Relaxing the Irrevocability Requirement for
Online Graph Algorithms*

Joan Boyar!, Lene M. Favrholdt!, Michal Kotrbéik?, and Kim S. Larsen’

! University of Southern Denmark, Odense, Denmark,
{joan,lenem,kslarsen}@imada.sdu.dk
2 The University of Queensland, Brisbane, Australia, m.kotrbcik@uq.edu.au

Abstract. Online graph problems are considered in models where the
irrevocability requirement is relaxed. Motivated by practical examples
where, for example, there is a cost associated with building a facility
and no extra cost associated with doing it later, we consider the Late
Accept model, where a request can be accepted at a later point, but
any acceptance is irrevocable. Similarly, we also consider a Late Reject
model, where an accepted request can later be rejected, but any rejection
is irrevocable (this is sometimes called preemption). Finally, we consider
the Late Accept/Reject model, where late accepts and rejects are both
allowed, but any late reject is irrevocable. For Independent Set, the Late
Accept/Reject model is necessary to obtain a constant competitive ratio,
but for Vertex Cover the Late Accept model is sufficient and for Mini-
mum Spanning Forest the Late Reject model is sufficient. The Matching
problem has a competitive ratio of 2, but in the Late Accept/Reject
3

model, its competitive ratio is 3.

1 Introduction

For an online problem, the input is a sequence of requests. For each request,
the algorithm has to make some decision without any knowledge about possible
future requests. Often (part of) the decision is whether to accept or reject the
request and the decision is usually assumed to be irrevocable. However, many
online problems have applications for which total irrevocability is not inher-
ent or realistic. Furthermore, when analyzing the quality of online algorithms,
relaxations of the irrevocability constraint often result in dramatically different
results, especially for graph problems. This has already been realized and several
papers study various relaxations of the irrevocability requirement. In this paper
we initiate a systematic study of the nature of irrevocability and of the implica-
tions for the performance of the algorithms. Our aim is to understand whether
it is the absence of knowledge of the future or the irrevocability restrictions on
the manipulation of the solution set that makes an online problem difficult.
We consider graph problems and focus on four classical problems, Indepen-
dent Set, Matching, Vertex Cover, and Minimum Spanning Forest. Independent

* Supported in part by the Danish Council for Independent Research, Natural Sci-
ences, grant DFF-1323-00247, and the Villum Foundation, grant VKR023219.



2 J. Boyar, L. M. Favrholdt, M. Kotrbéik, K. S. Larsen

Set and Vertex Cover are studied in the vertex arrival model. In this model,
vertices arrive one by one together with all the edges between the newly arrived
vertex and previous vertices. Matching and Minimum Spanning Forest are stud-
ied in the edge arrival model, but the results hold in the vertex arrival model as
well. In the edge arrival model, edges arrive one by one, and if a vertex incident
with the newly-arrived edge was not seen previously, it is also revealed.

Relaxed irrevocability

For the four problems considered in this paper, the online decision is whether to
accept or reject the current request. In the standard model of online problems,
this decision is irrevocable and has to be made without any knowledge about
possible future requests. We relax the irrevocability requirement by allowing
the algorithm to perform two additional operations, namely late accept and late
reject. Late accept allows the algorithm to accept not only the current request but
also requests that arrived earlier. Thus, late accept relaxes irrevocability by not
forcing the algorithm to discard the items that are not used immediately. Late
reject allows the algorithm to remove items from the solution being constructed,
relaxing the irrevocability of the decision to accept an item. When the algorithm
is allowed to perform late accept or late reject, but not both, we speak of a
Late Accept model and Late Reject model, respectively. Note that, in these two
models, the late operations are irrevocable. We also consider the situation where
the algorithm is allowed to perform both late accepts and late rejects, focusing
on the Late Accept/Reject model, where any item can be late-accepted and late-
rejected, but once it is late-rejected, this decision is irrevocable. In other words,
if the algorithm performs both late accept and late reject on a single item, the
late accept has to precede the late reject.

We believe that the Late Accept, Late Reject, and Late Accept/Reject models
are appropriate modeling tools corresponding to many natural settings. Match-
ing, for example, in the context of online gaming or chats, functions in the Late
Accept model. Indeed, the users are in the pool until assigned, allowing the late
accept, but once the users are paired, the connection should not be broken by
the operator. Note that the matching problem is a maximization problem. For
minimization problems, accepting a request may correspond to establishing a re-
source at some cost. Often there is no natural reason to require the establishment
to happen at a specific time. Late acceptance was considered for the dominating
set problem in [2], which also contains further feasible practical applications and
additional rationale behind the model.

When the knapsack problem is studied in the Late Reject model, items are
usually called removable; see for example [16, 13,12, 4, 14]. For most other prob-
lems, late rejection is usually called preemption and has been studied in variants
of many online problems, for example call control [1,9], maximum coverage [23,
22], and weighted matching problems [6, 7]. Preemption was also previously con-
sidered for one of the problems we consider here, independent set, in [19], but in
a model where advice is used, presenting lower bounds on the amount of advice
necessary to achieve given competitive ratios in a stated range.



Relaxing Irrevocability 3

Online Vertex Cover was studied in [5], where they considered the possibility
of swapping some of the accepted vertices for other vertices at the very end, at
some cost depending on the number of vertices involved. A similar concept is
studied in, for example, [15,21,10,11] for online Steiner tree problems, MST,
and TSP. Here, replacing an accepted edge with another is allowed, and the
objective is to minimize the number of times this occurs while obtaining a good
competitive ratio. The problem is said to allow rearrangements or recourse. TSP
has also been studied [17] in a model where the actual acceptances and rejections
(rejections carry a cost) are made at any time.

Competitive analysis

For each graph problem, we study online algorithms in the standard, Late Ac-
cept, Late Reject, and Late Accept/Reject models using the standard tool of
competitive analysis [24, 18], where the performance of an online algorithm is
compared to the optimum algorithm OPT via the competitive ratio. For any
algorithm (online or offline), A, we let A(c) denote the value of the objective
function when A is applied to the input sequence o.

For minimization problems, we say that an algorithm, ALG, is c-competitive,
if there exists a constant « such that, for all inputs o, ALG(0) < ¢- OPT(0) + .
Similarly, for maximization problems, ALG is c-competitive, if there exists a
constant « such that, for all inputs o, OPT(0) < ¢- ALG(0) + . In both cases, if
the inequality holds for a = 0, the algorithm is strictly c-competitive. The (strict)
competitive ratio of ALG is the infimum over all ¢ such that ALG is (strictly)
c-competitive. The competitive ratio of a problem P is the infimum over the
competitive ratio of all online algorithms for the problem. For all combinations
of the problem and the model, we obtain matching lower and upper bounds on
the competitive ratio.

For ease of notation for our results, we adopt the following conventions to
express that a problem essentially has competitive ratio n, i.e., it is true up to
an additive constant. We say that a problem has competitive ratio n — ©(1) if
(i) for any algorithm, there is a constant b > 0 such that the strict competitive
ratio is at least n — b, and (ii) for any constant b, there is a strictly (n — b)-
competitive algorithm for graphs with at least b + 1 vertices. Similarly, we say
that a problem has competitive ratio n/©(1) if (i) for any algorithm, there is a
constant b > 0 such that the strict competitive ratio is at least n/b, and (ii) for
any constant b, there is an n/b-competitive algorithm for graphs with at least
b vertices. This notation is used in Theorems 3 and 12. For all other results,
the upper bounds hold for the strict competitive ratio. For convenience, when
stating results containing both an upper bound on the strict competitive ratio
and a lower bound on the competitive ratio, we use the term “competitive ratio”
even though the result holds for the strict competitive ratio as well.



4 J. Boyar, L. M. Favrholdt, M. Kotrbéik, K. S. Larsen

Our results

The paper shows that for some problems the Late Accept model allows for algo-
rithms with significantly better competitive ratios, while for others it is the Late
Reject model which does. For other problems, the Late Accept/Reject model is
necessary to get these improvements. See Table 1. Note that only deterministic
algorithms are considered, not randomized algorithms.

Our results on Minimum Spanning Forest follow from previous results. Thus,
they are mainly included to give an example where late rejects bring down
the competitive ratio dramatically. The technical highlights of the paper are
the results for Independent Set in the Late Accept/Reject model, where, in
Theorems 4 and 5, we prove matching lower and upper bounds of 3v/3/2 on the
competitive ratio.

Table 1. Competitive ratios of the four problems in each of the four models. W is the
ratio of the largest weight to the smallest.

Problem Standard Late Accept Late Reject Late Accept/Reject
Independent Set n—1 % [%] % ~ 2.598
Matching 2 2 2 2

Vertex Cover n—1 2 n—0(1) 2

Min. Spanning Forest w w 1 1

We consider only undirected graphs G = (V, E). Throughout the paper, G
will denote the graph under consideration, and V' and E will denote its vertex
and edge set, respectively. Moreover, n = |V| will always denote the number of
vertices in G. We use uv for the undirected edge connecting vertices u and v, so
vu denotes the same edge.

The missing proofs all appear in the full paper [3].

2 Independent Set

An independent set for a graph G = (V, E) is a subset I C V such that no two
vertices in I are connected by an edge. For the problem called Independent Set,
the objective is to find an independent set of maximum cardinality. We consider
online Independent Set in the vertex arrival model.

In the standard model, no online algorithm can be better than (n — 1)-
competitive, since the adversary can give independent vertices, until the algo-
rithm accepts a vertex, v, and then only give vertices adjacent to v. On the other
hand, the greedy algorithm is (n — 1)-competitive; if it ever rejects a vertex, the
graph contains at least one edge and hence, OPT accepts at most n — 1 vertices.



Relaxing Irrevocability 5

Theorem 1. For Independent Set in the standard model, the strict competitive
ratio 1sm — 1.

In the Late Reject model, the greedy algorithm becomes n/2-competitive
with the following modification. If a new vertex is adjacent to exactly one ac-
cepted vertex, v, then v is rejected and the new vertex is accepted. If the algo-
rithm accepts only one vertex, the graph has a path containing all n vertices and
OPT can accept at most [ %] vertices. For the lower bound, the adversary can
give a bipartite graph by always connecting the new vertex to the only vertex
(if any) accepted by the algorithm.

Theorem 2. For Independent Set in the Late Reject model, the strict competi-
tive ratio is [n/2].

Allowing late accepts helps further, but not enough to obtain a finite (con-
stant) competitive ratio. For a given positive constant ¢, an algorithm which does
not accept any vertex until the presented graph has an independent set of size at
least ¢, and then accepts any such set, is n/c-competitive. For the lower bound,
if the adversary starts the input sequence with isolated vertices, any algorithm
with a bounded competitive ratio will have to accept a vertex, v, at some point.
From this point on, the adversary can give vertices with only v as a neighbor. If
v was the cth vertex in the input, the algorithm can accept at most the first ¢
vertices.

Theorem 3. For Independent Set in the Late Accept model, the competitive
ratio is n/O(1).

The following two theorems show that, in the Late Accept/Reject model,
the optimal competitive ratio for Independent set is 3v/3 /2. The upper bound
comes from a variant of the greedy algorithm, Algorithm 1, rejecting a set of
vertices if it can be replaced by a set at least /3 as large. The algorithmic idea
is natural and has been used before (with other parameters than v/3) in [22, 23],
for example. Thus, the challenge lies in deciding the parameter and proving the
resulting competitive ratio. Pseudocode for Algorithm 1 is given below.

For Algorithm 1, we introduce the following notation. Let S be the current
set of vertices that have been accepted and not late-rejected. Let R be the set
of vertices that have been late-rejected, and let P denote the set V — (RUS) of
vertices that have not been accepted (and, hence, not late-rejected).

For a set U of vertices, let N(U) = Uyeu N (v), where N (v) is the neighbor-
hood of a vertex v (not including v). We call a set, T, of vertices admissible if
all the following conditions are satisfied:

1) T is an independent set;
2) T CP;
3) |T| >V3|N(T)NS|.



6 J. Boyar, L. M. Favrholdt, M. Kotrbéik, K. S. Larsen

Algorithm 1: Algorithm for Independent Set in the Late Accept/Reject
model.
Result: Independent set S

15=0
2 while a vertex v is presented do
3 if SU{v} is independent then
S=SuU{v}
else
while there exists an admissible set do
Let T be an admissible set minimizing |[S N N(T)|
S=(S-NT)UT

For the analysis of Algorithm 1, we partition S into the set, A, of vertices
accepted in line 4 and the set, B, of vertices accepted in line 8. We let O be
the independent set constructed by OpT. For any set, U, of vertices, we let
Ut =UNOand U~ =U-0.Thus, O = PTUSTURT = PtUATUBTUR™T.

The following lemma follows from the fact that each time a set, X, of vertices
is moved from S to R, a set at least /3 times as large as X is added to B.

® N o otoh

Lemma 1. When Algorithm 1 terminates, |B| > (v/3 — 1)|R)|.

The next lemma follows from the facts that when the algorithm terminates,
PT is not admissible and P™ U ST is independent, since PT U ST C O.

Lemma 2. When Algorithm 1 terminates, |P*| < /3]S7|.
Lemma 3. When Algorithm 1 terminates, |B~|+ |R™| > V3 |R*]|.

Proof. Consider a set, T, added to B in line 8. Let @ = N(T) N S. We prove
that

77| = V3|QT] (1)
If |Q*| = 0, this is trivially true. Thus, we can assume that Q~ is a proper
subset of ). Since T is admissible, it follows that

7| > V3|Q) (2)

Note that (S — Q) UT™ is independent, since (S — Q) U T is independent and
there are no edges between Q+ and T'". Since the algorithm chooses T such that
|Q| is minimized, this means that

T < V3|Q | (3)

Subtracting Ineq. (3) from Ineq. (2), we obtain Ineq. (1).
Let T4,T5, ..., Ty be all the admissible sets that are chosen in line 8 during
the run of the algorithm, and let @1, Q2, ..., Qk be the corresponding sets that



Relaxing Irrevocability 7

are removed from S. Then, U¥_|T; C B U R, and thus, Ui—“lei_ C BTUR™.
Furthermore, R = U*_, Q,. Hence,

k k
BTl +|R7| =) |17 = Y V3IQF| = V3IRT],
i=1

i=1
where the second inequality follows from Ineq. (1). O

Using (V3+1)(|B*|+|RT|) = V3(|B*|+|R*|) +|B| + |R| - (|IB~| + |R|),
we obtain the following lemma via simple calculations using Lemmas 1 and 3.

Lemma 4. When Algorithm 1 terminates, |BY| + |RT| < %Bﬂ + @\B|

The upper bound now follows from simple calculations using Lemmas 2 and 4:

Theorem 4. For Independent Set in the Late Accept/Reject model, Algorithm 1
is strictly 3\/3/2-competitive.

We prove a matching lower bound:

Theorem 5. For Independent Set in the Late Accept/Reject model, the compet-
itive ratio is at least 3\/3/2.

Proof (Sketch of a proof.). Assume that ALG is strictly c-competitive for some
¢ > 1. We first show that c is at least 3\/3/ 2 and then lift the strictness restric-
tion. Assume for the sake of contradiction that ¢ < 3v/3/2.

Incrementally, we construct an input consisting of a collection of bags, where
each bag is an independent set. Whenever a new vertex v belonging to some
bag B is given, we make it adjacent to every vertex not in B, except vertices
that have been late-rejected by ALG. Thus, if ALG accepts v, it cannot hold any
vertex in any other bag. This implies that the currently accepted vertices of ALG
always form a subset of a single bag, which we refer to as ALG’s bag, and this is
the crucial invariant in the proof. We say that ALG switches when it rejects the
vertices of its current bag and accepts vertices of a different bag.

For the incremental construction, the first bag is special in the sense that
ALG cannot switch to another bag. We discuss later when we decide to create
the second bag, but all we will need is that the first bag is large enough. From
the point where we have created a second bag, ALG has the option of switching.
Whenever ALG switches to a bag, B’, we start the next bag, B”. All that this
means is that the vertices we give from this point on and until ALG switches
bag again belong to B, and ALG never holds vertices in the newest bag.

Now we argue that as long as we keep giving vertices, ALG will repeatedly
have to switch bag in order to be c-competitive. Choose some ¢ > 0, let B
be ALG’s bag, B’ be the new bag, and s be the number of vertices which are
not adjacent to any vertices in B’. If ALG has accepted a vertices of B after
(¢ + g)a — s vertices of the new bag B’ have been given, ALG has to accept at
least one additional vertex to be c-competitive, since at this point OPT could
accept all of the vertices in B’ and s additional vertices. Since B’ is the new bag,



8 J. Boyar, L. M. Favrholdt, M. Kotrbéik, K. S. Larsen

B has reached its final size, so eventually ALG will have to switch to a different
bag.

For the proof, we keep track of relevant parts of the behavior of ALG using
a tree structure. The first bag is the root of the tree. Recall that whenever ALG
switches to a bag, say X, we start a new bag Y. In our tree structure we make
Y a child of X.

Since ALG is c-competitive and always holds vertices only from a single bag
B, the number a of vertices held in B satisfies a > |B|/c. Since, by assumption,
¢ < 3, it follows that ALG can accept and then reject disjoint sets of vertices
of B at most twice, or equivalently, that each bag in the tree has at most two
children. As we proved above, ALG will have to keep switching bags, so if we
keep giving vertices, this will eventually lead to leaves arbitrarily far from the
root.

Consider a bag B, that ALG holds after a “long enough” sequence has been
presented. Label the bags from the root to ALG’s bag by Bj,..., B,,, where
B;y1is achild of B; foreachi =1,...,m—1. Let aj, 1 < j < m, be the number
of vertices of B; held by ALG immediately before it rejected already accepted
vertices from B; for the first time and let a,, be the number of vertices currently
accepted in B,. Let n; =|B;|, 1 <j <m.

Furthermore, for each j, if j is even, let s; = as + a4 + -+ + a;, and if j is
odd, let s; = ay +as+---+a;. Note that our choice of adjacencies between bags
implies that OPT can hold at least s; vertices in bags By, Bs,..., B;.

Thus, just before ALG rejects the vertices in Bj_1 (just before the n;th vertex
of B; is given), we must have caj_1 > nj — 1+ s;_o, by the assumption that
ALG is c-competitive. We want to introduce the arbitrarily small € chosen above
and eliminate the “—1” in this inequality: Since OPT can always hold the a;
vertices from the root bag, ca; > a; must hold for all j. Since a; > (n1 —1)/c,
we get that a; > (n; — 1)/c. Thus, at the beginning of the input sequence, we
can keep giving vertices for the first bag, making n, large enough such that a;
becomes large enough that ea;_; > 1. This establishes (¢ +¢)aj_1 > n; + s;_2.
Trivially, n; > a;, so

(C + E)aj,1 — Sj—2 > a;. (4)

Next, we want to show that for any 1 < ¢ < 3V3 /2, there exists an m such that
S > Cly, (5)

contradicting the assumption that ALG was c-competitive. To accomplish this,
we repeatedly strengthen Ineq. (5) by replacing a; with the bound from Ineq. (4),
eventually arriving at an inequality which can be proven to hold, and then this
will imply all the strengthened inequalities and, finally, Ineq. (5). a

3 Matching

A matching in a graph G = (V, E) is a subset of E consisting of pairwise non-
incident edges. For the problem called Matching, the objective is to find a match-
ing of maximum cardinality. We study online Matching in the edge arrival model,



Relaxing Irrevocability 9

but note that the results hold in the vertex arrival model as well: For the upper
bounds, an algorithm in the vertex arrival model can process the edges incident
to the current vertex in any order. For the lower bounds, all adversarial sequences
used in this section consist of paths, and hence, exactly the same input can be
given in the vertex arrival model.

It is well known and easy to prove that the greedy algorithm which adds an
edge to the matching whenever possible is 2-competitive and this is optimal in
the standard model. The first published proof of this is perhaps in the classical
paper of Korte and Hausmann [20].

For late accept, we can use the same adversarial sequence as for the standard
model: First a number of isolated edges are presented. Then, for each edge, uv,
accepted by the algorithm, two edges, xu and vy, are presented.

Theorem 6. For Matching in the Late Accept model, the competitive ratio is 2.

Late rejects do not improve the competitive ratio either. This can be seen
from a sequence starting with a number of isolated edges. For each accepted edge,
uv, the adversary presents an edge vz. If the algorithm late-rejects uv (and thus
accepts vx), an edge zy is presented. Otherwise, an edge zu is presented.

Theorem 7. For Matching in the Late Reject model, the competitive ratio is 2.

In the Late Accept/Reject model, the competitive ratio is 3/2. Again, the
adversarial sequence starts with a number of isolated edges. If an edge uv is
accepted at any point, the adversary presents edges zu and vy. If uv is then
late-rejected, edges 'z and yy' are presented.

Theorem 8. For Maltching in the Late Accept/Reject model, the competitive
ratio is at least 3/2.

To prove a matching upper bound, we give an algorithm, Algorithm 2, which
is strictly %—competitive in the Late Accept/Reject model.

Recall that for a matching M, a path P = eq,...,e, is alternating with
respect to M, if for all i € {1,...,k}, e; belongs to M if and only if ¢ is even.
Moreover, an alternating path P is called augmenting if neither endpoint of P
is incident to a matched edge. Note that the symmetric difference of a matching
M and an augmenting path with respect to M is a matching of size larger than

M. We focus on local changes, called short augmentations in [26].

Algorithm 2: Algorithm for maximal matching in the Late Accept/Reject
model.
Result: Matching M

1 M=0
2 while an edge e is presented do
3 if M U{e} is a matching then

M=MU{e}
if there is an augmenting path xuvy of length 3 then

M = (M U {uz,vy}) — {uv}

[=2JNNS) N




10 J. Boyar, L. M. Favrholdt, M. Kotrbéik, K. S. Larsen

The fact that Algorithm 2 is a Late Accept/Reject algorithm follows from
the observation that no matched vertex ever becomes unmatched again. For the
upper bound, we use that if a maximal matching M does not admit augmenting
paths of length 3, then 3|M| > 2|OPT|. This fact is easy to prove and can be
found as Lemma 2 of [8], for example.

Theorem 9. For Matching in the Late Accept/Reject model, Algorithm 2 is
strictly 3/2-competitive.

4 Vertex Cover

A vertex cover for a graph G = (V, E) is a subset C C V such that for any edge,
wv € E, {u,v} NC # (). For the problem called Vertex Cover, the objective is
to find a vertex cover of minimum cardinality. We study online Vertex Cover in
the vertex arrival model.

In the standard model, no online algorithm can be better than (n — 1)-
competitive: The adversary can present isolated vertices until some vertex, v,
is rejected, and then vertices that are adjacent only to v. On the other hand,
this competitive ratio is obtained by the algorithm that accepts only the second
endpoint of each uncovered edge.

Theorem 10. For Vertex Cover in the standard model, the strict competitive
ratio isn — 1.

Late accept changes the situation dramatically, since then the 2-approx-
imation algorithm adding both endpoints of each uncovered edge can be used.
Adding late rejects does not change the situation further; if the algorithm ever
late-rejects a vertex, v, the adversary can add arbitrarily many neighbors of v.

Theorem 11. For Vertex Cover in the Late Accept model and the Late Ac-
cept/Reject model, the competitive ratio is 2.

In the Late Reject model, the competitive ratio is n — @(1). For the lower
bound, the adversary can give isolated vertices until some vertex, v, is rejected,
and then arbitrarily many neighbors of v. The upper bound is obtained by a
family ALG, of algorithms accepting the first b + 1 vertices and then rejecting
the vertices not part of an optimal vertex cover of the graph seen so far.

Theorem 12. For Vertex Cover in the Late Reject model, the competitive ratio

isn—06(1).

5 Minimum Spanning Forest

A spanning forest for a graph G = (V,E) is a subset T C E which forms
a spanning tree on each of the connected components of G. Given a weight
function w: £ — RT, the objective of the Minimum Spanning Forest problem



Relaxing Irrevocability 11

is to find a spanning forest of minimum total weight. We let W denote the ratio
between the largest and the smallest weight of any edge in the graph.

We study online Minimum Spanning Forest in the edge arrival model, but the
results also hold in the vertex arrival model: For the upper bounds, an algorithm
in the vertex arrival model can process the edges incident to the current vertex
in any order. In the lower bound sequences presented here, all edges from a new
vertex to all previous vertices are presented together in an arbitrary order.

Even in the standard model, the competitive ratio cannot be higher than W,
since all spanning forests contain the same number of edges. A matching lower
bound follows from the sequence consisting of a tree of edges of weight W and
then a vertex with edges of weight 1 to all previous vertices. Since an online
algorithm, even in the Late Accept model model, does not know when the input
ends, it must always have a forest spanning all the vertices seen so far:

Theorem 13. For Minimum Spanning Forest in the standard model or the Late
Accept model, the competitive ratio is W.

On the other hand, in the Late Reject model, the greedy online algorithm
mentioned by Tarjan in [25] can be used: Each new edge is accepted, and if
this results in a cycle, the heaviest edge in the cycle is (late-)rejected. Since the
Late Reject model leads to an optimal spanning tree, any model allowing that
possibility inherits the result.

Theorem 14. For Minimum Spanning Forest in the Late Reject model or the
Late Accept/Reject model, the competitive ratio is 1.

Future Work

Since we prove tight results for all combinations of problems and models con-
sidered, we leave no immediate open problems. However, one could reasonably
consider late operations a resource to be used sparingly, as for the rearrange-
ments in [15,21,10,11], for example. Thus, an interesting continuation of our
work would be a study of trade-offs between the number of late operations em-
ployed and the quality of the solution (in terms of competitiveness). Obviously,
one could also investigate other online problems and further model variations.

References

1. Y. Bartal, A. Fiat, and S. Leonardi. Lower bounds for on-line graph problems with
application to on-line circuit and optical routing. In 28th STOC, pages 531-540.
ACM, 1996.

2. J. Boyar, S.J. Eidenbenz, L.M. Favrholdt, M. Kotrbé¢ik, and K.S. Larsen. Online
dominating set. In 15th SWAT, volume 53 of LIPIcs, pages 21:1-21:15. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, 2016.

3. J. Boyar, L.M. Favrholdt, M. Kotrbéik, and K.S. Larsen. Relaxing the irrevocabil-
ity requirements for online graph algorithms. Technical Report arXiv:1704.08835
[cs.DS], arXiv, 2017.



12

4.

5

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

J. Boyar, L. M. Favrholdt, M. Kotrbéik, K. S. Larsen

M. Cygan, L. Jez, and J. Sgall. Online knapsack revisited. Theor. Comput. Syst.,
58(1):153-190, 2016.

M. Demange and V.Th. Paschos. On-line vertex-covering. Theor. Comput. Sci.,
332:83-108, 2005.

L. Epstein, A. Levin, J. Mestre, and D. Segev. Improved approximation guarantees
for weighted matching in the semi-streaming model. SIAM J. Discrete Math.,
25(3):1251-1265, 2011.

L. Epstein, A. Levin, D. Segev, and O. Weimann. Improved bounds for online
preemptive matching. In 30th STACS, volume 20 of LIPIcs, pages 389-399. Schloss
Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, 2013.

J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang. On graph problems
in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207-216, 2005.

J.A. Garay, 1.S. Gopal, S. Kutten, Y. Mansour, and M. Yung. Efficient on-line call
control algorithms. J. Algorithm., 23(1):180-194, 1997.

A. Gu, A. Gupta, and A. Kumar. The power of deferral: Maintaining a constant-
competitive steiner tree online. SIAM J. Comput., 45(1):1-28, 2016.

A. Gupta and A. Kumar. Online steiner tree with deletions. In 25th SODA, pages
455-467, 2014.

X. Han, Y. Kawase, and K. Makino. Randomized algorithms for online knapsack
problems. Theor. Comput. Sci., 562:395-405, 2015.

X. Han, Y. Kawase, K. Makino, and H. Guo. Online removable knapsack problem
under convex function. Theor. Comput. Sci., 540:62—69, 2014.

X. Han and K. Makino. Online minimization knapsack problem. Theor. Comput.
Sci., 609:185-196, 2016.

M. Imase and B.M. Waxman. Dynamic steiner tree problem. SIAM J. Discrete
Math., 4(3):369-384, 1991.

K. Iwama and S. Taketomi. Removable online knapsack problems. In 29th ICALP,
volume 2380 of LNCS, pages 293-305. Springer, 2002.

P. Jaillet and X. Lu. Online traveling salesman problems with rejection options.
Networks, 64:84-95, 2014.

A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive snoopy
caching. Algorithmica, 3:79-119, 1988.

D. Komm, R. Krilovi¢, R. Kralovi¢, and C. Kudahl. Advice complexity of the
online induced subgraph problem. In 41st MFCS, volume 58 of LIPIcs, pages
59:1-59:13. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2016.

B. Korte and D. Hausmann. An analysis of the greedy heuristic for independence
systems. Ann. Discrete Math., 2:65-74, 1978.

N. Megow, M. Skutella, J. Verschae, and A. Wiese. The power of recourse for
online MST and TSP. SIAM J. Comput., 45(3):859-880, 2016.

D. Rawitz and A. Rosén. Online Budgeted Maximum Coverage. In 24th ESA,
volume 57 of LIIPCcs, pages 73:1-73:17. Schloss Dagstuhl — Leibniz-Zentrum fiir
Informatik GmbH, 2016.

B. Saha and L. Getoor. On maximum coverage in the streaming model & appli-
cation to multi-topic blog-watch. In 9th SDM, pages 697—708. STAM, 2009.

D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.
Communications of the ACM, 28(2):202-208, 1985.

R.E. Tarjan. Data Structures and Network Algorithms, volume 44 of CBMS-NSF
regional conference series in applied mathematics. STAM, 1983.

D.E.D. Vinkemeier and S. Hougardy. A linear-time approximation algorithm for
weighted matchings in graphs. ACM T. Algorithms, 1(1):107-122, 2005.



