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Abstract. In online interval scheduling, the input is an online sequence
of intervals, and the goal is to accept a maximum number of non-over-
lapping intervals. In the more general disjoint path allocation problem,
the input is a sequence of requests, each involving a pair of vertices of a
known graph, and the goal is to accept a maximum number of requests
forming edge-disjoint paths between accepted pairs. These problems have
been studied under extreme settings without information about the input
or with error-free advice. We study an intermediate setting with a po-
tentially erroneous prediction that specifies the set of intervals/requests
forming the input sequence. For both problems, we provide tight up-
per and lower bounds on the competitive ratios of online algorithms
as a function of the prediction error. For disjoint path allocation, our
results rule out the possibility of obtaining a better competitive ratio
than that of a simple algorithm that fully trusts predictions, whereas,
for interval scheduling, we develop a superior algorithm. We also present
asymptotically tight trade-offs between consistency (competitive ratio
with error-free predictions) and robustness (competitive ratio with adver-
sarial predictions) of interval scheduling algorithms. Finally, we provide
experimental results on real-world scheduling workloads that confirm our
theoretical analysis.

Keywords: Online interval scheduling. Algorithms with prediction.
Competitive analysis. Disjoint paths.

1 Introduction

In the interval scheduling problem, the input is a set of intervals with integral
endpoints, each representing timesteps at which a process starts and ends. A
scheduler’s task is to decide whether to accept or reject each job so that the
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intervals of accepted jobs do not overlap except possibly at one of their endpoints.
The objective is to maximize the number of accepted intervals, referred to as the
profit of the scheduler. This problem is also known as fixed job scheduling and
k-track assignment [35].

Interval scheduling is a special case of the disjoint path allocation problem, where
the input is a graph G and a set of n requests, each defined by a pair of ver-
tices in G. An algorithm can accept or reject each pair, given that it can form
edge-disjoint paths between vertices of accepted pairs. Interval scheduling is the
particular case when G is a path graph. The disjoint path allocation problem
can be solved in polynomial time for trees [30] and outerplanar graphs by a com-
bination of [26,34,29], but the problem is NP-complete for general graphs [28],
and even on quite restricted graphs such as series-parallel graphs [42]. The dis-
joint path problem is the same as call control/call allocation with all bandwidths
(both of the calls and the edges they would be routed on) being equal to 1 and
as the maximum multi-commodity integral flow problem with edges having unit
capacity.

In this work, we focus on the online variant of the problem, in which the set
of requests is not known in advance but is revealed in the form of a request se-
quence, I. A new request must either be irrevocably accepted or rejected, subject
to maintaining disjoint paths between accepted requests. We analyze an online
algorithm via a comparison with an optimal offline algorithm, Opt. The com-
petitive ratio of an online algorithm Alg is defined as infI {Alg(I)/Opt(I)},
where Alg(I) and Opt(I), respectively, denote the profit of Alg and Opt on
I (for randomized algorithms, Alg(I) is the expected profit of Alg). Since we
consider a maximization problem, our ratios are between zero and one.

For interval scheduling on a path graph with m edges, the competitive ratios
of the best deterministic and randomized algorithms are respectively 1

m and
1

⌈logm⌉ [20]. These results suggest that the constraints on online algorithms must

be relaxed to compete with Opt. Specifically, the problem has been consid-
ered in the advice complexity model for path graphs [16,31], trees [18], and grid
graphs [19]. Under the advice model, the online algorithm can access error-free
information on the input called advice. The objective is to quantify the trade-offs
between the competitive ratio and the size of the advice.

In recent years, there has been an increasing interest in improving the perfor-
mance of online algorithms via the notion of prediction. Here, it is assumed that
the algorithm has access to machine-learned information in the form of a predic-
tion. Unlike the advice model, the prediction may be erroneous and is quantified
by an error measure η. The objective is to design algorithms whose competi-
tive ratio degrades gently as a function of η. Several online optimization prob-
lems have been studied under the prediction model, including non-clairvoyant
scheduling [43,45], makespan scheduling [36], contract scheduling [6,7], and other
variants of scheduling problems [11,39,14,13].
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Other online problems studied under the prediction model include bin pack-
ing [3,4], knapsack [47,33,21], caching [40,44,46,8], matching problems [9,37,38],
time series search [5], and various graph problems [25,27,24,12,15]. See also the
survey by Mitzenmacher and Vassilvitskii [41] and the collection at [1].

1.1 Contributions

We study the disjoint path allocation problem under a setting where the sched-
uler is provided with a set Î of requests predicted to form the input sequence I.
Given the erroneous nature of the prediction, some requests in Î may be incor-
rectly predicted to be in I (false positives), and some requests in I may not be
included in Î (false negatives). We let the error set be the set of requests that
are false positives or false negatives and define the error parameter η(Î , I) to be
the cardinality of the largest set of requests in the error set that can be accepted.
For interval scheduling, this is the largest set of non-overlapping intervals in the
error set. Thus, η(Î , I) = Opt(FP∪FN). We explain later that this definition
of η satisfies specific desired properties for the prediction error (Proposition 1).
In the following, we use Alg(Î , I) to denote the profit of an algorithm Alg for
prediction Î and input I. We also define γ(Î , I) = η(Î , I)/Opt(I); this nor-
malized error measure is helpful in describing our results because the point of
reference in the competitive analysis is Opt(I). Our first result concerns general
graphs:

– Disjoint-Path Allocation: We study a simple algorithm Trust, which
accepts a request only if it belongs to the set of predictions in a given op-
timal solution for Î . We show that, for any graph G, any input sequence I,
and any prediction Î , Trust(Î , I) ≥ (1−2γ(Î , I))Opt(I) (Theorem 1). Fur-
thermore, for any algorithm Alg and any positive integer p, there are worst-
case input sequence Iw and prediction set Îw over a star graph, S8p, with 8p

leaves, such that η(Îw, Iw) = p and Alg(Îw, Iw) ≤ (1−2γ(Îw, Iw))Opt(Iw)
(Theorem 2). Thus, Trust achieves an optimal competitive ratio in any
graph class that contains S8.

The above result demonstrates that even for trees, the problem is so hard that
no algorithm can do better than the trivial Trust. Therefore, our main results
concern the more interesting case of path graphs, that is, interval scheduling:

– Interval scheduling: We first show a negative result for deterministic in-
terval scheduling algorithms. Given any deterministic algorithm Alg and
integer p, we show there are worst-case instances Iw and predictions Îw such
that η(Îw, Iw) = p and Alg(Îw, Iw) ≤ (1−γ(Îw, Iw))Opt(Iw) (Theorem 3,
setting c = 2).

Next, we present a negative result for Trust. For any positive integer, p,
we show there are worst-case instances Iw and predictions Îw such that
η(Îw, Iw) = p and Trust(Îw, Iw) = (1−2γ(Îw, Iw))Opt(Iw) . (Theorem 4).
This suggests that there is room for improvement over Trust.
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Finally, we introduce our main technical result, a deterministic algorithm
TrustGreedy that achieves an optimal competitive ratio for interval sched-
uling. TrustGreedy is similar to Trust in that it maintains an optimal
solution for Î , but unlike Trust, it updates its planned solution to ac-
cept requests greedily when it is possible without a decrease in the profit
of the maintained solution. For any input I and prediction Î , we show that
TrustGreedy(Î , I) ≥ (1− γ(Î , I))Opt(I) (Theorem 5), which proves op-
timality of TrustGreedy in the light of Theorem 3.

– Consistency-Robustness Trade-off : We study the trade-off between con-
sistency and robustness, which measure an algorithm’s competitive ratios
in the extreme cases of error-free prediction (consistency) and adversarial
prediction (robustness) [40]. We focus on randomized algorithms because a
non-trivial trade-off is infeasible for deterministic algorithms (Proposition 2).
Suppose that for any input I, an algorithm Alg guarantees a consistency

of α < 1 and robustness of β ≤ 1
⌈logm⌉ . We show α ≤ 1 − ⌊logm⌋−1

2 β and

β ≤ 2
⌊logm⌋−1 · (1−α) (Theorem 6). For example, to guarantee a robustness

of 1
10⌊logm⌋ , the consistency must be at most 19/20, and to guarantee a con-

sistency of 2
3 , the robustness must be at most 2

3
1

⌊logm⌋−1 . We also present

a family of randomized algorithms that provides an almost Pareto-optimal
trade-off between consistency and robustness (Theorem 7).

– Experiments on Real-World Data: We compare our algorithms with the
online Greedy algorithm (which accepts an interval if and only if it does
not overlap previously accepted intervals), and Opt on real-world schedul-
ing data from [23]. Our results are in line with our theoretical analysis:
both Trust and TrustGreedy are close-to-optimal for small error values;
TrustGreedy is almost always better than Greedy even for large values
of error, while Trust is better than Greedy only for small error values.

Omitted details and all omitted proofs can be found in the full paper [17].

2 Model and Predictions

We assume that an oracle provides the online algorithm with a set Î of requests
predicted to form the input sequence I. Note that it is not interesting to consider
alternative types of predictions that are very compact. For interval scheduling
on a path with m edges, since the problem is AOC-complete, one cannot achieve
a competitive ratio c ≤ 1 with fewer than cm/(e ln 2) bits, even if all predictions
are correct [22].

In what follows, true positive (respectively, negative) intervals are correctly pre-
dicted to appear (respectively, not to appear) in the request sequence. False
positives and negatives are defined analogously as those incorrectly predicted to
appear or not appear. We let TP, TN, FP, FN denote the four sets containing
these different types of intervals. Thus, I = TP∪FN and Î = TP∪FP. We use
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η(Î , I), to denote the error for the input formed by the set I, when the set of
predictions is Î . When there is no risk of confusion, we use η instead of η(Î , I).

The error measure we use here is η = Opt(FP∪FN), and hence, the normalized
error measure is γ = Opt(FP∪FN)/Opt(I). Our error measure satisfies the
following desirable properties, the first two of which were strongly recommended
in Im, et al. [32]: First, the monotonicity property requires that increasing the
number of true positives or true negatives does not increase the error. Second, the
Lipschitz property ensures that η(Î , I) ≥ |Opt(I)−Opt(Î )|. Finally, Lipschitz
completeness requires η(I, Î ) ≤ Opt(FP∪FN). The Lipschitz and Lipschitz
completeness properties enforce a range for the error to avoid situations where
the error is too small or too large. We refer to the full paper [17] for details on
these properties. There, we also discuss natural error models, such as Hamming
distance between the request sequence and prediction, and explain why these
measures do not satisfy our desired properties.

Proposition 1. The error measure η(Î , I) = Opt(FP∪FN) satisfies the prop-
erties of monotonicity, Lipschitz, and Lipschitz completeness.

3 Disjoint-path allocation

In this section, we show that a simple algorithm Trust for the disjoint path
allocation problem has an optimal competitive ratio for any graph of maximal
degree at least 8. Trust simply relies on the predictions being correct. Specifi-
cally, it computes an optimal solution I ∗ in Î before processing the first request.
Then, it accepts any request in I ∗ that arrives and rejects all others.

We first establish that, on any graph, Trust(Î , I) ≥ Opt(I) − 2η(Î , I) =
(1 − 2γ(Î , I))Opt(I). The proof follows by observing that (i) false negatives
cause a deficit of at most Opt(FN) in the schedule of Trust compared to the
optimal schedule for I ∗, (ii) false positives cause a deficit of at most Opt(FP)
in the optimal schedule of I ∗, compared to the optimal schedule for I, and (iii)
Opt(FP) +Opt(FN) ≤ 2Opt(FP∪FN) = 2η.

Theorem 1. For any graph G, any prediction Î , and input sequence I, we have
Trust(Î , I) ≥ (1− 2γ(Î , I))Opt(I) .

The following result shows that Theorem 1 is tight for star graphs of degree 8.
One can conclude that Trust is optimal for any graph class that contains stars
of degree 8.

Theorem 2. Let Alg be any deterministic algorithm and p be any positive inte-
ger. On the star graph S8p, there exists a set of predicted requests Îw and a request

sequence Iw such that η(Îw, Iw) = p and Alg(Îw, Iw) ≤ (1−2γ(Î , I))Opt(Iw) .
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(a) Alg rejects (6, 7) and (7, 8).
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(b) Alg accepts (7, x); here x = 6 , y = 8.

Fig. 1: Illustration of the proof of Theorem 2 for the case that Alg accepts (2, 3).
Highlighted edges indicate paths between accepted pairs.

Proof (sketch). We consider the non-center vertices of S8p in p groups of eight,
and handle them all identically, one group at a time, treating each group in-
dependently. The prediction is fixed, but the input sequence depends on the
algorithm’s actions. For each group, we show that the error in the prediction
is 1, and the profit of Opt is at least 2 units more than that of Alg. Given
that groups do not share edges between themselves, the total error and algo-
rithm’s profits are summed over all groups. Hence, the total error will be equal
to η(Îw, Iw) = p, and we can write Alg(Iw) ≤ Opt(Iw) − 2η(Îw, Iw), that is,
Alg(Iw) ≤ (1− 2γ(Îw, Iw))Opt(Iw).

Next, we explain how an adversary defines the input for each group. For group
0 ≤ i ≤ s−1, the non-center vertices are 8i+ j, where 1 ≤ j ≤ 8, but we refer to
these vertices by the value j. Let Îw = {(1, 2), (2, 3), (3, 4), (4, 5), (6, 7), (7, 8)} be
the part of the prediction relevant for the current group of eight vertices. Both
(6, 7) and (7, 8) are always included in the input sequence, with (6, 7) arriving
immediately before (7, 8). Alg accepts at most one of them. This is discussed in
the cases below. The first request in the input is always (2, 3). Here we discuss
the case when Alg accepts (2, 3); the other case when it rejects (2, 3) follows
with a similar case analysis (see the full paper [17]).

Case Alg accepts (2,3): The next request to arrive is (6, 7). If Alg rejects
this request, the next to arrive is (7, 8). If Alg also rejects this request, then
the requests (1, 2) and (3, 4) also arrive, but (4, 5) is a false positive (see Fig-
ure 1a). Then, Opt accepts {(1, 2), (3, 4), (6, 7)}, Alg only accepts {(2, 3)}, and
Opt(FN∪FP) = 1. Thus, we may assume that Alg accepts at least one of
(6, 7) and (7, 8), which we call (7, x) where x ∈ {6, 8}. We call the other of these
two edges (7, y). Then, the requests (1, 2) and (3, 4) also arrive, along with a
false negative (5, x). The request (4, 5) is a false positive and is not in the input
(see Figure 1b). Since (4, 5) and (5, x) share an edge, Opt(FN∪FP) = 1. Alg
accepts {(2, 3), (7, x)}, andOpt accepts {(1, 2), (3, 4), (5, x), (7, y)}. To conclude,
the error increases by 1, and Alg’s deficit to Opt increases by 2. ⊓⊔
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4 Interval Scheduling

In this section, we show tight upper and lower bounds for the competitive ratio
of a deterministic algorithm for interval scheduling. As an introduction to the
difficulties in designing algorithms for the problem, we start by proving a general
lower bound. We show that for any deterministic algorithm Alg, there exists
an input sequence Iw and a set of predictions Îw such that Alg(Îw, Iw) =
Opt(Iw) − η(Îw, Iw), and that this can be established for any integer error of
at least 2..

Theorem 3. Let Alg be any deterministic algorithm. For any positive inte-
gers p and c ∈ [2,m], there are instances Iw and predictions Îw such that p ≤
η(Îw, Iw) ≤ (c− 1)p and Alg(Îw, Iw) = (1− γ(Îw, Iw))Opt(Iw) ≤ 1

c Opt(Iw) .

Proof. Alg will be presented with p intervals of length c, and the remainder of
the sequence will depend on which of these it accepts. The prediction, however,
will include the following 2p requests: Î =

⋃p−1
i=0

{
(ci, c(i+ 1)), (ci, ci+ 1)

}
.

The input Iw is formed by p phases, i ∈ [0, p− 1]. The ith phase starts with the
true positive (ci, c(i+ 1)). There are two cases to consider:

– If Alg accepts (ci, c(i+ 1)), then the phase continues with
{(ci+ j, ci+ (j + 1)) | 0 ≤ j ≤ c− 1} . The first of these requests is a true
positive, and the other c − 1 are false negatives. Note that Alg cannot
accept any of these c requests. The optimal algorithm rejects the original
request (ci, c(i+ 1)) and accepts all of the c following unit-length requests.

– If Alg rejects (ci, c(i+ 1)), the phase ends with no further requests. In this
case, (ci, ci+ 1) is a false positive.

The contribution, ηi, of phase i to |FP∪FN | is ηi = c− 1 in the first case and
ηi = 1 in the second. Since the intervals in FP∪FN are disjoint, we can write
Opt(FP∪FN) =

∑p−1
i=0 ηi and it follows that p ≤ Opt(FP∪FN) ≤ (c − 1)p.

Moreover, the net advantage of Opt over Alg in phase i is at least ηi: in the first
case, Opt accepts ηi + 1 and Alg accepts one request, and in the second case,
Opt accepts ηi = 1 and Alg accepts no requests. Given that there are p phases,
we can write Alg(Îw, Iw) ≤ Opt(Iw)−

∑p−1
i=0 ηi = Opt(Iw)−Opt(FP∪FN) =

(1− γ(Îw, Iw))Opt(Iw).

In phases where Alg accepts the first request, Opt accepts c times as many
requests as Alg. In phases where Alg rejects the first request, Opt accepts one
interval, and Alg accepts no intervals. Thus, Opt(Iw) ≥ c ·Alg(Îw, Iw) . ⊓⊔

For c = 2, we get η(Îw, I) = p and Alg(Îw, Iw) = (1−γ(Îw, Iw))Opt(Îw). The
next theorem shows that the competitive ratio of Trust compared to the lower
bound of Theorem 3 is not tight. The proof follows from an adversarial sequence
similar to that of Theorem 3 in which the profit of Opt and η grow in phases
while the profit of Trust stays 0.
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Theorem 4. For any integer p ≥ 1, there exists a prediction Îw and an input se-
quence Iw so that η(Îw, Iw) = p and Trust(Îw, Iw) = (1−2γ(Îw, Iw))Opt(Iw) .

4.1 TrustGreedy

In this section, we introduce an algorithm TrustGreedy, TG, which achieves
an optimal competitive ratio for interval scheduling.

The algorithm. TG starts by choosing an optimal solution, I ∗, from the pre-
dictions in Î . This optimal offline solution is selected by repeatedly including
an interval that ends earliest possible among those in Î that do not overlap any
already selected intervals. TG plans to accept those intervals in I ∗ and reject
all others, and it just follows its plan, except possibly when the next request is
in FN. During the online processing after this initialization, TG maintains an
updated plan, A. Initially, A is I ∗. When a request, r, is in FN, TG accepts
if r overlaps no previously accepted intervals and can be accepted by replacing
at most one other interval in A that ends no earlier than r. In that case, r is
added to A, possibly replacing an overlapping interval to maintain the feasibility
of A (no two intervals overlap). As a comment, only the first interval from FN
that replaces an interval r in the current A is said to “replace” it. There may be
other intervals from FN that overlap r and are accepted by TG, but they are
not said to “replace” it. We let U denote the set of intervals in I ∗ ∩FP that are
not replaced during the execution of TG.

Analysis. Let TG denote the set of intervals chosen by TrustGreedy on
input I and prediction Î , andOpt the intervals chosen by the optimal algorithm.
We define the following subsets of TG and Opt:

– TGFN = TG∩FN and OptFN = Opt∩FN

– TGTP = TG∩ Î = TG∩TP and OptTP = Opt∩ Î = Opt∩TP

Lemma 1. Each interval i ∈ OptTP overlaps an interval in I ∗ extending no
further to the right than i.

Proof. Assume to the contrary that there is no interval in I ∗ that overlaps i and
ends no later than i. If i does not overlap anything in I ∗, we could have added
i to I ∗ and have a feasible solution (non-overlapping intervals), contradicting
the fact that I ∗ is optimal. Thus, i must overlap an interval r in I ∗, which,
by assumption, must end strictly later than i. This contradicts the construction
of I ∗, since i would have been in I ∗ instead of r. ⊓⊔

We define a set OFN consisting of a copy of each interval in OptFN and let
F = OFN ∪ U . We define a mapping f : Opt → TG∪F as follows. For each
i ∈ Opt:
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1. If there is an interval in I ∗ that overlaps i and ends no later than i, then let
r be the rightmost such interval.

(a) If r ∈ U ∪TGTP, then f(i) = r.

(b) Otherwise, r has been replaced by some interval t. In this case, f(i) = t.

2. Otherwise, by Lemma 1, i belongs to OptFN.

(a) If there is an interval in TGFN that overlaps i and ends no later than
i and an interval in U that overlaps i’s right endpoint, let r be the
rightmost interval in TGFN that overlaps i and ends no later than i. In
this case, f(i) = r.

(b) Otherwise, let oi be the copy of i in OFN. In this case, f(i) = oi.

We let F denote the subset of F mapped to by f and note that in step 1a,
intervals are added to F ∩ U when r ∈ U . In step 2b, all intervals are added to
F ∩OFN.

Lemma 2. The mapping f is an injection.

Proof. Intervals in U ∪TGTP are only mapped to in step 1a. Note that U and
TG are disjoint. If an interval i ∈ Opt is mapped to an interval r ∈ U ∪ TG
in this step, i overlaps the right endpoint of r. There can be only one interval
in Opt overlapping the right endpoint of r, so this part of the mapping is
injective. Intervals in TGFN are only mapped to in steps 1b and 2a. In step 1b,
only intervals that replace intervals in I ∗ are mapped to. Since each interval in
TGFN replaces at most one interval in I ∗ and the right endpoint of each interval
in I ∗ overlaps at most one interval in Opt, no interval is mapped to twice in
step 1b. If, in step 2a, an interval, i, is mapped to an interval, r, i overlaps the
right endpoint of r. There can be only one interval in Opt overlapping the right
endpoint of r, so no interval is mapped to twice in step 2a.

We now argue that no interval is mapped to in both steps 1b and 2a. Assume
that an interval, i1, is mapped to an interval, t, in step 1b. Then, there is an
interval, r, such that r overlaps the right endpoint of t and i1 overlaps the right
endpoint of r. This means that the right endpoint of i1 is no further to the
left than the right endpoint of t. Assume for the sake of contradiction that an
interval i2 ̸= i1 is mapped to t in step 2a. Then, i2 overlaps the right endpoint
of t, and there is an interval, u ∈ U , overlapping the right endpoint of i2. Since
i2 overlaps t, i2 must be to the left of i1. Since i2 is mapped to t, t extends no
further to the right than i2. Thus, since r overlaps both t and i1, r must overlap
the right endpoint of i2, and hence, r overlaps u. This is a contradiction since r
and u are both in I ∗.

Intervals in F ∩ OFN are only mapped to in step 2b and no two intervals are
mapped to the same interval in this step. ⊓⊔

Lemma 3. The subset F of F mapped to by f is a feasible solution.
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Proof. We first note that F∩U is feasible since F∩U ⊆ U ⊆ I ∗ and I ∗ is feasible.
Moreover, F ∩OFN is feasible since the intervals of F ∩OFN are identical to the
corresponding subsets of Opt. Thus, we need to show that no interval in F ∩U
overlaps any interval in F ∩OFN.

Consider an interval u ∈ F ∩ U mapped to from an interval i ∈ Opt. Since i is
not mapped to its own copy in F , its copy does not belong to F . Since i ∈ Opt,
no interval in F ∩OFN overlaps i. Thus, we need to argue that F ∩OFN contains
no interval strictly to the left of i overlapping u.

Assume for the sake of contradiction that there is an interval ℓ ∈ F ∩ OFN to
the left of i overlapping u. Since ℓ ended up in F although its right endpoint is
overlapped by an interval from U , there is no interval in I ∗ (because of step 1
in the mapping algorithm) or in TGFN (because of step 2a in the mapping
algorithm) overlapping ℓ and ending no later than ℓ. Thus, I ∗ ∪TGFN contains
no interval strictly to the left of u overlapping ℓ. This contradicts the fact that
u has not been replaced since the interval in OptFN corresponding to ℓ could
have replaced it. ⊓⊔

The following theorem follows from Lemmas 2 and 3.

Theorem 5. For any prediction Î and any input sequence I, we have
TrustGreedy(Î , I) ≥ (1− γ(Î , I))Opt(I) .

5 Consistency-Robustness Trade-off

We study the trade-off between the competitive ratio of the interval scheduling
algorithm when predictions are error-free (consistency) and when predictions are
adversarial (robustness). The following proposition shows an obvious trade-off
between the consistency and robustness of deterministic algorithms.

Proposition 2. If a deterministic algorithm has non-zero consistency, α, it has
robustness β ≤ 1

m .

The more interesting case is randomized algorithms. The proof of the following
was inspired by the proof of Theorem 13.8 in [20] for the online case without
predictions, and that Ω(logm) result was originally proven in [10].

Theorem 6. If a (possibly randomized) algorithm Alg is both α-consistent and

β-robust, then α ≤ 1− ⌊logm⌋−1
2 β and β ≤ 2

⌊logm⌋−1 · (1− α).

Proof. Let r = ⌊logm⌋ − 1 and let m′ = 2r+1. Consider a prediction σ =

⟨Î 0, Î 1, . . . , Î r, Î
′
⟩, where Î

′
= ⟨(0, 1), (1, 2), . . . , (m′ − 1,m′)⟩ and, for 0 ≤ i ≤ r,

Î i = ⟨(0,m′/2i), (m′/2i, 2m′/2i), . . . , (m′ −m′/2i,m′)⟩. Note that Î i consists of
2i disjoint intervals of length m′/2i. For 0 ≤ i ≤ r, let σi = ⟨Î 0, Î 1, . . . , Î i⟩.



Online Interval Scheduling with Predictions 11

In order to maximize the number of small intervals that can be accepted if they
arrive, an algorithm would minimize the (expected) fraction of the line occupied
by the larger intervals, to leave space for the small intervals, while maintaining
β-robustness. Since Opt(σ0) = 1 and Alg is β-robust, E[Alg(σ0)] ≥ β. For σi

with i ≥ 1, Opt accepts all intervals in Î i, so Opt(σi) = 2i. To be β-robust,
the expected number of intervals of length at most m′/2i that Alg accepts is
at least 2iβ. Inductively, for i ≥ 1, by the linearity of expectations, this is at
least 2i−1β intervals of length m′/2i, and these intervals have a total expected

size of at least 2i−1β × m′/2i = m′

2 β. Again, by the linearity of expectations,
for σr, the expected sum of the lengths of the accepted intervals is at least∑r

i=0
m′

2 β = m′(r+1)
2 β.

From σr, the expected number of intervals Alg must have accepted is at least
2rβ. If σ is the actual input sequence, then the predictions are correct, so for
Alg to be α-consistent, we must have E[Alg(σ′)] ≥ m′α. Since also 2rβ +

(m′−m′(r+1)
2 β) ≥ E[Alg(σ′)], we can combine these two inequalities and obtain

2r

m′ β + 1 − r+1
2 β ≥ α. Since 2r

m′ = 1
2 , this reduces to α ≤ 1 − r

2β. Solving for β,
β ≤ 2

r (1− α). ⊓⊔

Note that as α approaches 1 (optimal consistency), β goes to 0 (worst-case
robustness) and vice-versa. Next, we present a family of algorithms, Robust-
Trust, which has a parameter 0 ≤ α ≤ 1 and works as follows. With a probabil-
ity of α, RobustTrust applies TG. (Applying Trust, instead of TG, gives the
same consistency and robustness results.) With probability 1−α, RobustTrust
ignores the predictions, and applies the Classify-and-Randomly-Select (Crs) al-
gorithm described in Theorem 13.7 in [20]. For completeness, we include the
Crs algorithm in the full paper [17]. Crs is strictly ⌈logm⌉-competitive (they
use ratios at least one). A similar algorithm was originally proven O(logm)-
competitive in [10].

When RobustTrust applies TG and the predictions are correct, it accepts
exactly as many intervals as there are in the optimal solution. From these ob-
servations, we can get the following results.

Theorem 7. RobustTrust (Rt) with parameter α has consistency at least α
and robustness at least 1−α

⌈logm⌉ .

6 Experimental Results

We present an experimental evaluation of Trust and TrustGreedy in com-
parison with the Greedy algorithm, which serves as a baseline online algo-
rithm, and Opt, which serves as the performance upper bound. We evaluate
our algorithms using real-world scheduling data for parallel machines [23]. Each
benchmark from [23] specifies the start and finish times of tasks as scheduled
on parallel machines with several processors (see also the full paper [17]). We
use these tasks to generate inputs to the interval scheduling problem. For each
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Fig. 2: Profit as a function of normalized error value

benchmark with N tasks, we create an instance I of an interval scheduling prob-
lem by randomly selecting n = ⌊N/2⌋ tasks from the benchmark and randomly
permuting them. This sequence serves as the input to all algorithms. To gener-
ate the prediction, we consider 1000 equally distanced values of d ∈ [0, n]. For
each value of d, we initiate the prediction set Î with the set of intervals in I,
remove |FN | = d randomly selected intervals from Î and add to it |FP | = d
randomly selected intervals from the remaining N − n tasks in the benchmark.
The resulting set Î is given to Trust and TrustGreedy as prediction Î . For

each value of d, we compute the normalized error γ(Î , I) = Opt(FN∪FP)
Opt(I) , and

report the profit of Trust and TrustGreedy as a function of γ.

Figure 2 shows the results for two representative benchmarks from [23], namely,
LLNL (the workload of the BlueGene/L system installed at Lawrence Liver-
more National Lab) and SDSC (the workload log from San Diego Supercomputer
Center). The results are aligned with our theoretical findings: Trust quickly be-
comes worse thanGreedy as the error value increases, while TrustGreedy de-
grades gently as a function of the prediction error. In particular, TrustGreedy
is better than Greedy for almost all error values. We note that Greedy per-
forms better when there is less overlap between the input intervals, which is the
case in LLNL compared to SDSC. In an extreme case, when no two intervals over-
lap, Greedy is trivially optimal. Nevertheless, even for LLNL, TrustGreedy
is not much worse than Greedy for extreme values of error: the profit for the
largest normalized error of γ = 1.87 was 5149 and 5198 for TrustGreedy and
Greedy, respectively. Note that for SDSC, where there are more overlaps be-
tween intervals, TrustGreedy is strictly better than Greedy, even for the
largest error values.

We present results for more benchmarks and situations where false negatives
and false positives contribute differently to the error set in the full paper [17].
Our code and results are available at [2].
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7 Concluding Remarks

In [30], the authors observe that finding disjoint paths on stars is equivalent to
finding maximal matchings on general graphs, where each request in the input to
the disjoint path selection bijects to an edge in the input graph for the matching
problem. Therefore, we can extend the results of Section 3 to the following online
matching problem. The input is a graph G = (V,E), where V is known, and edges
in E appear in an online manner; upon arrival of an edge, it must be added to
the matching or rejected. The prediction is a set Ê that specifies edges in E.
As before, we use FP and FN to indicate the set of false positives and false

negatives and define γ(Ê , E) = Opt(FP∪FN)
Opt(E) , where Opt(S) indicates the size of

the matching for graph G = (V, S). The following is immediate from Theorems 1
and 2.

Proposition 3. For any instance G = (V,E) of the online matching problem
under the edge-arrival model and a prediction set Ê , there is an algorithm Trust
that matches at least (1−2γ(Ê , E))Opt(G) edges. Moreover, there are instances
Gw = (V,Ew) of the matching problem, along with predictions Êw for which any
deterministic algorithm matches at most (1− 2γ(Ê , E)w)Opt(Gw) edges.

Using the correspondence between matchings in a graph, G, and the independent
set in the line graph of G, we can get a similar result for the independent set
under the vertex-arrival model. We refer to the full paper [17] for details.
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