Acta Informatica manuscript No.
(will be inserted by the editor)

A Theoretical Comparison of LRU and LRU-K

Joan Boyar - Martin R. Ehmsen - Jens S. Kohrt - Kim S.
Larsen

Received: date / Accepted: date

Abstract The paging algorithm Least Recently Used Second Last Re¢LiREY-2) was proposed for use
in database disk buffering and shown experimentally toguerfbetter than Least Recently Used (LRU).
We compare LRU-2 and LRU theoretically, using both the staticcompetitive analysis and the newer
relative worst order analysis. The competitive ratio foll-R is shown to be Rfor cache sizd, which is
worse than LRU’s competitive ratio &f However, using relative worst order analysis, we showltRai-2
and LRU are comparable in LRU-2’s favor, giving a theordtjaatification for the experimental results.
Many of our results for LRU-2 also apply to its generalizatibeast Recently Useiith Last Request.

Keywords On-line algorithms relative worst order analysigpaging- competitive ratio LRU - LRU-2 -
LRU-K.

1 Introduction

On many layers in a computer system, one is faced with maingpia subset of memory units from a
relatively slow memory in a significantly smaller fast memdtor ease of terminology, we refer to the fast
memory as theache and to the memory units gmges. The cache will have sizk, meaning that it can
hold at mosk pages at any time. Pages are requested by the user (possibbbctly by an operating or
a database system) and the requests must be treated onenatwitfiout knowledge of future requests.
This makes the problem am-line problem. If a requested page is already in cache, this isresf¢o as a
hit. Otherwise, it is gpage fault. When a page fault occurs, the requested page must be brotgleache.
Thus, the only freedom is the choice of a page to evict fronmeais order to make room for the requested
page in the case of a page fault. An algorithm for this probleneferred to as paging algorithm. Other

A preliminary version of this paper appeared in the Procegdof the 4th International Workshop on Approximation andi@ml
Algorithms, volume 4368 of Lecture Notes in Computer Scienageg 95-107, Springer, 2006. This work was supported irbgart
the Danish Natural Science Research Council.

Joan Boyar

Department of Mathematics and Computer Science, UniversiBpathern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
Tel.: +45 6550 2338

Fax: +45 6550 2325

E-mail: joan@imada.sdu.dk

Martin R. Ehmsen
Department of Mathematics and Computer Science, UniversiBoathern Denmark
E-mail: ehmsen@imada.sdu.dk

Jens S. Kohrt
Department of Mathematics and Computer Science, UniversiBoathern Denmark
E-mail: svalle@imada.sdu.dk

Kim S. Larsen
Department of Mathematics and Computer Science, UniversiBoathern Denmark
E-mail: kslarsen@imada.sdu.dk

names for this in the literature are “eviction strategy” ceplacement policy”. Various cost models for
this problem have been studied. We focus on the classic nodarinimizing the number of page faults.
The problem is of great importance in database systems vithereften referred to as thdatabase disk
buffering problem. See [2] for an overview of the paging problem, cost modeid, gaging algorithms in
general.

Probably the most well-known paging algorithm is LRU (LeR&icently-Used), which on a page fault
evicts the least recently used page from cache. Experignoe ifeal-life request sequences, according
to [18], is that overall LRU performs better than all othegjmey algorithms which have been proposed
up until the introduction of LRU-K. On a page fault, LRU-K ets the page with the least recdfth
last request. In other words, for each page, a list of timesamtained for thd&k most recent requests to
that page. The first element of the list corresponds to thd megent access, the second corresponds to
the access before that, etc. So to choose which page to ERIOtK compares th&th (last) elements of
these lists, and chooses the page whtikeelement is oldest. (If there are pages in cache which heee b
requested fewer thaf times, the least recently used of these is evicted.) Coimgeadimpirical evidence is
given in [18] in support of the superiority of LRU-2 over LRU database systems. We return to this issue
below. From a statistical point of view, LRU-K has been shawbe optimal under the independent page
reference model [19]. Since the introduction of LRU-K, théave been other proposals for better paging
algorithms; for example [13].

In the on-line community, there were, to our knowledge, nblighed results on LRU-K before the
preliminary conference version of this paper [4]. We assthméthis was because it had not been possible
to explain the experimental results using older on-lineathmic techniques. In this paper, we provide
a possible theoretical justification of LRU-2’s superipridver LRU. More specifically, we show using
relative worst order analysis [5] that LRU-2 and LRU are comparable in LRU-2's favor. Inasishing
this result, we prove a general result giving an upper boumiglosvy well any algorithm can perform relative
to LRU.

After the earlier version of this paper [4], other researsh®ve continued the investigation of the
LRU-2 algorithm, but have not obtained the same positivalte$or LRU-2.

In [10], a technique called relative interval analysis, ethieflects the range of the difference between
the fault rate of two algorithms, is used to investigate pggilgorithms. The results regarding LRU-2 are
inconclusive, but the partial result in [10] states thateéractlyk+ 1 pages in slow memory, LRU is better
than LRU-2. The authors conclude from this that further agstions need to be made in the model they
use to reflect the behavior of these algorithms which is segndctice.

In [8], parameterized analysis is applied to a series ofpgagigorithms. The parameter used is the
amount of locality of reference in a given sequence, usingtaral measure for the amount of locality of
reference. The results obtained suggest that the perfaereiRU is approximately twice as good as that
of LRU-2 on sequences with the same amount of locality ofrezfee.

In the operating systems community, further developmehisaging algorithms have been studied
and evaluated experimentally. A prominent example of thibé Adaptive Replacement Policy [17]. This
algorithm tries to balance the key concepts of recency aglifncy in a dynamic fashion, but allowing a
varying amount of space for pages seen only once and pagesisksast twice recently. For an eviction
strategy, this algorithm is quite complicated, which ish@bly one reason that an online analysis of the
algorithm has not appeared yet, though experimental eg&suggests that it could be superior to LRU-2.

It is well-known that analysis of the paging problem is pararly problematic for the most standard
quality measure for on-line algorithms, the competitivdorfl 5, 20]. This has led researchers to investigate
alternative methods. See a long list of these in [1,9]. A féwhe measures described there have been
applied to more than one online problem, but most of thesdaodstare only applicable to the paging
problem.

In contrast, it has been demonstrated that relative wodsranalysis is applicable to many on-line
problems. In most cases, relative worst order analysis siiieesame distinction between algorithms as
competitive analysis does. However, the following is aditesults, where relative worst order analysis
has distinguished between algorithms in a situation whenepetitive analysis cannot distinguish or even
in some cases favors the "wrong” algorithm. This is not ariwestee list; we merely highlight one result
from each of these on-line problems. Each of these resuliis lagcording to relative worst order analysis:

For classical bin packing, Worst-Fit is better than Next{5].

For dual bin packing, First-Fit is better than Worst-Fit.[5]

For paging, LRU is better than FWF (Flush-When-Full) and lablead helps [6].

For scheduling, minimizing makespan on two related machiagost-greedy algorithm is better than
scheduling all jobs on the fast machine [12].

For bin coloring [16], a natural greedy-type algorithm idteethan just using one open bin at a
time [11].

— For proportional price seat reservation, First-Fit is éetthan Worst-Fit [7].

We refer the reader to the referenced papers for details ane rasults. Here, we merely want to point
out that relative worst order analysis is an appropriatétmapply to on-line problems in general. After
the definitions for relative worst order analysis, we préseme intuitive justification for why it also gives
interesting results in comparing LRU and LRU-K.

For completeness, we mention that there does exist a reghlrelative worst order analysis which
ranks algorithms in the reverse order from what one wouldsguBest-Fit is recognized as being better
than First-Fit in practice for the classical bin packinglgem. Neither the competitive ratio nor relative
worst order analysis separate them, but relative worstanigysis says that First-Fit is better than Best-Fit
for the closely related dual bin packing problem [5].

Our paper is structured as follows: LRU-K, along with prexdaesults and testing of the algorithm, is
described in Section 2. Its competitive ratio is proven tdlein Section 3, showing that LRU-K has a
suboptimal competitive ratio in comparison to LRU’s conifped ratio ofk. However, in Section 4, relative
worst order analysis is applied showing that LRU-2 is corapkerto LRU in LRU-2's favor, providing the
theoretical justification for LRU-2’s superiority. For LRKI in general, we show the slightly weaker result
that LRU-K and LRU are resource-asymptotically comparaibleRU-K’s favor. However, most of our
results are shown to hold for LRU-K. Two results which may bendependent interest are, first, a bound
on ¢y(LRU, A), the factor by which any algorithmA can be better than LRU using relative worst order
analysis, and secondly, a proof that the resource-asyioaliigtcomparable relation is transitive.

In this paper, we usk as well aK, which is a little unusual. In the online algorithms comntyrk is
always used for the size of the cache, and we believe it woailtbbfusing to use something else. Previous
authors have named their algorithm LRU-K, and the algoriihin the title of this paper, so it would also
be odd to change that. We hope the reader can bear with thifg Biconvenience.

2 LRU-2 and Experimental Results

In [18], a new family of paging algorithms, LRU-K, is definddere, K is a constant which defines the
specific algorithm in the family. On a page fault, LRU-K egithe page with the least recdsth last request
(LRU-1 is LRU). If there are pages in cache which have beenestgd fewer than K times, then some
subsidiary policy must be employed for those pages. In [LB]) is suggested as a possible subsidiary
policy. However, it would also be natural to recursively usdJ-(K-1). For the case of K= 2, this is the
same. The results in this paper are independent of the chbséosidiary policy.

The authors’ motivation for considering LRU-2 (or LRU-K irigeral for various K) is that LRU does
not discriminate between pages with very frequent versug indrequent references. Both types can be
held in cache for a long time once they are brought in. Thiswamt the expense of pages with very
frequent references.

The algorithm LFU (Least-Frequently-Used) which evicte trage which is least frequently used is
the ultimate algorithm in the direction of focusing on fregay, but this algorithm appears to adjust too
slowly to changing patterns in the request sequence, d@ogptd competitive analysis [20]. The family
of algorithms, LRU= LRU-1, LRU-2, LRU-3, ...with recursive subsidiary polisi€¢an be viewed as
approaching the behavior of LFU.

A conscientious testing in [18] of particularly LRU-2 and URB up against LRU and LFU led the
authors to conclude that LRU-2 is the algorithm of choiceatathase systems. The algorithms are tested
in a real database system environment using random resdrmn a Zipfian distribution, using real-life
data from a CODASYL database system, and finally using datargéed to simulate request sequences

which would arise from selected applications where LRU-8xpected to improve performance. LRU-2
and LRU-3 perform very similarly and in all cases signifidardetter than the other algorithms. Many
test results are reported which can be viewed in differentswH one should summarize the results in
one sentence, we would say that LRU and LFU need 50-100% @agiee space in order to approach the
performance of LRU-2.

Further testing of modifications of LRU-2 which require lesdra memory [21,14], have found that
these variants are also superior to LRU.

It is not a coincidence that most of the testing of LRU-K altfons have taken place in a database
setting. In the fastest end of the memory hierarchy, betvwerievels of cache for instance, algorithms
must be fast. Additionally, since data units are relatighall, not much space should be used for adminis-
tration. The LRU-K algorithms are relatively complicatettlaneed additional space for recording the last
K accesses to a data unit, so LRU-K algorithms are not weiéduor those levels. Using a few words for
administration (when using LRU-2 or LRU-3) is not a problemai database application with units of 8
KB of data, for instance. Also, page faults are very costhesithey give rise to additional disk accesses,
so running a more complicated algorithm to make better ieviatecisions could be well worth the effort.

3 Competitive Analysis

Let A(l) denote the number of page faults a paging algorithims on request sequericeThe standard
measure for the quality of on-line algorithms is teenpetitive ratio. The competitive ratio o is

CR(A) =inf{c|3b: vI: A(l) <c-OPT(l) + b},

where OPT denotes an optimal off-line algorithm [15, 20].

Conservative algorithms are those which incur at moktfaults on any consecutive input subsequence
containing at mosk distinct pages. Ak-phase partitioning of a sequence is the recursive partitioning
of the sequence into maximal subsequences (each referasiak-phase) containing exactly distinct
pages [3]. Suppose that all pages are unmarked at the begiohéveryk-phase and then marked the first
time they are requested withinkaphase. Amarking algorithm is one which never evicts marked pages.
Neither of the properties “conservative” or “marking” inggthe other. For instance, Flush-When-Full is
a marking algorithm, but is not conservative, while FirstHirst-Out is conservative, but not a marking
algorithm. LRU is known to be both a conservative algoritt®2][and a marking algorithm [3]. Both types
of algorithms have competitive ratio

To see that LRU-K belongs to neither of these classes, cengid request sequence,

| = (pF,P5,.... Pl 1, PL, P2, P1. P2)-

The firstK(k+ 1) requests ensure that theh last request to each of the pages is well definedy;sis
evicted when the first request fip, 1 occurs. This leads to a fault qn and the eviction ofy, since at
this point itsKth last request is théK + 1)st request ifl. Next p; is requested, giving a page fault, and
evicting p;, because it&th last request is currently the second request ifhe next to last request is a
fault on p;, causingp, to be evicted, since at this point i&h last request is théK 4+ 2)nd request ifl.
Finally, there is a fault onp,. The subsequence starting with the first requegistand continuing to the
end of the sequence contains oRlgistinct requests, but hast 2 faults, so LRU-K is not conservative.
The secondk-phase begins with the first requestdg 1, markingpx, 1. The following requests tp; and
p2 mark them. The last two requests are part of this se&epltase, so no marking algorithm would fault
on them. Thus, LRU-K is not a marking algorithm.

Since LRU-K is neither a conservative nor a marking alganitft is not obvious that its competitive
ratio isk. In fact, the lemma below shows that it is larger ttkan

Lemma 1 The competitive ratio of LRU-K isat least Kk, for k > 2.

Proof Assume that there aket 1 distinct pagesp1, p2, --., Pks1, in Slow memory, and assume without loss
of generality that the pages, p, . . ., pk are both in OPT and LRU-K'’s caches.

Let
Po= (P P2.---, Pk-1), PE)
and letP; beK repetitions ofpy, pz, . .., pk_1, interleaved witlK requests fopy. ; such that the first, third,
fifth, etc. request is fopk, 1, until K requests fopg, 1 have been made:

Pl = <pk+1a pla pk+l7 p27 ER N} pk+1a pkfla pk+1a pla pk+l7 p27 pk+l7 p3a p47 p5a ey pkfl>

exactlyK requests fopy;1

It is clear that neither LRU-K nor OPT faults on any requesijnsince all these requests are to the
pages they initially have in cache. On the first requestpfgn in Pp, both LRU-K and OPT fault. OPT
will evict px and consequently not fault on any further reques® ifFor LRU-K, on the other hand, since
px hasK requests just befor®, making itsKth last request newer than any others until ith request
to each page iP,. The first time there ark— 1 other pages with newdth last pages thap is at the
last request, so LRU-K will not evigbk until the last request if.. Hence, due to the cyclic repetition of
P1, P2, -- -, Pk—1 at the beginning oy, at a request fop; (1 <i < k—1), LRU-K will evict px1 until it has
hadK requests ang 1 (or p1 if i = k— 1) after that. Each request fpg, 1 will evict the following page
in P, (pagepi+1). It follows that LRU-K faults on alKk requests irP;.

After P, neither OPT nor LRU-K havey in cache. Hence, we can now repeat the above request
sequence (possibly with renaming of pages) arbitrarilgrafand the result follows.

Lemma 2 LRU-K is Kk-competitive.

Proof Consider any sequendes= (r1,r2,...,rn), and itsk-phase partition. We prove that in edciphase,
LRU-K faults at mosK times on each of thke different pages requested in that phase.

Suppose, for the sake of contradiction, that LRU-K faultgerthanK times on some page in a phase
P. Let p be the first page i with more tharK faults inP. At some point between théth and(K + 1)st
faults onp, p must have been evicted by a reques$b some other page The page is one of thek pages
in P. Since there are onlydifferent pages if? andp is not in cache just aftet, there must be some page
w in cache just after; which is not inP. TheKth last request tav must be before the start &fand thus
before theKth last request tp. Hence,p could not have been evictedmt This gives a contradiction, so
there are at mostk faults in anyk-phase.

The following theorem follows immediately from the preveowo results:
Theorem 1 CR(LRU-K) = Kk.

4 Relative Worst Order Analysis

Now we give the theoretical justification for the empiricasult that LRU-2 performs better than LRU. In
order to do this, we use a different measure for the qualityrefine algorithms, the relative worst order
ratio [5, 6], which has previously [5,6,12,7] proven caabl differentiating between algorithms in other
cases where competitive analysis failed to give the “cditresult. Instead of comparing on-line algorithms
to an optimal off-line algorithm (and then comparing thenpetitive ratios), two on-line algorithms are
compared directly. However, instead of comparing theifqgrerance on the exact same sequence, they are
compared on their respective worst permutations of the s@meence:

Definition 1 Let g(l) denote a permutation of the sequemhcket A andB be paging algorithms, and let
Aw(l) =max;{A(a(l))}. Define

¢ (A,B) =sup{c|3b: VI: Aw(l) >cBw(l)—b} and
cu(A,B) =inf{c| 3b: VI: Aw(l) < cBw(l)+b}.
Therelative worst order ratio WR, g of algorithmA to algorithmB is defined as:
If q(A,B)>1, thenWR\g=cy(A,B) and
if cu(A,B) <1, thenWRyp =c(A,B).

Otherwise, WR 3 is undefined.

Intuitively, ¢ (A,B) andcy(A,B) can be thought of as tight lower and upper bounds, respégtive
the cost ofA relative toB. When eithec; (A,B) > 1 orcy(A,B) < 1 holds, the relative worst order ratio is
a bound on how much better the one algorithm can be, i.e., IFWR 1, algorithmsA andB are said to
be comparable id\'s favor. Similarly, if WRy g > 1, the algorithms are said to be comparablB&favor.

In some cases, however, the first algorithm can do significaetter than the second, while the second
can sometimes do marginally better than the first. In suckscage use the following definitions (from [6],
but restricted to the paging problem here) and show thatwhbeatgorithms are resource-asymptotically
comparable in favor of the first algorithm.

Definition 2 Let A andB be paging algorithms, and lef andc, be defined as above. When the limits

exist, define
¢’(A,B) = Ilim {c(A,B)} and c(AB)= Ilim {cu(A,B)}.
—>00 —00

If ¢y (A,B) <1lorc®(A,B) > 1, the algorithms angesource-asymptotically comparable and the resource-
asymptotic relative worst-order ratio \{R of A to B is defined. Otherwise, WR; is undefined.

If ¢;(A,B) <1, then WR;=¢"(A,B) and
if G°(A,B) > 1, then WR 5 = ¢/ (A, B).

If WRY < 1, algorithmsA andB are said to be resource-asymptotically comparablé’favor.
Similarly, if WRY 5 > 1, the algorithms are said to be resource-asymptoticattypawable irB’s favor.

The relation, being resource-asymptotically comparabtee first algorithm’s favor, is transitive, so it
gives a well-defined means of comparing on-line algorithms.

Lemma 3 Resource-asymptotically comparable in an on-line algorithm’s favor is a transitive relation.

Proof Assume that three algorithnds B, andC, for the same minimization problem (the proof is easily
adapted to maximization problems), are related such&hatresource-asymptotically comparablditin
A’s favor andB is resource-asymptotically comparable(ian B's favor.

We need to show thak is resource-asymptotically comparableGan A’s favor, i.e.,

i (AC)<1 and ¢°(A,C) <1

SinceA is resource-asymptotically comparableBtin A's favor andB is resource-asymptotically compa-
rable toC in B's favor, we know that

cl(AB) <1 and ¢°(AB)<1

and
¢ (B,C)<1 and ¢°(B,C)<1

It follows that
1>c)(AB) -cj(B,C)
= Jim {cy(A,B)} - im {cu(B,C)}
= dm{inf{cl | 3b1: VI Aw(l) <ciBw(l)+bg}}-
l!iLrgo{inf{cz | 3bz: VI Bw(l) < caCw(l)+bo}}
= ‘!m{inf{cl [Jbg: VI Aw(l) <ciBw(l)+bai}-inf{cz | 3bz: VI: Bw(l) < c2Cw(l)+bo}}
= l!i_r)r;){inf{clcz | 3bg,bo: VI Aw(l) <ciBw(l)+b1 A Bw(l) <c2Cw(l)+b2}}
= l!igrgo{im‘{c| Jb: VI Aw(l) < cCw(l)+b}}
= lim {cu(A,C)}
=c;(A,C).

In the above, we use the fact that #iés andc,’s can be assumed to be non-negative.
A similar argument shows thaf’(A,C) < 1.

In the following, we first show an upper bound on how much bedtey on-line algorithm can be
when compared to LRU on their respective worst permutatidrasy request sequence. This is basically
an observation that the proof in [6], showing there is a litmihow much LIFO can be better than LRU
(whereas LRU can be unboundedly better than LIFO), holdsafgr algorithmA. Next, we show that
WR_ru,LrRU-2 is defined, with LRU-2 being at least as good as LRU, and th&i-PRichieves this largest
possible upper bound with respect to LRU. Finally, we shaat ttRU-K (K > 3) and LRU are resource-
asymptotically comparable in LRU-K'’s favor.

Notice that LRU and LRU-K perform very similarly on many seqaes, especially the cyclic sequences
with very long periods and no repeated requests within eaciogh These sequences are disastrous for
both algorithms, causing them to fault on every requesthSequences have essentially the same number
of requests to every page. In their intuitive justificatiam fvhy LRU-2 may perform better than LRU,
[18] mentions, for example, database applications whenenvgearching in a tree, the root node is accessed
much more than other nodes. This leads to long, cyclic-léguest sequences, but the nodes near the
root of the tree occur in many “cycles”, and other nodes do @uot the worst case ordering with this
content, any algorithm would have to fault on the new pagesvery cycle. LRU, however, would fault
on nearly all pages, while LRU-K can keep the pages which oowmst often in the entire sequence, the
pages corresponding to the nodes near the root, in cachs, Teisequences which actually occur in
this application are worst orderings of the sequences (ftr Algorithms). Intuitively, relative worst order
analysis, which compares different algorithms on theirstorderings of sequences with the same content,
could give interesting results in this case.

Next, we extend the theorem in [6] stating that for any inafueencé there exists a worst permutation
of | with respect to LRU where all faults appear before all hitalso hold for LRU-K in general. Recall
that LRU-1= LRU.

Lemma 4 For any request sequence |, there exists a worst ordering of | with respect to LRU-K with all
faults appearing before all hits.

Proof The proof is done by contradiction. For soideand any input sequendeassume that there is no
worst ordering of with respect to LRU-K where all faults appear before all hits

Among the worst orderings dfwith respect to LRU-K, consider the orderings where the §rsup
of hits occurs as late as possible. Among thesd/ le¢ one with as small a first group of hits as possible.
Letl’ consist of the requests, I, ...,rn, in that order. Let;,ri;1,...,r; be the first group of hits ih, i.e.,
r1,r2,...,r—1, andrj;1 are all faults. Letp denote the page requestedry

In the following, we permuté’ to I” by movingr;, and possibly other later requestspoafterrj. 1.
Note that moving requests fqr within the sequence only affectss position in the queue that LRU-K
evicts from. The relative order of the other pages staysdh@esWhile moving the requests, we maintain
the following two invariants.

1. Immediately before any requestto a page different fronp, if pis in the cache of, then it is also in
the cache of”.
Hence, if a request for a page different frqnis a fault inl’, then it is also a fault in”, since the pages
not equal top in I””’s cache are a subset of the pagek’mcache.

2. There are at least the same number of faults at requestdridf’ as inl’.

Combined, the two invariants ensure that the cost’ads at least as high as dh Now, start by settingl
equal toi and then permutE to 1” by repeating these steps:

1. Remove the request faratr, in I’ (currently a hit).
For any requesty, v > u, this will make theKth last request t@ less recent in” than inl’, i.e.,
Invariant 2 must be true. However, this may also make LRU-Ktep at some point after, in 1”,
where it was not evicted iH, violating Invariant 1. If this is not the case, simply insprafter the last
requesty in 1”, and stop the procedure.

2. Letry be the first point at which LRU-K evictp in 17, but not inl’, and insertp immediately after,
in1” as a fault.
For any request,, w > v, theKth last request tp is at least as recent If as inl’, i.e., Invariant 1 must
now hold, but Invariant 2 may be violated. If this is not theeawe stop the procedure. Otherwise, let
rw, W > Vv be the first request tp that is a hit inl”, but a fault inl’. Setu equal tow and go to Step 1.

Note that when following Step 1 for the first time = i. Since there are only hits in,...,rj, pis
evicted at the earliest af, 1, i.e.,v> j. Consequently, either the first group of hitd fris one smaller than
in I” or (wheni = j) the first hit occurs later iV’ than inl’. Furthermore, since both invariants hold at the
end of the proceduré’” has at least as many faults lAsCombining this, we would initially have chosen
I” overl’, thereby proving thalt cannot exist.

We now want to prove an upper bound on LRU'’s performance costpto LRU-2. However, this
bound can be established more generally as a bound thatih@dsparison with any deterministic paging
algorithm.

Theorem 2 For any deterministic paging algorithm A and any input sequence l,

Proof Suppose there exists a sequehcehere LRU faultss times on its worst permutatioty,ry. AS
shown in Lemma 4, there exists a worst permutaltjpaf | _ry with respect to LRU where all faults appear
before all hits. Let; be the prefix of,, consisting of thesfaults. Partition the sequenteinto subsequences
of lengthk+ 1 (except possibly the last which may be shorter). We pratese subsequences one at time,
possibly reordering some of them, so thafaults at least twice on all, except possibly the last, there
proving the result.

The first subsequence is treated specially below. Suppededti subsequences have been considered
and consider théi + 1)st subsequencé,= (ry,r»,...,r.1), of consecutive requests in whereA faults
at most once. Since LRU faults on every request, they musi be-tl different pagesps, p2, -, Pkr1- Let
p be the page requested immediately beférélote thatp # p; for 1 <i <k, since otherwise LRU would
not fault onp;. Clearly,p must be inA’s cache when it starts processitig

If r,1 is not a request t@, thenl’ containsk + 1 pages different fronp, but at mosk — 1 of them
are inA’s cache when it starts processiigp is in its cache). Hence) must fault at least twice on the
requests in’.

On the other hand, ifc,; is a request t@, then there are exactlyrequests i’ which are different
from p. At least one of them, sap;, must cause a fault, since at maést 1 of them could have been in
A’s cache just before it began processlhgf A faults on no other page tham in I’, then all the pages
P, P1,P2,---,Pi—1, Pit1,---, Pk Must be inA’s cache just before it starts to procéssNow, move the request
to p; to the beginning of’. This cause4 to fault and evict one of the pagesps, pz, . - -, Pi—1, Pit1,- - - ; Pk-
Hence, it must fault at least one additional time while pesaeg the rest of this reordering Bf

For the first subsequentedefinep as follows. If py,1 is in the cache from the very beginning, et
denotepy. 1. Otherwise, lefp denote any page in the initial cache different frpmthroughpy. Note that
such a page must exist, since otherwise LRU would not fauthese pages. Now, proceed as above.

In preparation for showing that LRU is always at least as lsaldRU-2, up to an additive constant, we
need the following knowledge of worst orderings for LRU.

Lemma 5 For any input sequence | of length at least k+ 1, if each page requested in | is requested at most

{%J times, then LRUw (1) = |1].

Proof Let | be any request sequence in which each page is requested tatf%)j% times. Below,| is

reordered td’, thereby making LRU fault on all requests.

If k+1 <|l| < 2(k+ 1), then each page is requested once, and LRU can easily be onfzdétton all
requests, independent of the initial cache.

Otherwise, consider tHepages in the initial cache of LRU in the order that LRU evibtism if they are
not requested. Denote gy be the first page that is evictep_; the second, etc. Choosing any arbitrary
order, denote the pages requestetitimat are not initially in the cache by 1, pk.2, etc.

Denote the requests Ihbyry,ra, ..., 1. In order to assign pages fronto the requests iff, consider
the requests in the following order:

M(k+1)> F2(k+1)> F3(kt1)s - - -
M (k+1)—15 F2(k+1)— 15 M3(k+1)—15 - - -

M (k+1)—k> M2(k+1)—k> F3(k4+1)—k> - - -

In the above, alll| positions inl’ are listed. Considering the pages frbin the ordem;, p», etc., requests
to each of these pages are placed in the above order, i.eeghests tg; are at positiomy. 1, 1), etc.
Next, the first request tp; is at positionj (k+ 1) for somej or possibly at position 1)1, etc. Thus, the
assignment continues from left to right and top to bottom.

Note that by using this ordering:

1. Each row of requests contains eitHL(;LL‘lJ or [%W positions.

2. For any request = p, for somep, the next request tp in the same row of the above orderkig- 1
positions away.

3. For any pagg which occurs in more than one row in this construction, if finst placed request
to p is at positionj(k+ 1) — m for somej andm, then the last placed request is either at position
(j—1)(k+1) — (m+1) (that is,k+ 2 positions away from the first request) or even further awamnf
position j(k+ 1) — m (depending on the number of requestpto |).

4. If pyis requested i, the first request to this page is at position 1, i.e., afterp; is evicted. Similarly,
for p;, i <k, the earliest request i occurs no earlier than at positigk+ 1) +1—i =k+2—i (in row
i of the requests), i.e., aftgr has been evicted for the first time.

Hence, LRU faults on all requestslih

The following lemma immediately implies that WRy L ru-2 is defined, with LRU-2 being at least as
good as LRU.

Lemma 6 For any input sequence |, LRUw(l) > LRU-2 (1) — k.

Proof Consider any request sequericd8y Lemma 4, there is a worst ordering,, of I with respect to
LRU-2 where all faults appear before all hits. ILlebe the maximal prefix off, consisting only of faults.

Below, we show that for any page the number of requests,for this page if’ is at mostM = H'T,H .

I” contains at mosk + 1 pages that are requestbtitimes. If I’ contains exactlyk + 1 pages that are
requestedM times, then by cyclically requesting ther 1 pages, LRU faults on all request. Otherwise, by
Lemma 5, can be reordered such that LRU faults on all requests, ekaephe request for each of the at
mostk pages that are requested exadllyimes.

Now, for any pagep, denote the requests fprby py, p2, . . ., ps, Wherepy is the first request fopin I,
p2 is the second request farin I, etc. For anyi, denote byl/ the requests betwegn 1 andp; in 1. 1] is
defined to be the requests in front of the first requespfor

<...,pi_2, ,Pi—1yeeeens Py ,pi+1,...>
1 If i1
Definem; (1) to be the number of pages requested at Igistes inl/. Thus,|[I| = 35, m; (If).

Next, we show that in total we are at mdstequests short of associating at lelasequests for pages
different fromp to each request fqo. The proof is carried out by induction on prefixesl bfLet g be the
number of requests we are short of having associateduests for pages different fropto each request
for p after having processed the prefixl6fup until and includingp;. In the following, we prove that for
anyi, e <k—my(l/). Note thate can be negative.

Fori = 1, we arek— |I{| requests short, and

er =kl <k-mg(I3)

10

For the inductive step> 2, first note that since; is a fault, we must have
k—mp (I_1) <mg (1),

since immediately aftep;_1, mp (Ii’fl) pages in cache have been requested at least twice morelyecent
thanp, hence at least— mp (Ii’fl) different pages have to be requestedf ito evictp and cause; to be a
fault.

Next,

e =ea_1+k—|l|
< kemo (1) +k— 3 my (1)
j=1

gml(li’)+k—§mj(-

=k—mp (|!)

By the above, for any, & <k—mp (I{) <k, i.e., we are in total at mo&trequests short. When we also
count the requests 1@ we haves(k+ 1) —k < |I’|. Sincesis an integer, by isolatingwe get

<l = il

Next, we show that for ani’ < K, LRU-K can perform significantly better than LRU-Kn some sets
of input. Since LRU = LRU-1, this also implies that LRU-2 caerform better than LRU.

thereby proving the result.

Lemma 7 For any 1 < K’ < K, there exists a family of sequences I,, of page requests and a constant b such
that

k+1
LRU-K'w (1) > %LRU-KW(ln) —b,
and limp_, LRU-K' (1)) = oo.

Proof Let I, consist ofk — 1 different pagesps, pz, ..., Pk—1, €ach requestesK’ + 1 times and & other
different pagesq, gz, - - -, Gon, €ach requested’ times. For large, nK’ +1 > K.

Note that there are only— 1 pages requestdd or more times. It follows that for any page, LRU-K
cannot fault on any request for after it has hadK requests tq;. Hence,

LRU-Kw (In) < 2nK’ +K(k—1).

For LRU-K/, we arrange the requests in the following way:

<(p17 p2,..., Pk-1, ql7q2)K/7
P1,P2,. .., Pk-1,
K/

(03,00), (P1, P2+, P 1)<,
(05,96), (P1, P2, - Pr1),

(QZn—LQZn)K,a (pla p21 ceey pkfl)K/>

Note, for example, that each tingg occurs, except for the firal, is in cache, and is the only page in cache
which has not been requestidtimes, so it is evicted. The first timg; has the least receit'th oldest

11

request, so it is evicted. In all cases, one concludes thatakt page requested is not in cache and LRU-K’
faults on all the requests. It follows that

LRU-K'w(In) = (k—1)(nK' + 1) + 2nK’
= (kK+1)nK' +k—1.

Asymptotically, the ratio iS5,

Combining results from above, we obtain the following ttegor

Theorem 3 WRLRU,LRU-Z = %
Proof By Lemma 6, for all any input sequenteLRUw (1) > LRU-2 (1) — k. Thus, by Definition 1,
¢ (LRU,LRU-2) > 1. Again by Definition 1, this means that WR) | ru-2 = cu(LRU, LRU-2).

Using LRU-2 with Theorem 2¢,(LRU,LRU-2) < "izl Lemma 7 withK’ = 1 andK = 2 shows that
the infimum cannot be any smaller, so W (ru-2 = "izl

By improving the result in Lemma 6 to hold when comparing KhandK for K’ < K, we conjecture
that our result can be improved:

Conjecture 1 For 1< K’ < K, WR ry.k’ LRUK = kizl

However, we can prove that LRU-K and LRU are resource-asgtigaily comparable in LRU-K’s
favor. Letl be a sequence where LRU-K faults on every request. We defineRk-K-phase partition
of | as the recursive division dfinto LRU-K-phases, where a LRU-K-phase is a maximal subsecg
under the restriction that no page is requested moreKhiames in the subsequence. It is easy to see that a
complete LRU-K-phase (a LRU-K-phase not ending on the kgtiest in the input sequence) contaihs
requests for each of at ledstlistinct pages, and as a consequence it contains aki€asi requests for at
leastk + 1 distinct pages.

Lemma 8 For K > 2, and for any sequence | of page requests,

K-1
LRU-Kw (1) < <1+ K(k+1)) LRUw(1).
Proof Consider any request sequendbat is processed by LRU-K fdf > 2. By Lemma 4, there exists
a worst permutation, ru-k, Of | such that LRU-K faults on each request of a préfibof I ru-x and on
no requests aftdi. Partitionl; into LRU-K-phases. We now inductively reorderto gradually obtain a
sequencé; such that
K-1 ,
LRU-K(l¢) < <1+ K(k+1)) LRU(I%).

Start at the beginning dt and consider the LRU-K-phase starting with the first reqnestalready placed
in a processed phase. Each LRU-K-phase contains atd€astl requests for at leakt+ 1 distinct pages.
Since each page requested in a LRU-K-phase is requestedstKnimes, a LRU-K-phase containing at
leastK (k+ 1) requests can be partitioned inkosets, each containing requests for at ldastl pages,
none of which are repeated. Each of these sets of requestiserabe ordered so that LRU faults on every
request.

Hence, assume that the current LRU-K-phase is short, oatams fewer thai(k+ 1) requests. Let
P« = {p1, P2 ..., Pk} denote thé& pages requestdtitimes in the phase. Now, observe that after a complete
LRU-K-phase, LRU-K has at lea&t— 1 of the pages i in cache, since, by the definition of LRU-K-
phases, the first request just after the LRU-K-phase is totte page, say;, from P that is not currently
in cache. Hence, after that request, all the pagé& iare in cache. It follows that the next request is for a
page, sayj, not requested times in the current phase (notfR). By moving the request fap; to the end
of the request sequence, it follows from the above that thdified phase in question now contains at least
one more request, the request fpiand no page is requested more tiatimes in the modified phase (
was not inF). By the above argument, it follows that we can add one rddaeke current short phase by

12

moving one request to the end of the sequence. Finally, eb#eat a short phase is at mést- 1 requests
short ofK(k+ 1). Hence, for each short phase, we only need to move at khest requests to the end of
the sequence, where they might become hits, to obtain pbatEggthK(k+ 1).

Let | denote the total number of modified phases. For each modifiadep there ares > K(k+ 1)
requests, plus possibly at mast- 1 additional requests that LRU-K faulted on and that haven lmeeved
to the end. Thus, LRU faults at IeaEtzls times and LRU-K faults at mosz!zl(s +K—1) times. It
follows that

LRU-Kw (1) < Zieal
2i=1S
[(K(k+1)+K—-1)
= I(K(k+1))

_ <1+ K'(<k_+11)> LRUw(1).

Combining Lemma 7 and the lemma above we arrive at the fafigwi

IS IC Rl Sk YW

LRUw (1)

Theorem 4 LRU-K and LRU are resource-asymptotically comparable in LRU-K’s favor.

Proof By Lemma 8, for any,

1

K(k+1)

LRUw(l) >

Fork — o, the constant in front of LRU- (1) approaches one from below. Thegg(LRU,LRU-K) > 1.
By Definition 2, then WRzy, | ru-k = €3 (LRU,LRU-K).

By Lemma 7,c,(LRU, LRU-K) must be at Ieasfz‘—l, so¢; (LRU,LRU-K) = . By definition, LRU
and LRU-K are then resource-asymptotically comparableRb/iK'’s favor.

5 Concluding Remarks

The relative worst order ratio is a worst case measure, gerisg sequences with the same content to-
gether. Since these worst case orderings have a tendenacguo in certain database applications, this
measure is quite appropriate in these cases. In contrasé teesults using competitive analysis, relative
worst order analysis yields a theoretical justification thoe superiority of LRU-2 over LRU, confirming
previous empirical evidence.

An interesting open problem is whether the result that LRl Kesource-asymptotically comparable
to LRU in LRU-K's favor can be strengthened to say that LRUskKomparable to LRU in LRU-K’s favor
with respect to relative worst order analysis.

Note that, as is the case with resource-asymptotically ewaiye, the relative worst order ratio is also
transitive, i.e, for any three on-line algorithms B, andC, if A andB are comparable in favor %, and
B andC are comparable in favor d@, thenA andC will be comparable in favor oA. Thus, the results
from [6], showing that LRU is at least as good as any consievatgorithm and better than Flush-When-
Full (FWF), combined with the results proven here, show tHRWUL2 is comparable to any conservative
algorithm and FWF, in LRU-2’s favor in each case. Similarly,llemma 3, LRU-K K > 3) is resource-
asymptotically comparable to any conservative algoritimeh BWF, in LRU-K'’s favor.

An algorithm called RLRU was proposed in [6] and shown to bigdbehan LRU using relative worst
order analysis. We conjecture that LRU-2 is also comparebRLRU in LRU-2's favor. We have found
a family of sequences showing that LRU-2 can be better thaRURbut would also like to show that the
algorithms are comparable.

Acknowledgements The authors would like to thank Peter Sanders for bringing/ikto their attention and thank the anonymous
referees for constructive comments.

13

References

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Susanne Albers. Online Algorithms: A Survéytathematical Programming, 97(1-2):3-26, 2003.

Allan Borodin and Ran El-YanivOnline Computation and Competitive Analysis. Cambridge University Press, 1998.

Allan Borodin, Sandy Irani, Prabhakar Raghavan, and &aBichieber. Competitive Paging with Locality of Refereniuelrnal
of Computer and System Sciences, 50(2):244—-258, 1995.

Joan Boyar, Martin R. Enmsen, and Kim S. Larsen. Theotdidence for the Superiority of LRU-2 over LRU for the Pagin
Problem. InProceedings of the 4th International Workshop on Approximation and Online Algorithms, volume 4368 otecture
Notesin Computer Science, pages 95-107. Springer, 2006.

Joan Boyar and Lene M. Favrholdt. The Relative Worst ORigio for On-Line Algorithms ACM Transactions on Algorithms,
3(2), 2007.

Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen. The Reld¥orst Order Ratio Applied to Pagingournal of Computer
and System Sciences, 73(5):818-843, 2007.

Joan Boyar and Paul Medvedev. The Relative Worst Ordéo Raplied to Seat ReservatioACM Transactions on Algorithms,
4(4), 2008.

Reza Dorrigiv, Martin R. Ehmsen, and Alejandrofez-Ortiz. Parameterized analysis of paging and list epdforithms.
In Proceedings of the 7th International Workshop on Approximation and Online Algorithms, volume 5893 of_ecture Notes in
Computer Science. Springer, 2010. Accepted for publication.

Reza Dorrigiv and Alejandrodpez-Ortiz. A Survey of Performance Measures for On-lineofithms.SI GACT News, 36(3):67—
81, 2005.

Reza Dorrigiv, Alejandro dpez-Ortiz, and J. lan Munro. On the Relative Dominance ofifRaé\lgorithms. Theoretical
Computer Science, 410:3694-3701, 2009.

Leah Epstein, Lene M. Favrholdt, and Jens S. Kohrt. Camgp&nline Algorithms for Bin Packing Problemslournal of
Scheduling. Accepted for publication.

Leah Epstein, Lene M. Favrholdt, and Jens S. Kohrt. &#ipgrScheduling Algorithms with the Relative Worst Ordeti®a
Journal of Combinatorial Optimization, 12(4):362—385, 2006.

Amos Fiat and Ziv Rosen. Experimental Studies of AccespltBased Heuristics: Beating the LRU StandardPrioceedings
of the 8th Annual ACM-SAM Symposium on Discrete Algorithms, pages 63—72, 1997.

Theodore Johnson and Dennis Shasha. 2q: A low overhghdokiformance buffer management replacement algorithm. In
Proceedings of the 20th International Conference on Very Large Data Bases, pages 439-450. Morgan Kaufmann Publishers Inc.,
1994.

Anna R. Karlin, Mark S. Manasse, Larry Rudolph, and DibieSleator. Competitive Snoopy Cachimygorithmica, 3(1):79—
119, 1988.

Sven Oliver Krumke, Willem de Paep&rd Rambau, and Leen Stougie. Bincoloririgheoretical Computer Science, 407(1—
3):231-241, 2008.

Nimrod Megiddo and Dharmendra S. Modha. Arc: A self-tunlog overhead replacement cache. Aroceedings of the 2nd
USENIX Conference on File and Storage Technologies, pages 115-130. USENIX, 2003.

Elizabeth J. O'Neil, Patrick E. O’Neil, and Gerhard Weik The LRU-K Page Replacement Algorithm for Database Disk
Buffering. InProceedings of the ACM SSGMOD International Conference on Management of Data, pages 297-306, 1993.
Elizabeth J. O'Neil, Patrick E. O’Neil, and Gerhard Weik An optimality proof of the LRU-K page replacement algorithm.
Journal of the ACM, 46(1):92-112, 1999.

Daniel D. Sleator and Robert E. Tarjan. Amortized Efficieaf List Update and Paging Rule€ommunications of the ACM,
28(2):202-208, 1985.

Gerhard Weikum, Christof Hasse, Axebkkeberg, and Peter Zabback. The comfort automatic tuninggirol nformation
Systems, 19(5):381-432, 1994.

Neal Young. Thé&-Server Dual and Loose Competitiveness for Pagiigorithmica, 11(6):525-541, 1994.

