
Randomized Distributed Online Algorithms Against
Adaptive Offline AdversariesI

Joan Boyara, Faith Ellenb, Kim S. Larsena,∗

aUniversity of Southern Denmark, Department of Mathematics and Computer Science,
Campusvej 55, DK-5230 Odense M, Denmark.

bUniversity of Toronto, Department of Computer Science, 10 King’s College Road, Toronto,
Ontario M5S 3G4, Canada.

Abstract

In the sequential setting, a decades-old fundamental result in online algorithms
states that if there is a c-competitive randomized online algorithm against an
adaptive, offline adversary, then there is a c-competitive deterministic algorithm.
The adaptive, offline adversary is the strongest adversary among the ones usu-
ally considered, so the result states that if one has to be competitive against
such a strong adversary, then randomization does not help. This implies that
researchers do not consider randomization against an adaptive, offline adversary.
We prove that in a distributed setting, this result does not necessarily hold, so
randomization against an adaptive, offline adversary becomes interesting again.

Keywords: online algorithms, randomized algorithms, adaptive offline
adversary, distributed systems
2010 MSC: 00-01, 99-00

1. Introduction

The following fundamental result about sequential online algorithms was
proved by Ben-David, Borodin, Karp, Tardos, and Wigderson in 1994 [4].

Theorem 1.1. If there is a c-competitive randomized online algorithm against
an adaptive, offline adversary, then there is a c-competitive deterministic algo-
rithm.

IThe first and third authors were supported in part by the Independent Research Fund
Denmark, Natural Sciences, grant DFF-7014-00041. The second author was supported in
part by the Natural Science and Engineering Research Council of Canada, Discovery Grant
RGPIN-2015-05080.

∗Corresponding author
URL: imada.sdu.dk/~joan/; joan@imada.sdu.dk (Joan Boyar),

www.cs.toronto.edu/~faith/; faith@cs.toronto.edu (Faith Ellen),
imada.sdu.dk/~kslarsen/; kslarsen@imada.sdu.dk (Kim S. Larsen)

Preprint submitted to Information Processing Letters March 11, 2020



As a consequence, developing randomized algorithms and analyzing them with
respect to an adaptive, offline adversary has been considered uninteresting, since
one could design a deterministic algorithm instead.

In a survey [2] of the competitive analysis of distributed algorithms, Aspnes
observed that distributed online algorithms face uncertainty about the sched-
uler, in addition to the lack of knowledge of future requests. He compared
algorithms for the Repeated Collect problem in a shared memory model to Opt
on the same schedule, and established a competitive ratio for the randomized
Follow-the-Bodies algorithm [3] against an adaptive, offline adversary. In the
Repeated Collect problem, each process owns a register which only it can write
to. Each process can also repeatedly perform collect, which, for each of these
registers, returns a value it stores at some point between the beginning and end
of the collect. A simple algorithm for collect is to simply read the registers of
the other processes. Follow-the-Bodies is a more complicated algorithm for col-
lect, which allows a process to take advantage of information obtained by other
processes performing collect concurrently.

Aspnes [2] left as an open question whether there is a deterministic algorithm
that performs as well as the randomized Follow-the-Bodies algorithm does for
the Repeated Collect problem against an adaptive, offline adversary. As ex-
plained above, this is a question one would not ask in the sequential setting. In
this paper, we show that the question of Aspnes is meaningful in a distributed
setting: We exhibit an example where a randomized distributed online algo-
rithm achieves a competitive ratio against an adaptive, offline adversary that
no deterministic algorithm can achieve.

2. Online Algorithms and Competitive Analysis

A problem is called online if the input is given one piece at a time and
an algorithm solving the problem, which is called an online algorithm, must
make an irrevocable decision regarding each piece before the next piece is given.
The pieces of the input are called requests. Online algorithms are faced with
uncertainty as a result of lack of knowledge about future requests: irrevocable
decisions regarding early requests may be unfortunate when future requests
arrive. The quality of the solution for a request sequence is measured by an
objective function, which is called the cost for minimization problems (or profit
for maximization problems). In the following, we only consider minimization
problems.

The most common technique for analyzing online algorithms is competitive
analysis [8], where one computes a worst case ratio over all inputs of the cost
of the online algorithm’s solution to the cost of the solution produced by a
(hypothetical) optimal offline algorithm on the same input. Here, offline means
that the algorithm has access to all of the pieces of the input before making any
decisions.

If Alg(I) denotes the cost of running the algorithm Alg on the input se-
quence I, then Alg is said to be c-competitive, if there exists a constant α such

2



that for all I, Alg(I) ≤ cOpt(I) + α, where Opt denotes the minimum possi-
ble cost for the input sequence I. When α = 0, then Alg is said to be strictly
c-competitive. The (strict) competitive ratio of an algorithm is the infimum over
all c for which it is (strictly) c-competitive.

One can think of Opt as a (possibly nonconstructive) algorithm, which,
given any input sequence I, solves the problem with cost Opt(I). Note that
Opt can behave completely differently on identical prefixes of two different
input sequences.

When analyzing deterministic algorithms, we know from the beginning what
the algorithm will do on any prefix of the input sequence, and, thus, which
state the algorithm will be in. When switching to the randomized case, this is
no longer the case, since the state of an algorithm is partially determined by
coin flips. Therefore, it makes sense to distinguish between different ways the
adversarial input sequence can be constructed (in advance or incrementally),
and also when the adversary must make its decision concerning the request
(online or offline).

For the sequential setting, there are three types of adversaries that are com-
monly used against randomized online algorithms [7, 4], listed here in increasing
order of strength.

• Oblivious: The adversary constructs the input sequence in advance and
the adversary runs Opt.

• Adaptive online: The adversary constructs the input sequence incremen-
tally based on the actions of the online algorithm. The adversary must
process each request that it generates online before giving it to the online
algorithm.

• Adaptive offline: The input sequence is constructed incrementally based
on the actions of the online algorithm. The adversary runs Opt on the
generated sequence.

In this paper, we focus on adaptive, offline adversaries. Here, the definition
of the competitive ratio is similar to that for the deterministic case, but, instead,
using the expected values over the coin flips of the online algorithm, i.e., Alg is
c-competitive if for all I constructed incrementally by the adversary, depending
on the coin flips of the algorithm, E [Alg(I)− c Opt(I)] ≤ α.

When solving minimization problems, one can often get smaller competitive
ratios with randomized algorithms against an oblivious adversary than for deter-
ministic algorithms. One of the many examples is for the List Access problem:
The algorithm COMB [1] achieves a competitive ratio of 1.6 against oblivious
adversaries, but no deterministic algorithm can have a competitive ratio bet-
ter than 2 − 2

`+1 , where ` is the length of the list [6] (which credits Karp and
Raghavan). Theorem 1.1 says that a randomized sequential algorithm against
an adaptive, online adversary cannot outperform the best deterministic algo-
rithm. The intuition is that the adaptive, offline adversary is so strong that
algorithms do not benefit from randomization.

3



3. The Model and Problem

We consider the following artificial problem, FindValue, designed with the
purpose of establishing that Theorem 1.1 does not necessarily hold in a dis-
tributed setting. There are 3 processes, p0, p1, and p2 in a synchronous dis-
tributed system. Each process, pi, has one register, Ri to which only it can
write. Other processes can get information from pi by reading its register. In
each round, each process can flip some coins and, based on its state and on the
outcomes of its coin tosses, it can do nothing, it can write to its register, or
it can read the register of some other process. A process cannot choose to do
nothing indefinitely: after a finite number of rounds, it must read and write.
If there are simultaneous reads to a register which is being written, we assume
the read obtains the old value (this is, in fact, a worst-case assumption for the
randomized algorithm we present).

Consider the following problem. From time to time, an adversary gives a
number as input to one of the processes and lets it take a step (in which it
appends a pair consisting of its process ID and this number to its register). In
the next round, the adversary notifies each of the other processes that it has
produced a new number (by giving each of them a special notification input),
but does not tell them to whom it gave this number. The goal is for each
process to write the entire sequence of pairs into its register. We assume that
the next input number is given only after the two processes that were notified
have finished their writes of the current input number to their registers. Our
cost (objective) function is the total number of register reads that are performed.

In Opt, each time the adversary notifies a process that it has produced a
new number, each of the two other processes will perform one read, from the
register of the process that received the number, and append the new pair to its
register. Thus, in Opt, two register reads are performed for each input. This
will be used to compute the competitive ratios in all of the cases below.

We also note that all results hold for the strict as well as the non-strict
(sometimes referred to as asymptotic) competitive ratio.

4. Deterministic Upper Bound

The following deterministic algorithm performs 3 reads per input item. Each
process pi maintains a list of the pairs it has learned about and the total number
of notifications it has received from the adversary. When the adversary gives a
number as input to process pi, this process appends a pair consisting of i and
this number to its list and writes its list to Ri. When notified that a new number
is available, process pi reads from R(i+1) mod 3. If there are more pairs in that
register than in its own list, pi appends the extra pair to its list and writes its
list to Ri. If the length of the list in R(i+1) mod 3 is smaller than the number of
notifications pi has received from the adversary, then pi just read from a process
having the same list as itself, and in the following round, pi reads from register
R(i−1) mod 3, appends the extra pair in that register to its list, and writes its list
to Ri.

4



When process pk gets a number as input directly from the adversary, process
p(k−1) mod 3 will read this number from Rk in the next round. However, process
p(k+1) mod 3 will read from R(k+2) mod 3 in that round and then will read from
Rk in the following round. Thus, a total of three reads are performed for each
input. Thus, the algorithm is 3

2 -competitive.

5. Deterministic Lower Bound

An adversary can force 3 reads per input number. For each process pi, let
Rfi be the first location that pi will read from when informed that the next new
number is available. Note that fi 6= i.

Suppose there exist two processes, pi and pj , such that fi = fj = k. Without
loss of generality, suppose that fk = i. Then the adversary gives the new input
number to pj . Whichever of pi and pk goes first performs at least 2 reads, for a
total of 3 reads.

Otherwise, no two processes read from the same register first. Without
loss of generality, suppose that f0 = 1, f1 = 2, and f2 = 0. Consider the
minimum number of rounds after receiving a notification input before any one
of these processes reads a register. Suppose pk is a process that reads in this
round. If the adversary gives the new input number to p(k−1) mod 3, then pk
reads from R(k+1) mod 3 in this round and does not see the new number. Hence
it has to perform at least 2 reads. Process p(k+1) mod 3 also has to perform at
least one read, for a total of 3. Thus, no deterministic algorithm is better than
3
2 -competitive.

6. Randomized Upper Bound

Consider the following randomized algorithm for FindValue. Each process
pi maintains a list of the pairs it has learned about and the total number of
notifications it has received from the adversary. When the adversary gives a
number as input to process pi, this process appends a pair consisting of i and
this number to its list and writes its list to Ri.

In this algorithm, the processes access the registers in disjoint rounds. If
process ph is informed at round t that a new number is available, it performs
a read at round t + 3h and flips a fair coin to choose from which register Rk

(belonging to one of the other two processes) it will read. If there are more
pairs in Rk than in its list, ph appends the extra pair in Rk to its list and writes
its list to Rh in the next round. Otherwise, ph reads from the third register in
round t+ 3h+ 1, appends the extra pair contained there to its list, and writes
its list to Rh in round t+ 3h+ 2.

Suppose processes pf and p` were the two processes informed at round t,
where f < `. Process pf has probability 1/2 of choosing to read from Ri. In
this case, it only reads once in this round; otherwise, it reads twice. Thus, its
expected number of reads is 3/2. Process p` will either read from Ri or Rf .
In either case, p` will discover the new number on its first read. Thus, the

5



total expected number of reads is 5/2. Since Opt reads twice, the competitive
ratio is 5/4. Thus, there is a randomized algorithm for FindValue that is
5
4 -competitive against an adaptive, offline adversary.

This analysis holds for any adversary that does not have access to future coin
flips. In particular, it holds for any oblivious adversary and, more generally, for
any adaptive, offline adversary. Because the rounds are independent of each
other, the adaptive, offline adversary cannot take advantage of its knowledge
of what actions the processes have taken in previous rounds or what coin flips
they have used.

7. Discussion

Combining the results of Sections 5 and 6, we have the following result.

Theorem 7.1. There exists a problem, FindValue, in a distributed setting,
where there is a randomized algorithm which is 5

4 -competitive against an adap-
tive, offline adversary, while the best deterministic algorithm is no better than
3
2 -competitive.

The important observation is that our randomized algorithm against an
adaptive, offline adversary has a competitive ratio strictly smaller than the lower
bound on any deterministic algorithm. Thus, Theorem 1.1 does not necessarily
hold in a distributed setting.

To understand why, it is useful to consider the proof of this result. We give a
simplified overview of the proof as explained in the textbook by Borodin and El-
Yaniv [5]. An algorithm can be viewed as a tree, where request nodes and answer
nodes alternate along every path, starting with a request node at the root. The
nodes of the tree represent possible executions of the algorithm. The edges
out of a request node represent the possible next requests that an adversary
can give. The edges out of an answer node represent the different choices the
algorithm can make in response to the request leading into the node. Each of
these edges is labeled with the probability that the choice represented by this
edge is taken, so the labels of the edges leaving each answer node sum to 1.

The proof depends heavily on the fact that different request sequences and
different choices made by the algorithm in response define different nodes in the
tree. At each answer node, the algorithm can determine, for any extension of
this request sequence, what Opt’s cost is. For each of the different choices it
can make in response to the request leading into the node and for any extension
of the request sequence, it can also determine what its expected cost is, and,
hence, which is the best choice. The proof shows that the competitive ratio
of the resulting deterministic algorithm is at most the competitive ratio of the
randomized algorithm.

In a distributed setting, there is no such algorithm. Each process has only
partial information about the request sequence so far and the actions of the
other processes. Specifically, it knows the requests it has been given, the steps
it has taken, and information it has learned from reading shared registers. In a

6



tree in which the nodes represent the possible executions, there may be many
different nodes which are indistinguishable to a particular process. Since the
labels of these nodes may be quite different, the process might not be able to
determine the best choice to make when allocated a step by the scheduler. For
example, in the randomized algorithm in Section 6, when a process is notified
that a new number has been produced, it does not know which of the other
processes was given the number and, hence, which register to read.

8. Acknowledgments

We thank anonymous referees for their valuable comments.

References

[1] Albers, S., von Stengel, B., Werchner, R., 1995. A combined BIT and
TIMESTAMP algorithm for the list update problem. Information Processing
Letters 56, 135–139.

[2] Aspnes, J., 1998. Competitive analysis of distributed algorithms. In: Online
Algorithms, The State of the Art. Vol. 1442 of Lecture Notes in Computer
Science. Springer, pp. 118–146.

[3] Aspnes, J., Hurwood, W., 1998. Spreading rumors rapidly despite an adver-
sary. Journal of Algorithms 26 (2), 386–411.

[4] Ben-David, S., Borodin, A., Karp, R. M., Tardos, G., Wigderson, A., 1994.
On the power of randomization in on-line algorithms. Algorithmica 11 (1),
2–14.

[5] Borodin, A., El-Yaniv, R., 1998. Online Computation and Competitive Anal-
ysis. Cambridge University Press.

[6] Irani, S., 1991. Two results on the list update problem. Information Pro-
cessing Letters 38 (6), 301–306.

[7] Raghavan, P., Snir, M., 1989. Memory versus randomization in on-line al-
gorithms. In: 16th International Colloquium on Automata, Languages and
Programming (ICALP). Vol. 372 of Lecture Notes in Computer Science.
Springer, pp. 687–703.

[8] Sleator, D. D., Tarjan, R. E., 1985. Amortized efficiency of list update and
paging rules. Communications of the ACM 28 (2), 202–208.

7


	Introduction
	Online Algorithms and Competitive Analysis
	The Model and Problem
	Deterministic Upper Bound
	Deterministic Lower Bound
	Randomized Upper Bound
	Discussion
	Acknowledgments

