toC in A’s favor, i.e.,

c∞
u (A,C)≤ 1 and c∞

l (A,C)< 1.

SinceA is resource-asymptotically comparable toB in A’s favor andB is resource-asymptotically compa-
rable toC in B’s favor, we know that

c∞
u (A,B)≤ 1 and c∞

l (A,B)< 1

and
c∞

u (B,C)≤ 1 and c∞
l (B,C)< 1.

It follows that

1≥ c∞
u (A,B) · c

∞
u (B,C)

= lim
k→∞

{cu(A,B)} · lim
k→∞

{cu(B,C)}

= lim
k→∞

{inf{c1 | ∃b1 : ∀I : AW (I)≤ c1BW (I)+b1}}·

lim
k→∞

{inf{c2 | ∃b2 : ∀I : BW (I)≤ c2CW (I)+b2}}

= lim
k→∞

{ inf{c1 | ∃b1 : ∀I : AW (I)≤ c1BW (I)+b1} · inf{c2 | ∃b2 : ∀I : BW (I)≤ c2CW (I)+b2}}

= lim
k→∞

{inf{c1c2 | ∃b1,b2 : ∀I : AW (I)≤ c1BW (I)+b1 ∧ BW (I)≤ c2CW (I)+b2}}

= lim
k→∞

{inf{c | ∃b : ∀I : AW (I)≤ cCW (I)+b}}

= lim
k→∞

{cu(A,C)}

= c∞
u (A,C).

In the above, we use the fact that thec1’s andc2’s can be assumed to be non-negative.
A similar argument shows thatc∞

l (A,C)< 1.
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In the following, we first show an upper bound on how much better any on-line algorithm can be
when compared to LRU on their respective worst permutationsof any request sequence. This is basically
an observation that the proof in [6], showing there is a limitto how much LIFO can be better than LRU
(whereas LRU can be unboundedly better than LIFO), holds forany algorithmA. Next, we show that
WRLRU,LRU-2 is defined, with LRU-2 being at least as good as LRU, and that LRU-2 achieves this largest
possible upper bound with respect to LRU. Finally, we show that LRU-K (K ≥ 3) and LRU are resource-
asymptotically comparable in LRU-K’s favor.

Notice that LRU and LRU-K perform very similarly on many sequences, especially the cyclic sequences
with very long periods and no repeated requests within each period. These sequences are disastrous for
both algorithms, causing them to fault on every request. Such sequences have essentially the same number
of requests to every page. In their intuitive justification for why LRU-2 may perform better than LRU,
[18] mentions, for example, database applications where, when searching in a tree, the root node is accessed
much more than other nodes. This leads to long, cyclic-like request sequences, but the nodes near the
root of the tree occur in many “cycles”, and other nodes do not. On the worst case ordering with this
content, any algorithm would have to fault on the new pages inevery cycle. LRU, however, would fault
on nearly all pages, while LRU-K can keep the pages which occur most often in the entire sequence, the
pages corresponding to the nodes near the root, in cache. Thus, the sequences which actually occur in
this application are worst orderings of the sequences (for both algorithms). Intuitively, relative worst order
analysis, which compares different algorithms on their worst orderings of sequences with the same content,
could give interesting results in this case.

Next, we extend the theorem in [6] stating that for any input sequenceI there exists a worst permutation
of I with respect to LRU where all faults appear before all hits toalso hold for LRU-K in general. Recall
that LRU-1= LRU.

Lemma 4 For any request sequence I, there exists a worst ordering of I with respect to LRU-K with all
faults appearing before all hits.

Proof The proof is done by contradiction. For someK and any input sequenceI, assume that there is no
worst ordering ofI with respect to LRU-K where all faults appear before all hits.

Among the worst orderings ofI with respect to LRU-K, consider the orderings where the firstgroup
of hits occurs as late as possible. Among these, letI′ be one with as small a first group of hits as possible.
Let I′ consist of the requestsr1,r2, . . . ,rn, in that order. Letri,ri+1, . . . ,r j be the first group of hits inI, i.e.,
r1,r2, . . . ,ri−1, andr j+1 are all faults. Letp denote the page requested byri.

In the following, we permuteI′ to I′′ by movingri, and possibly other later requests top, afterr j+1.
Note that moving requests forp within the sequence only affectsp’s position in the queue that LRU-K
evicts from. The relative order of the other pages stays the same. While moving the requests, we maintain
the following two invariants.

1. Immediately before any requestru to a page different fromp, if p is in the cache ofI′, then it is also in
the cache ofI′′.
Hence, if a request for a page different fromp is a fault inI′, then it is also a fault inI′′, since the pages
not equal top in I′′’s cache are a subset of the pages inI′’s cache.

2. There are at least the same number of faults at requests forp in I′′ as inI′.

Combined, the two invariants ensure that the cost onI′′ is at least as high as onI′. Now, start by settingu
equal toi and then permuteI′ to I′′ by repeating these steps:

1. Remove the request forp at ru in I′ (currently a hit).
For any requestrv, v > u, this will make theKth last request top less recent inI′′ than in I′, i.e.,
Invariant 2 must be true. However, this may also make LRU-K evict p at some point afterru in I′′,
where it was not evicted inI′, violating Invariant 1. If this is not the case, simply insert p after the last
requestrn in I′′, and stop the procedure.

2. Let rv be the first point at which LRU-K evictsp in I′′, but not inI′, and insertp immediately afterrv

in I′′ as a fault.
For any requestrw, w > v, theKth last request top is at least as recent inI′′ as inI′, i.e., Invariant 1 must
now hold, but Invariant 2 may be violated. If this is not the case, we stop the procedure. Otherwise, let
rw, w > v be the first request top that is a hit inI′′, but a fault inI′. Setu equal tow and go to Step 1.
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Note that when following Step 1 for the first time,u = i. Since there are only hits inri, . . . ,r j, p is
evicted at the earliest atr j+1, i.e.,v > j. Consequently, either the first group of hits inI′′ is one smaller than
in I′ or (wheni = j) the first hit occurs later inI′′ than inI′. Furthermore, since both invariants hold at the
end of the procedure,I′′ has at least as many faults asI′. Combining this, we would initially have chosen
I′′ overI′, thereby proving thatI′ cannot exist.

We now want to prove an upper bound on LRU’s performance compared to LRU-2. However, this
bound can be established more generally as a bound that holdsin comparison with any deterministic paging
algorithm.

Theorem 2 For any deterministic paging algorithm A and any input sequence I,

LRUW (I)≤
k+1

2
AW (I)+ k

Proof Suppose there exists a sequenceI, where LRU faultss times on its worst permutation,ILRU. As
shown in Lemma 4, there exists a worst permutationIw of ILRU with respect to LRU where all faults appear
before all hits. LetI f be the prefix ofIw consisting of thes faults. Partition the sequenceI f into subsequences
of lengthk+1 (except possibly the last which may be shorter). We processthese subsequences one at time,
possibly reordering some of them, so thatA faults at least twice on all, except possibly the last, thereby
proving the result.

The first subsequence is treated specially below. Suppose the firsti subsequences have been considered
and consider the(i+1)st subsequence,I′ = 〈r1,r2, . . . ,rk+1〉, of consecutive requests inI f whereA faults
at most once. Since LRU faults on every request, they must be to k+1 different pages,p1, p2, ..., pk+1. Let
p be the page requested immediately beforeI′. Note thatp 6= pi for 1≤ i ≤ k, since otherwise LRU would
not fault onpi. Clearly,p must be inA’s cache when it starts processingI′.

If rk+1 is not a request top, thenI′ containsk+1 pages different fromp, but at mostk−1 of them
are inA’s cache when it starts processingI′ (p is in its cache). Hence,A must fault at least twice on the
requests inI′.

On the other hand, ifrk+1 is a request top, then there are exactlyk requests inI′ which are different
from p. At least one of them, saypi, must cause a fault, since at mostk−1 of them could have been in
A’s cache just before it began processingI′. If A faults on no other page thanpi in I′, then all the pages
p, p1, p2, . . . , pi−1, pi+1, . . . , pk must be inA’s cache just before it starts to processI′. Now, move the request
to pi to the beginning ofI′. This causesA to fault and evict one of the pagesp, p1, p2, . . . , pi−1, pi+1, . . . , pk.
Hence, it must fault at least one additional time while processing the rest of this reordering ofI′.

For the first subsequenceI, definep as follows. If pk+1 is in the cache from the very beginning, letp
denotepk+1. Otherwise, letp denote any page in the initial cache different fromp1 throughpk. Note that
such a page must exist, since otherwise LRU would not fault onthese pages. Now, proceed as above.

In preparation for showing that LRU is always at least as bad as LRU-2, up to an additive constant, we
need the following knowledge of worst orderings for LRU.

Lemma 5 For any input sequence I of length at least k+1, if each page requested in I is requested at most
⌊

|I|
k+1

⌋

times, then LRUW (I) = |I|.

Proof Let I be any request sequence in which each page is requested at most
⌊

|I|
k+1

⌋

times. Below,I is

reordered toI′, thereby making LRU fault on all requests.
If k+1≤ |I|< 2(k+1), then each page is requested once, and LRU can easily be made to fault on all

requests, independent of the initial cache.
Otherwise, consider thek pages in the initial cache of LRU in the order that LRU evicts them if they are

not requested. Denote bypk be the first page that is evicted,pk−1 the second, etc. Choosing any arbitrary
order, denote the pages requested inI that are not initially in the cache bypk+1, pk+2, etc.
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Denote the requests inI′ by r1,r2, . . . ,r|I|. In order to assign pages fromI to the requests inI′, consider
the requests in the following order:

r(k+1), r2(k+1), r3(k+1), . . .

r(k+1)−1, r2(k+1)−1, r3(k+1)−1, . . .

. . .

r(k+1)−k, r2(k+1)−k, r3(k+1)−k, . . .

In the above, all|I| positions inI′ are listed. Considering the pages fromI in the orderp1, p2, etc., requests
to each of these pages are placed in the above order, i.e., therequests top1 are at positionrk+1, r2(k+1), etc.
Next, the first request top2 is at positionj(k+1) for somej or possibly at positionr(k+1)−1, etc. Thus, the
assignment continues from left to right and top to bottom.

Note that by using this ordering:

1. Each row of requests contains either
⌊

|I|
k+1

⌋

or
⌈

|I|
k+1

⌉

positions.

2. For any requestri = p, for somep, the next request top in the same row of the above order isk+1
positions away.

3. For any pagep which occurs in more than one row in this construction, if thefirst placed request
to p is at position j(k + 1)−m for some j and m, then the last placed request is either at position
( j−1)(k+1)− (m+1) (that is,k+2 positions away from the first request) or even further away from
position j(k+1)−m (depending on the number of requests top in I).

4. If p1 is requested inI′, the first request to this page is at positionk+1, i.e., afterp1 is evicted. Similarly,
for pi, i ≤ k, the earliest request inI′ occurs no earlier than at position(k+1)+1− i = k+2− i (in row
i of the requests), i.e., afterpi has been evicted for the first time.

Hence, LRU faults on all requests inI′.

The following lemma immediately implies that WRLRU,LRU-2 is defined, with LRU-2 being at least as
good as LRU.

Lemma 6 For any input sequence I, LRUW (I)≥ LRU-2W (I)− k.

Proof Consider any request sequenceI. By Lemma 4, there is a worst ordering,Iw, of I with respect to
LRU-2 where all faults appear before all hits. LetI′ be the maximal prefix ofIw consisting only of faults.

Below, we show that for any pagep, the number of requests,s, for this page inI′ is at mostM =
⌈

|I′|
k+1

⌉

.

I′ contains at mostk + 1 pages that are requestedM times. If I′ contains exactlyk + 1 pages that are
requestedM times, then by cyclically requesting thek+1 pages, LRU faults on all request. Otherwise, by
Lemma 5,I′ can be reordered such that LRU faults on all requests, exceptfor one request for each of the at
mostk pages that are requested exactlyM times.

Now, for any pagep, denote the requests forp by p1, p2, . . . , ps, wherep1 is the first request forp in I′,
p2 is the second request forp in I′, etc. For anyi, denote byI′i the requests betweenpi−1 andpi in I′. I′1 is
defined to be the requests in front of the first request forp.

〈. . . , pi−2, . . . . . .︸ ︷︷ ︸

I′i−1

, pi−1, . . . . . .︸ ︷︷ ︸

I′i

, pi, . . . . . .︸ ︷︷ ︸

I′i+1

, pi+1, . . .〉

Definem j (I′i ) to be the number of pages requested at leastj times inI′i . Thus,|I′i |= ∑∞
j=1 m j (I′i ).

Next, we show that in total we are at mostk requests short of associating at leastk requests for pages
different fromp to each request forp. The proof is carried out by induction on prefixes ofI′. Let ei be the
number of requests we are short of having associatedk requests for pages different fromp to each request
for p after having processed the prefix ofI′ up until and includingpi. In the following, we prove that for
anyi, ei ≤ k−m2 (I′i ). Note thatei can be negative.

For i = 1, we arek−|I′1| requests short, and

e1 = k−|I′1| ≤ k−m2
(
I′1
)
.
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For the inductive stepi ≥ 2, first note that sincepi is a fault, we must have

k−m2
(
I′i−1

)
≤ m1

(
I′i
)
,

since immediately afterpi−1, m2
(
I′i−1

)
pages in cache have been requested at least twice more recently

thanp, hence at leastk−m2
(
I′i−1

)
different pages have to be requested inI′i to evict p and causepi to be a

fault.
Next,

ei = ei−1+ k−|I′i |

≤ k−m2
(
I′i−1

)
+ k−

∞

∑
j=1

m j
(
I′i
)

≤ m1
(
I′i
)
+ k−

∞

∑
j=1

m j
(
I′i
)

≤ m1
(
I′i
)
+ k−

2

∑
j=1

m j
(
I′i
)

= k−m2
(
I′i
)
.

By the above, for anyi, ei ≤ k−m2 (I′i )≤ k, i.e., we are in total at mostk requests short. When we also
count the requests top, we haves(k+1)− k ≤ |I′|. Sinces is an integer, by isolatings we get

s ≤

⌊
|I′|+ k
k+1

⌋

≤

⌈
|I′|

k+1

⌉

,

thereby proving the result.

Next, we show that for anyK′ < K, LRU-K can perform significantly better than LRU-K′ on some sets
of input. Since LRU = LRU-1, this also implies that LRU-2 can perform better than LRU.

Lemma 7 For any 1≤ K′ < K, there exists a family of sequences In of page requests and a constant b such
that

LRU-K′
W (In)≥

k+1
2

LRU-KW (In)−b,

and limn→∞ LRU-K′
W (In) = ∞.

Proof Let In consist ofk−1 different pages,p1, p2, . . . , pk−1, each requestednK′+1 times and 2n other
different pages,q1,q2, . . . ,q2n, each requestedK′ times. For largen, nK′+1> K.

Note that there are onlyk−1 pages requestedK or more times. It follows that for any pagepi, LRU-K
cannot fault on any request forpi after it has hadK requests topi. Hence,

LRU-KW (In)≤ 2nK′+K(k−1).

For LRU-K′, we arrange the requests in the following way:

〈(p1, p2, . . . , pk−1,q1,q2)
K′
,

p1, p2, . . . , pk−1,

(q3,q4)
K′
,(p1, p2, . . . , pk−1)

K′
,

(q5,q6)
K′
,(p1, p2, . . . , pk−1)

K′
,

. . . ,

(q2n−1,q2n)
K′
,(p1, p2, . . . , pk−1)

K′
〉

Note, for example, that each timeq3 occurs, except for the first,q4 is in cache, and is the only page in cache
which has not been requestedK′ times, so it is evicted. The first time,q1 has the least recentK′th oldest
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request, so it is evicted. In all cases, one concludes that the next page requested is not in cache and LRU-K’
faults on all the requests. It follows that

LRU-K′
W (In) = (k−1)(nK′+1)+2nK′

= (k+1)nK′+ k−1.

Asymptotically, the ratio isk+1
2 .

Combining results from above, we obtain the following theorem:

Theorem 3 WRLRU,LRU-2 =
k+1

2 .

Proof By Lemma 6, for all any input sequenceI, LRUW (I) ≥ LRU-2W (I)− k. Thus, by Definition 1,
cl(LRU,LRU-2)≥ 1. Again by Definition 1, this means that WRLRU,LRU-2 = cu(LRU,LRU-2).

Using LRU-2 with Theorem 2,cu(LRU,LRU-2) ≤ k+1
2 . Lemma 7 withK′ = 1 andK = 2 shows that

the infimum cannot be any smaller, so WRLRU,LRU-2 =
k+1

2 .

By improving the result in Lemma 6 to hold when comparing anyK′ andK for K′ < K, we conjecture
that our result can be improved:

Conjecture 1 For 1≤ K′ < K, WRLRU-K′,LRU-K = k+1
2 .

However, we can prove that LRU-K and LRU are resource-asymptotically comparable in LRU-K’s
favor. Let I be a sequence where LRU-K faults on every request. We define the LRU-K-phase partition
of I as the recursive division ofI into LRU-K-phases, where a LRU-K-phase is a maximal subsequence
under the restriction that no page is requested more thanK times in the subsequence. It is easy to see that a
complete LRU-K-phase (a LRU-K-phase not ending on the last request in the input sequence) containsK
requests for each of at leastk distinct pages, and as a consequence it contains at leastkK+1 requests for at
leastk+1 distinct pages.

Lemma 8 For K ≥ 2, and for any sequence I of page requests,

LRU-KW (I)≤

(

1+
K −1

K(k+1)

)

LRUW (I).

Proof Consider any request sequenceI that is processed by LRU-K forK ≥ 2. By Lemma 4, there exists
a worst permutation,ILRU-K , of I such that LRU-K faults on each request of a prefixI f of ILRU-K and on
no requests afterI f . PartitionI f into LRU-K-phases. We now inductively reorderI f to gradually obtain a
sequenceI′f such that

LRU-K(I f )≤

(

1+
K −1

K(k+1)

)

LRU(I′f ).

Start at the beginning ofI f and consider the LRU-K-phase starting with the first requestnot already placed
in a processed phase. Each LRU-K-phase contains at leastkK +1 requests for at leastk+1 distinct pages.
Since each page requested in a LRU-K-phase is requested at most K times, a LRU-K-phase containing at
leastK(k + 1) requests can be partitioned intoK sets, each containing requests for at leastk + 1 pages,
none of which are repeated. Each of these sets of requests canthen be ordered so that LRU faults on every
request.

Hence, assume that the current LRU-K-phase is short, i.e., contains fewer thanK(k+1) requests. Let
PK = {p1, p2, . . . , pk} denote thek pages requestedK times in the phase. Now, observe that after a complete
LRU-K-phase, LRU-K has at leastk−1 of the pages inPK in cache, since, by the definition of LRU-K-
phases, the first request just after the LRU-K-phase is for the one page, sayp j, from PK that is not currently
in cache. Hence, after that request, all the pages inPK are in cache. It follows that the next request is for a
page, sayq, not requestedK times in the current phase (not inPK). By moving the request forp j to the end
of the request sequence, it follows from the above that the modified phase in question now contains at least
one more request, the request forq, and no page is requested more thanK times in the modified phase (q
was not inPK). By the above argument, it follows that we can add one request to the current short phase by



12

moving one request to the end of the sequence. Finally, observe that a short phase is at mostK−1 requests
short ofK(k+1). Hence, for each short phase, we only need to move at mostK −1 requests to the end of
the sequence, where they might become hits, to obtain phasesof lengthK(k+1).

Let l denote the total number of modified phases. For each modified phasei, there aresi ≥ K(k+1)
requests, plus possibly at mostK −1 additional requests that LRU-K faulted on and that have been moved
to the end. Thus, LRU faults at least∑l

i=1 si times and LRU-K faults at most∑l
i=1(si +K − 1) times. It

follows that

LRU-KW (I)≤
∑l

i=1(si +K −1)

∑l
i=1 si

LRUW (I)

≤
l(K(k+1)+K −1)

l(K(k+1))
LRUW (I)

=

(

1+
K −1

K(k+1)

)

LRUW (I).

Combining Lemma 7 and the lemma above we arrive at the following:

Theorem 4 LRU-K and LRU are resource-asymptotically comparable in LRU-K’s favor.

Proof By Lemma 8, for anyI,

LRUW (I)≥
1

1+ K−1
K(k+1)

LRU-KW (I).

For k → ∞, the constant in front of LRU-KW (I) approaches one from below. Thus,c∞
l (LRU,LRU-K)≥ 1.

By Definition 2, then WR∞LRU,LRU-K = c∞
u (LRU,LRU-K).

By Lemma 7,cu(LRU,LRU-K) must be at leastk+1
2 , soc∞

u (LRU,LRU-K) = ∞. By definition, LRU
and LRU-K are then resource-asymptotically comparable in LRU-K’s favor.

5 Concluding Remarks

The relative worst order ratio is a worst case measure, considering sequences with the same content to-
gether. Since these worst case orderings have a tendency to occur in certain database applications, this
measure is quite appropriate in these cases. In contrast to the results using competitive analysis, relative
worst order analysis yields a theoretical justification forthe superiority of LRU-2 over LRU, confirming
previous empirical evidence.

An interesting open problem is whether the result that LRU-Kis resource-asymptotically comparable
to LRU in LRU-K’s favor can be strengthened to say that LRU-K is comparable to LRU in LRU-K’s favor
with respect to relative worst order analysis.

Note that, as is the case with resource-asymptotically comparable, the relative worst order ratio is also
transitive, i.e, for any three on-line algorithmsA, B, andC, if A andB are comparable in favor ofA, and
B andC are comparable in favor ofB, thenA andC will be comparable in favor ofA. Thus, the results
from [6], showing that LRU is at least as good as any conservative algorithm and better than Flush-When-
Full (FWF), combined with the results proven here, show that LRU-2 is comparable to any conservative
algorithm and FWF, in LRU-2’s favor in each case. Similarly, by Lemma 3, LRU-K (K ≥ 3) is resource-
asymptotically comparable to any conservative algorithm and FWF, in LRU-K’s favor.

An algorithm called RLRU was proposed in [6] and shown to be better than LRU using relative worst
order analysis. We conjecture that LRU-2 is also comparableto RLRU in LRU-2’s favor. We have found
a family of sequences showing that LRU-2 can be better than RLRU, but would also like to show that the
algorithms are comparable.
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