
0

Relative Worst-Order Analysis: A Survey

JOAN BOYAR, University of Southern Denmark
LENE M. FAVRHOLDT, University of Southern Denmark
KIM S. LARSEN, University of Southern Denmark

The standard measure for the quality of online algorithms is the competitive ratio. This measure is generally
applicable, and for some problems it works well, but for others it fails to distinguish between algorithms that
have very different performance. Thus, ever since its introduction, researchers have worked on improving
the measure, defining variants, or defining measures based on other concepts to improve on the situation.
Relative worst-order analysis (RWOA) is one of the most thoroughly tested such proposals. With RWOA,
many separations of algorithms not obtainable with competitive analysis have been found.

In RWOA, two algorithms are compared directly, rather than indirectly as is done in competitive analysis,
where both algorithms are compared separately to an optimal offline algorithm. If, up to permutations of
the request sequences, one algorithm is always at least as good and sometimes better than another, the first
algorithm is deemed the better algorithm by RWOA.

We survey the most important results obtained with this technique and compare it with other quality
measures. The survey includes a quite complete set of references.
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1. INTRODUCTION
Online problems are optimization problems where the input arrives one request at a
time, and each request must be processed without knowledge of future requests. The
investigation of online algorithms was largely initiated by the introduction of compet-
itive analysis by Sleator and Tarjan [Sleator and Tarjan 1985]. They introduced the
method as a general analysis technique, inspired by approximation algorithms, where
the result of the algorithm is compared to that of an optimal algorithm. Thus, the com-
petitive ratio is the worst-case ratio of the algorithm’s performance to the performance
of an optimal offline algorithm, OPT. The term “competitive” is from Karlin et al. [Kar-
lin et al. 1988] who named the worst-case ratio of the performance of the online to the
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Table I. Simplified “definitions” of measures. For the last two measures,
π(I) denotes a permutation of the sequence I.

Measure Value

Competitive ratio CRA = sup
I

A(I)
OPT(I)

Max/max ratio MRA =

max
|I|=n

A(I)

max
|I′|=n

OPT(I′)

Random-order ratio RRA = sup
I

Eπ
[
A(π(I))

]
OPT(I)

Relative worst-order ratio WRA,B = sup
I

sup
π

{
A(π(I))

}
sup
π′

{
B(π′(I))

}
offline algorithm the “competitive ratio”. Many years earlier, Graham carried out what
is now viewed as an example of a competitive analysis [Graham 1969].

The over-all goal of a theoretical quality measure is to predict performance of algo-
rithms in practice. In that respect, competitive analysis works well in some cases, but,
as pointed out by the inventors [Sleator and Tarjan 1985] and others, fails to discrim-
inate between good and bad algorithms in other cases. Ever since its introduction,
researchers have worked on improving the measure, defining variants, or defining
measures based on other concepts to improve on the situation. Relative worst-order
analysis (RWOA), a technique for assessing the relative quality of online algorithms,
is one of the most thoroughly tested such proposals.

RWOA was originally defined by Boyar and Favrholdt [Boyar and Favrholdt 2007],
and the definitions were extended together with Larsen [Boyar et al. 2007]. As for all
quality measures, an important issue is to be able to separate algorithms, i.e., deter-
mine which of two algorithms is the best. RWOA has been shown to be applicable to a
wide variety of problems and provide many separations, not obtainable using compet-
itive analysis, corresponding to experimental results and/or intuition.

In this survey, we motivate and define RWOA, outline the background for its intro-
duction, survey the most important results, and compare it to other measures.

2. RELATIVE WORST-ORDER ANALYSIS
With RWOA, two algorithms are compared directly (rather than indirectly by first
comparing both to an optimal offline algorithm). The algorithms are compared on their
respective worst orderings of sequences having the same content. Thus, up to permuta-
tions of the request sequences, if an algorithm is always at least as good and sometimes
better than another, RWOA separates them. Table I gives informal “definitions” of the
relative worst-order ratio and related measures. The ratios shown in the table capture
the general ideas, although they do not reflect that the measures are asymptotic mea-
sures. We discuss the measures in Section 2.2, ending with a formal definition of the
relative worst-order ratio in Section 2.3.

As a motivation for RWOA, consider the following desirable property of a quality
measure for online algorithms: For a given problem P and two algorithms A and B for
P , if A performs at least as well as B on every possible request sequence and better
on many, then the quality measure indicates that A is better than B. We consider an
example of such a situation for the paging problem.
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2.1. A Motivating Example
In the paging problem, there is a cache with room for k memory pages and a larger,
slow memory that can hold N > k pages. The request sequence consists of page num-
bers in {1, . . . , N}. When a page is requested, if it is not among the at most k pages in
cache, there is a fault, and the missing page must be brought into cache. If the cache
is full, this means that some page must be evicted from the cache. The goal is to mini-
mize the number of faults. Clearly, the only thing we can control algorithmically is the
eviction strategy.

We consider two paging algorithms, LRU (Least-Recently-Used) and FWF (Flush-
When-Full). On a fault with a full cache, LRU always evicts its least recently used
page from cache. FWF, on the other hand, evicts everything from cache in this situa-
tion. It is easy to see that, if run on the same sequence, whenever LRU faults, FWF
also faults, so LRU performs at least as well as FWF on every sequence. LRU usually
faults less than FWF [Young 1994]. It is well known that LRU and FWF both have
competitive ratio k, so competitive analysis does not distinguish between them, and
there are relatively few measures which do. RWOA, however, is one such measure [Bo-
yar et al. 2007]. In Section 4.1, we consider LRU and FWF in greater detail to give a
concrete example of RWOA.

There are many less clear-cut examples. Consider, the paging algorithm LRU-2, for
example. Instead of evicting the page with the earliest last request, it evicts the page
with the earliest second-to-last request. LRU-2 is known to perform better than LRU
in, for example, database disk buffering [O’Neil et al. 1993]. However, there are also
sequences where LRU performs better. For two concrete examples, consider the se-
quences 〈p1, p2, . . . , pk−1, q1, q2, p1, p2, . . . , pk−1, q3, q4〉∗, where LRU will have (k + 1)/2
times as many faults as LRU-2, asymptotically, and 〈p1, p2, . . . , pk+1, pk+1, . . . , p2, p1〉∗,
where LRU-2 will fault k times as often as LRU, asymptotically. Under RWOA,
LRU-2 is the better algorithm; see Section 4.4. Similar examples are FIRST-FIT versus
WORST-FIT for bin packing and seat reservation; see Section 5.2.

2.2. Background
When differentiating between online algorithms is the goal, performing a direct com-
parison between the algorithms can be an advantage; first comparing both to an op-
timal offline algorithm, OPT, and then comparing the results, as many performance
measures including competitive analysis do, can lead to a loss of information. This
appears to be at least part of the problem when comparing LRU to FWF with compet-
itive analysis, which finds them equally bad. Measures comparing algorithms directly,
such as RWOA, bijective and average analysis [Angelopoulos et al. 2019], and relative
interval analysis [Dorrigiv et al. 2009], would generally indicate correctly that LRU is
the better algorithm.

When comparing algorithms directly, using exactly the same sequences will tend to
produce the result that many algorithms are not comparable, as illustrated for LRU
and LRU-2 in Section 2.1. In addition, comparing on possibly different sequences can
make it harder for the adversary to produce unwanted, pathological sequences which
may occur seldom in practice, but skew the theoretical results. With RWOA, online
algorithms are compared directly to each other on their respective worst permutations
of the request sequences. This comparison in RWOA combines some of the desirable
properties of the max/max ratio [Ben-David and Borodin 1994] and the random-order
ratio [Kenyon 1996].

2.2.1. The Max/Max Ratio. With the max/max ratio defined by Ben-David and Borodin,
an algorithm is compared to OPT on its and OPT’s respective worst-case sequences
of the same length. Since OPT’s worst sequence of any given length is the same, re-
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gardless of which algorithm it is being compared to, comparing two online algorithms
directly gives the same result as dividing their max/max ratios. Thus, the max/max
ratio allows direct comparison of two online algorithms, to some extent, without the
intermediate comparison to OPT. However, the max/max ratio can only provide inter-
esting results when the length of an input sequence yields a bound on the cost/profit
of an optimal solution.

In the paper [Ben-David and Borodin 1994] introducing the max/max ratio, the k-
server problem is analyzed. This is the problem where k servers are placed in a metric
space, and the input is a sequence of requests to points in that space. At each re-
quest, a server must be moved to the requested point if there is not already a server
at the point. The objective is to minimize the total distance the servers are moved. It
is demonstrated that, for k-server on a bounded metric space, the max/max ratio can
provide more optimistic and detailed results than competitive analysis. Unfortunately,
there is still the loss of information as generally occurs with the indirect comparison
to OPT, and the max/max ratio does not distinguish between LRU and FWF, or any
other pair of deterministic online paging algorithms.

However, the possibility of directly comparing online algorithms and comparing
them on their respective worst-case sequences from some partition of the space of
request sequences was inspirational. RWOA uses a more fine-grained partition than
partitioning with respect to the sequence length. The idea for the specific partition
used stems from the random-order ratio.

2.2.2. The Random-Order Ratio. The random-order ratio was introduced in [Kenyon
1996] by Kenyon (now Mathieu). The appeal of this quality measure is that it allows
considering some randomness of the input sequences without specifying a complete
probability distribution. It was introduced in connection with bin packing, i.e., the
problem of packing items of sizes between 0 and 1 into as few bins of size 1 as possi-
ble. For an algorithm A for this minimization problem, the random-order ratio is the
maximum ratio, over all multi-sets of items, of the expected performance, over all per-
mutations of the multi-set, of A compared with an optimal solution; see also Table I. If,
for all possible multi-sets of items, any permutation of these items is equally likely, this
ratio gives a meaningful worst-case measure of how well an algorithm can perform.

In the paper introducing the random-order ratio, it was shown that for bin packing,
the random-order ratio of BEST-FIT lies between 1.08 and 1.5. In contrast, the compet-
itive ratio of BEST-FIT is 1.7 [Johnson et al. 1974].

Random-order analysis has also been applied to other problems, e.g., knap-
sack [Babaioff et al. 2007], bipartite matching [Goel and Mehta 2008; Devanur and
Hayes 2009], scheduling [Osborn and Torng 2008; Göbel et al. 2015], bin cover-
ing [Christ et al. 2014; Fischer and Röglin 2016], and facility location [Meyerson 2001].
However, the analysis is often rather challenging, and in [Coffman Jr. et al. 2008], a
simplified version of the random-order ratio is used for bin packing.

2.3. Definitions
Let I be a request sequence of length n for an online problem P . If π is a permutation
on n elements, then π(I) denotes I permuted by π.

If P is a minimization problem, A(I) denotes the cost of the algorithm A on the
sequence I, and

Aw(I) = max
π

A(π(I)),

where π ranges over the set of all permutations of n elements.
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If P is a maximization problem, A(I) denotes the profit of the algorithm A on the
sequence I, and

Aw(I) = min
π

A(π(I)).

Informally, RWOA compares two algorithms, A and B, by partitioning the set of
request sequences as follows: Sequences are in the same part of the partition if and
only if they are permutations of each other. The relative worst-order ratio is defined
for algorithms A and B, whenever one algorithm performs at least as well as the other
on every part of the partition, i.e., whenever Aw(I) ≤ Bw(I), for all request sequences I,
or Aw(I) ≥ Bw(I), for all request sequences I (in the definition below, this corresponds
to cu(A,B) ≤ 1 or cl(A,B) ≥ 1). In this case, to compute the relative worst-order ratio of
A to B, we compute a bound (cl(A,B) or cu(A,B)) on the ratio of how the two algorithms
perform on their respective worst permutations of some sequence. Note that the two
algorithms may have different worst permutations for the same sequence.

In the formal definition of the relative worst-order ratio, we use cl(A,B) and cu(A,B),
which are tight lower and upper bounds, respectively, on the ratio Aw(I)/Bw(I) (up to
an additive constant). Thus, cl(A,B) = 1/cu(A,B).

Definition 2.1. For any pair of algorithms A and B, we define

cl(A,B) = sup {c | ∃b∀I : Aw(I) ≥ cBw(I)− b} and

cu(A,B) = inf {c | ∃b∀I : Aw(I) ≤ cBw(I) + b} .

If cl(A,B) ≥ 1 or cu(A,B) ≤ 1, the algorithms are said to be comparable and the relative
worst-order ratio WRA,B of algorithm A to algorithm B is defined as

WRA,B =

{
cu(A,B), if cl(A,B) ≥ 1, and
cl(A,B), if cu(A,B) ≤ 1.

Otherwise, WRA,B is undefined.
For a minimization (maximization) problem, the algorithms A and B are said to be

comparable in A’s favor if WRA,B < 1 (WRA,B > 1).
Similarly, the algorithms are said to be comparable in B’s favor, if WRA,B > 1

(WRA,B < 1).

Note that the ratio WRA,B can be larger than or smaller than one depending on
whether the problem is a minimization problem or a maximization problem and which
of A and B is the better algorithm. Table II indicates the result in each case.

Table II. Relative worst-order ratio interpretation, depend-
ing on whether the problem is a minimization or a maxi-
mization problem.

Result Minimization Maximization

A better than B < 1 > 1

B better than A > 1 < 1

Instead of saying that two algorithms, A and B, are comparable in A’s favor, one
would often just say that A is better than B according to RWOA.

For quality measures evaluating algorithms by comparing them to each other di-
rectly, it is particularly important to be transitive: If A and B are comparable in A’s
favor and B and C are comparable in B’s favor, then A and C are comparable in A’s
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favor. When this transitivity holds, to prove that a new algorithm is better than all
previously known algorithms, one only has to prove that it is better than the best
among them. This holds for RWOA.

THEOREM 2.2 (BOYAR, FAVRHOLDT, 2007). With RWOA, the ordering of algo-
rithms for a specific problem is transitive. Moreover:

If WRA,B ≥ 1 and WRB,C ≥ 1, then WRA,C ≥ WRB,C. If, furthermore, WRA,B is
bounded above by some constant, then WRA,C ≥WRA,B.

If WRA,B ≤ 1 and WRB,C ≤ 1, then WRA,C ≤ min(WRA,B,WRB,C).

The strict relative worst-order ratio, sWR,, is defined similarly, simply removing the
additive constant, b, from the definitions of cl and cu. Transitivity also holds in this
case:

THEOREM 2.3 (BOYAR, FAVRHOLDT, 2007). With strict RWOA, the ordering of al-
gorithms for a specific problem is transitive. Moreover:

If sWRA,B ≥ 1 and sWRB,C ≥ 1, then sWRA,C ≥ max{sWRA,B, sWRB,C}.
If sWRA,B ≤ 1 and sWRB,C ≤ 1, then sWRA,C ≤ min(sWRA,B, sWRB,C).

2.4. Extensions of Relative Worst-Order Analysis
In this subsection, we give definitions that are used only for a minority of the results
described in this survey. Thus, most of the survey is accessible without reading this
subsection.

Although one of the purposes of introducing RWOA was to compare online algo-
rithms directly, an online algorithm can, of course, also be compared to OPT. In this
case, we call the ratio the worst-order ratio. Along with other measures, including the
relative worst-order ratio, this was used in [Boyar and Favrholdt 2012] to analyze a
new variable-sized bin packing problem motivated by the problem of partitioning the
subproblems defined by BLASTing [Altschul et al. 1990] a genome against a DNA se-
quence database.

There are some cases where the relative worst-order ratio for two algorithms is un-
defined because the algorithms are not comparable, but they are in some sense close
to being comparable. This has led to two extensions of RWOA [Boyar et al. 2007], but
first we need the notion of relatedness:

Definition 2.4. Let cu be defined as in Definition 2.1. If at least one of the ratios
cu(A,B) and cu(B,A) is finite, the algorithms A and B are (cu(A,B), cu(B,A))-related.

If the two algorithms are comparable, one of the values is the relative worst-order
ratio and the other is typically 1 (unless one algorithm is strictly better than the other
in all cases).

An example of the use of this measure is from [Boyar et al. 2015b], where a simple
k-server problem is investigated; see Section 6 for details.

Definition 2.5. Let cu(A,B) be defined as in Definition 2.4. Algorithms A and B are
weakly comparable

— if A and B are comparable,
— if exactly one of cu(A,B) and cu(B,A) is finite, or
— if both are finite and cu(A,B) 6∈ Θ(cu(B,A)), where cu(A,B) is considered a function

of the problem parameters.

Definition 2.6. A resource-dependent problem is an optimization problem, where
each problem instance, in addition to the input data, also has a parameter k, referred
to as the amount of resources, such that for each input, the optimal solution depends
monotonically on k.
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Let A and B be algorithms for a resource-dependent problem P and let cu and cl be
defined as in Definition 2.4. We define

c∞l (A,B) = lim
k→∞

{cl(A,B)} and c∞u (A,B) = lim
k→∞

{cu(A,B)} .

If c∞l (A,B) ≤ 1 or c∞u (A,B) ≥ 1, the algorithms are resource-asymptotically comparable
and the resource-asymptotic relative worst-order ratio WR∞A,B of A to B is defined as

WR∞A,B =

{
c∞u (A,B), if c∞l (A,B) ≥ 1

c∞l (A,B), if c∞u (A,B) ≤ 1

Otherwise, WR∞A,B is undefined.

Definition 2.7. Let A and B be algorithms for an optimization problem. If A and
B are neither weakly nor resource-asymptotically comparable, we say that they are
incomparable.

2.5. Applicability
As we will discuss in the next section, many performance measures have been sug-
gested over the years. However, most of these measures have been used on only one
online problem. In contrast, the permutation-based RWOA technique has been applied
to a multitude of different online problems with quite different characteristics. How-
ever, the very design idea of focusing on permutations imply that there are some online
problems where the measure does not apply well, including some problems where the
requests refer explicitly to time (release times, for instance) or contain precedence con-
straints, and where this makes permutations meaningless.

Further, it has been established that RWOA can be used in combination with other
analysis techniques such as access graphs (defined in Section 3.1) and list factoring.

As far as we know, list factoring has not been established as applicable to any other
alternative to competitive analysis. Access graphs have also been studied for relative
interval analysis [Boyar et al. 2015a] with less convincing results.

To a large extent, the above text describes applicability by what has been done. Other
issues, comparison of randomized algorithms, for instance, could also be considered.
We know it is possible, since the randomized paging algorithm MARK was compared
to LRU, indicating that (as with competitive analysis) MARK is significantly better
than LRU according to RWOA [Boyar et al. 2007]: WRLRU,MARK = k

Hk
. However, our

impression is that the comparison of randomized and deterministic algorithms gives
very little useful information in many cases. This seems to also be true of comparisons
using the competitive ratio for paging [Young 1994] and for list access [Bachrach et al.
2002]. From those papers, it is clear that comparisons between an expected ratio for a
randomized algorithm and the usual worst-case ratio for a deterministic algorithm is
not a good predictor for the performance in practice. This is not surprising, but worth
recalling, since randomized ratios are often presented as “improvements” compared
with some worst-case ratio.

Finally, whereas RWOA fairly often reveals details concerning online problems and
the algorithms solving them that escapes competitive analysis, it places an extra bur-
den on the researchers. Using competitive analysis, the developers of each algorithm
can compute its competitive ratio and present their algorithm with that quality stamp
for comparison with other algorithms. Using RWOA, it is necessary to know the details
of two algorithms to compute their relative performance. Usually, for a collection of al-
gorithms to be analyzed, this does not lead to a quadratic number of analyses since the
measure is transitive, so many comparisons can be deduced with no additional effort.
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3. OTHER PERFORMANCE MEASURES
Other than competitive analysis, many alternative measures have been introduced
with the aim of getting a better or more refined picture of the (relative) quality of
online algorithms. This survey is about RWOA, and treating other performance mea-
sures as thoroughly would make the survey prohibitively long. However, to sketch the
bigger picture, we also briefly describe other measures and compare RWOA results
with related results on these other measures.

In this section, we first list many performance measures that have been introduced
over the years, with a short informal description. The concept of access graphs is dis-
cussed in a separate section since it is used in connection with RWOA. Then we discuss
other ways of shedding light on the properties of online problems: relaxing or investi-
gating the significance of the “no knowledge of the future” constraint via advice com-
plexity and relaxing or investigating the “irrevocability” constraint via various forms
of recourse. In Section 6, we give some insight into the strengths and weaknesses of
selected measures, discussing work directly targeted at performance measure compar-
ison.

We present these alternative performance measures in chronological order:

Online/online ratio [Gyárfás and Lehel 1990]
Instead of comparing to an optimal offline algorithm, as in competitive analysis, the
online algorithms are compared to an optimal online algorithm. For any input, the
optimal online algorithm may be designed specifically for that input, but it has to
work for any permutation of the input sequence, without knowing the permutation
from the beginning.

Statistical adversary [Raghavan 1992]
This measure considers worst-case input sequences among sequences with some
given statistical properties and measures the absolute performance, i.e., without
comparing to an optimal algorithm.

Loose competitive ratio [Young 1994]
This measure was introduced in connection with the paging problem. It gives the
possibility of ignoring a small fraction of the possible cache sizes and also ignores
sequences with a relatively low fault rate.

Max/max ratio [Ben-David and Borodin 1994]
This measure was discussed in Section 2.2.1.

Access graphs [Borodin et al. 1995]
Access graphs are used to model locality of reference; see Section 3.1.

Random-order ratio [Kenyon 1996]
This measure was discussed in Section 2.2.2.

Accommodating ratio [Boyar and Larsen 1999]
This measure works for problems with some limited resource, such as the cache in
the paging problem or the number or speed of machines in scheduling problems. It
is the same as the competitive ratio, but considering only input sequences, where
the optimal offline solution would not improve by having more resources available.

Extra resource analysis [Kalyanasundaram and Pruhs 2000]
This is also called resource augmentation. As the accommodating ratio, this form
of analysis addresses problems with some kind of limited resource. Competitive
analysis is performed, but with a parameter x and letting the online algorithm use
x times as much of the resource as the optimal offline algorithm.

Diffuse adversary [Koutsoupias and Papadimitriou 2000]
A class of input distributions is considered. The adversary chooses a distribution
from the given class, and the expected performance of the online algorithm is com-
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pared to the expected performance of an optimal offline algorithm. Note that this is
a generalization of the statistical adversary and the notion of access graphs.

Accommodating function [Boyar et al. 2001]
This is a generalization of the accommodating ratio, giving the competitive ratio as
a function of a parameter α. An input sequence is called α-accommodating, if having
access to α times as many resources as those available does not change the value
of an optimal offline solution. The parameter α can be smaller [Boyar et al. 2003]
as well as larger than 1. Negative results on the accommodating function translate
to negative results with extra resource analysis, and positive results with extra
resource analysis translate to positive results on the accommodating function.

Smoothed analysis [Spielman and Teng 2004]
Instead of considering single worst-case sequences, neighborhoods of sequences are
considered, where a neighborhood consists of a sequence I together with a set of
sequences that can be obtained by slightly perturbing I.

Working set [Albers et al. 2005]
Inspired by the concept of working sets [Denning 1968] modeling locality of refer-
ence, only sequences with a limited average or maximum number of different pages
within subsequences of certain lengths are considered. Instead of using a relative
measure such as the competitive ratio, the fault rate is considered.

Relative worst-order analysis [Boyar and Favrholdt 2007; Boyar et al. 2007]
The topic of this survey.

Characteristic vector [Panagiotou and Souza 2006]
This models locality of reference for the paging problem. For a request r to a page p
that has already been requested earlier, let `r be the number of different pages that
have been requested since the previous request to p. The ith entry of the character-
istic vector of a request sequence gives the number of requests r with `r = i.

Bijective and average analysis [Angelopoulos et al. 2019]
If, for two algorithms A and B and for each possible input length n, there is a bijec-
tion f from the set of input sequences of length n to that same set, such that A(I) is
always at least as good as B(f(I)) and sometimes better, then according to bijective
analysis, A is better than B. If the weaker result that the average of A(I) is better
than the average of B(f(I)) can be obtained, then A is better than B according to
average analysis.

Relative interval analysis [Dorrigiv et al. 2009]
Pairs of algorithms A and B are compared directly: For sequences of a given length
n, the minimum and maximum value of A(I) − B(I) is calculated for sequences I
of length n. The measure is the interval between these two extremes, as n tends to
infinity.

Non-locality [Dorrigiv et al. 2015]
This models the non-locality of request sequences for the paging problem. Let `r be
defined as for the characteristic vector. The non-locality of a request sequence is the
average value of `r over the request sequence.

Attack rate [Moruz and Negoescu 2012]
For the paging problem, the attack rate of an input sequence is a number between
1 and k, rating how difficult it is to guess the cache content of an optimal offline
algorithm on the fly. Let a new page be a page that has not been requested earlier,
and let an unrevealed page be a page for which it cannot be decided at the time of the
request whether or not the page could be in the cache of an optimal offline algorithm.
The attack rate is the ratio of the number of requests to new or unrevealed pages to
the number of requests to new pages.
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Bijective ratio [Angelopoulos et al. 2020]
This ratio is a generalization of bijective analysis: If, for two algorithms A and B
and for each input length n, there is a ρ > 0 and a bijection f from the set of input
sequences of length n to that same set, such that A(I) is at most ρ times worse than
B(f(I)), the bijective ratio of A against B is at most ρ.

Online-bounded analysis [Boyar et al. 2018]
The online-bounded ratio is the same as the competitive ratio, except that the ad-
versary is restricted to using input sequences for which there is an optimal solution
fulfilling that, on any prefix of the sequence, the value of the optimal offline solution
must be at least as good as the value of the online solution on that prefix.

3.1. Access Graphs
Locality of reference refers to the observed behavior of certain sequences from real
life, where requests seem to be far from uniformly distributed, but rather exhibit some
form of locality; for instance for the paging problem, with repetitions of pages appear-
ing in close proximity [Denning 1968; 1980]. Performance measures that are worst-
case over all possible sequences will usually not reflect this, so algorithms exploiting
locality of reference are not deemed better using the theoretical tools, though they
may be superior in practice. This has further been underpinned by the following re-
sult [Angelopoulos et al. 2019] on bijective analysis: For the class of demand paging
algorithms (algorithms that never evict a page unless necessary), for any two positive
integers m,n ∈ N, all algorithms have the same number of input sequences of length n
that result in exactly m faults.

The concept of access graphs [Borodin et al. 1995] has been used to model locality of
reference for the paging problem. An access graph is an undirected graph with vertices
representing pages and edges indicating that the two pages being connected could be
accessed immediately after each other. In the performance analysis of an algorithm
(by any performance measure), only sequences respecting the graph are considered,
i.e., any two distinct, consecutive requests must be to the same page or to neighbors in
the graph.

In [Karlin et al. 2000], probabilities are added to the edges of access graphs, thus
obtaining Markov models.

3.2. Advice Complexity
As a means of analyzing problems, as opposed to algorithms for those problems, advice
complexity was proposed [Dobrev et al. 2009; Hromkovič et al. 2010; Böckenhauer et al.
2017]. The “no knowledge about the future” property of online algorithms is relaxed,
and it is assumed that some bits of advice are available; such knowledge is available in
many situations. One asks how many bits of advice are necessary and sufficient to ob-
tain a given competitive ratio, or indeed optimality. For a survey on advice complexity,
see [Boyar et al. 2017b].

3.3. Recourse
Instead of relaxing the constraint on knowledge about the future, online algorithms
with recourse deals with relaxing the constraint on decisions being irrevocable, and
this idea has been studied under many different names for different problems.

For the knapsack problem, items are usually referred to as being removable; see for
example [Iwama and Taketomi 2002; Han et al. 2014; Han et al. 2015; Cygan et al.
2016; Han and Makino 2016]. For online Steiner tree problems, MST, and TSP [Imase
and Waxman 1991; Megow et al. 2016; Gu et al. 2016; Gupta and Kumar 2014], one
can allow replacing an accepted edge with another, under the objective of minimizing
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the number of times this occurs (while obtaining a good competitive ratio). This is
commonly referred to as rearrangements or recourse.

The most common term when allowing late rejections is preemption, and this has
been studied in variants of many online problems, including call control [Bartal et al.
1996; Garay et al. 1997], maximum coverage [Saha and Getoor 2009; Rawitz and Rosén
2016], weighted matching problems [Epstein et al. 2011; Epstein et al. 2013], and sub-
modular maximization [Buchbinder et al. 2015].

Whereas late rejection has had significant focus, late acceptance was studied in [Bo-
yar et al. 2016], followed by a systematic study of all combinations of a number of
classic graph problems combined with either late accept, late reject, or both (where
late reject is irrevocable) in [Boyar et al. 2017a], detailing the performance implica-
tions of each choice. In [Angelopoulos et al. 2018], the work of [Boyar et al. 2017a] was
continued for the matching problem, considering more levels of late accept/reject.

Finally, [Komm et al. 2016] discusses preemption together with advice.

4. PAGING
In this section, we survey the most important RWOA results for paging and explain
how they compare to results obtained with competitive analysis and other alternative
measures. As a relatively simple, concrete example of RWOA, we first explain how to
obtain the separation of LRU and FWF [Boyar et al. 2007] mentioned in Section 2.1.

4.1. LRU vs. FWF
Recall that LRU is the algorithm that evicts the least recently used page in cache when
there is a fault and the cache is full, and FWF evicts everything from cache (flushes
the cache) in this situation.

The first step in computing the relative worst-order ratio, WRFWF,LRU, is to show
that LRU and FWF are comparable. Consider any request sequence I for paging
with cache size k. For any request r to a page p in I, if LRU faults on r, either
p has never been requested before or there have been at least k different requests
to distinct pages other than p since the last request to p. In the case where p has
never been requested before, any online algorithm faults on r. If there have been
at least k requests to distinct pages other than p since the last request to p, FWF
has flushed since that last request to p, so p is no longer in its cache and FWF
faults, too. Thus, for any request sequence I, FWF(I) ≥ LRU(I). Consider LRU’s
worst ordering, ILRU, of a sequence I. Since FWF’s performance on its worst order-
ing of any sequence is at least as bad as its performance on the sequence itself,
FWFw(ILRU) ≥ FWF(ILRU) ≥ LRU(ILRU) = LRUw(ILRU). Thus, cl(FWF,LRU) ≥ 1.

As a remark, in general, to prove that one algorithm is at least as good as another on
their respective worst orderings of all sequences, one usually starts with an arbitrary
sequence and its worst ordering for the better algorithm. Then, that sequence is grad-
ually permuted, starting at the beginning, so that the poorer algorithm does at least
as badly on the permutation being created.

The second step is to show the separation, giving a lower bound on the term
cu(FWF,LRU). We assume that the cache is initially empty. Consider the sequence
Is = 〈1, 2, . . . , k, k + 1, k, . . . , 2〉s, where, after the cache fills up the first time, FWF
faults on, and thus flushes on, every occurrence of 1 or k + 1. Thus, FWF faults on all
2ks requests in I. LRU only faults on 2s+ k− 1 requests in all, the first k requests and
every request to 1 or k + 1 after that, but we need to consider how many times LRU
faults on its worst ordering of Is.

It is proven in [Boyar et al. 2007] that, for any sequence I, there is a worst ordering
of I for LRU that has all faults before all hits (requests which are not faults). The idea
is to consider any worst order of I for LRU and move requests which are hits, but are
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followed by a fault towards the end of the sequence without decreasing the number of
faults. Since LRU needs k distinct requests between two requests to the same page
in order to fault, with only k + 1 distinct pages in all, the faults at the beginning
must be a cyclic repetition of the k + 1 pages. Thus, a worst ordering of Is for LRU is
I ′s = 〈2, 3, . . . , k, k + 1, 1〉s , 〈2, . . . , k〉s, and LRU(I ′s) = (k + 1)s+ k − 1. This means that,
asymptotically, cu(FWF,LRU) ≥ 2k

k+1 . We now know that WRFWF,LRU ≥ 2k
k+1 , showing

that FWF and LRU are comparable in LRU’s favor, which is the most interesting piece
of information.

However, one can prove that this is the exact result. In the third step, we prove
that cu(FWF,LRU) cannot be larger than 2k

k+1 , asymptotically. In fact, this is shown
in [Boyar et al. 2007] by proving the more general result that, for any marking algo-
rithm [Borodin et al. 1995], M, and for any request sequence I, Mw(I) ≤ 2k

k+1 LRUw(I)+

k. A marking algorithm is defined with respect to k-phases, a partitioning of the re-
quest sequence. Starting at the beginning of I, the first phase ends with the request im-
mediately preceding the (k+ 1)st distinct page, and succeeding phases are also longest
intervals containing at most k distinct pages.

An algorithm is a marking algorithm if, assuming we mark a page each time it is
requested and start with no pages marked at the beginning of each phase, the algo-
rithm never evicts a marked page. As an example, FWF is a marking algorithm. Now,
consider any sequence, I, with m k-phases. A marking algorithm M faults at most km
times on I. Any two consecutive k-phases in I contain at least k + 1 pages, so there
must be a permutation of the sequence where LRU faults at least k + 1 times on the
requests of each of the bm2 c consecutive pairs of k-phases in I. This gives the desired
asymptotic upper bound, showing that WRFWF,LRU = 2k

k+1 .
There are several other results separating LRU and FWF, e.g., using locality of ref-

erence [Becchetti 2004; Albers et al. 2005; Boyar et al. 2012; 2015a; Dorrigiv et al.
2015; Albers and Frascaria 2018] or competitive analysis parameterized by the attack
rate [Moruz and Negoescu 2012]. Moreover, diffuse adversaries separate LRU from
both FWF and FIFO [Young 2000] and average analysis combined with locality of
reference as modeled in [Albers et al. 2005] separates LRU from any other determin-
istic algorithm [Angelopoulos et al. 2019]. In contrast, all marking algorithms have the
same competitive ratio, even when applying extra resource analysis.

4.2. LRU vs. FIFO
Like LRU and FWF (and any other marking algorithm), the algorithm FIFO also has
competitive ratio k [Borodin and El-Yaniv 1998]. FIFO simply evicts the first page that
entered the cache, regardless of its use while in cache. In experiments, both LRU and
FIFO are consistently much better than FWF.

LRU and FIFO are both conservative algorithms [Young 1994], meaning that on any
sequence of requests to at most k different pages, each of them faults at most k times.
This means that, according to RWOA, they are equally good and both are better than
FWF, since for any pair of conservative paging algorithms, A and B, WRA,B = 1 and
WRFWF,A = 2k

k+1 [Boyar et al. 2007]. This is consistent with results on the competitive
ratio. Any pair of conservative algorithms have the same competitive ratio, with or
without extra resource analysis. Furthermore, parameterizing by the attack rate r,
both LRU and FIFO have a competitive ratio of r [Moruz and Negoescu 2012].

On the other hand, there are measures separating LRU and FIFO. One measure,
relative interval analysis, gives the result that FIFO is better than LRU [Dorrigiv
et al. 2009; Boyar et al. 2015a]. The remaining measures prefer LRU. Two of these,
diffuse adversaries and average analysis with locality of reference, were mentioned in
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Section 4.1. Two others use locality of reference, working sets in [Albers et al. 2005]
and competitive analysis with characteristic vectors in [Albers and Frascaria 2018].
We discuss locality of reference modeled as access graphs in more detail below.

4.2.1. Access Graphs. The papers [Borodin et al. 1995; Chrobak and Noga 1999] were
able to show that, according to competitive analysis, LRU is strictly better than FIFO
on some access graphs and never worse on any graph. Thus, they were the first to
obtain a separation, consistent with empirical results.

RWOA confirms the competitive analysis result [Borodin et al. 1995] that LRU is
better than FIFO for path access graphs [Boyar et al. 2012]. Since these two quality
measures are so different, this is a a strong indicator of the robustness of the result.

Using RWOA, [Boyar et al. 2012] proved that with regards to cycle access graphs,
LRU is strictly better than FIFO. Note that this separation does not hold under com-
petitive analysis.

Paths and cycles are the two most fundamental building blocks of access graphs, but
the question of how LRU and FIFO compare on general graphs is not entirely settled.
LRU and FIFO are incomparable under RWOA on general access graphs, but the
proof uses a family of graphs where the size is proportional to the length of the request
sequence [Boyar et al. 2012]. It is still open as to whether or not this incomparability
holds for some family of graphs where the size is not dependent on the length of the
request sequence.

4.3. A Marking Algorithm worse than LRU
Although all marking algorithms have the same competitive ratio as LRU, some mark-
ing algorithms seem much less “reasonable” than LRU. Consider, for instance, the
algorithm MARKLIFO that, on a fault, evicts the unmarked page which was most re-
cently brought into cache. For k ≥ 2, LRU and MARKLIFO are (1 + 1

k , 2−
2
k+1 )-related,

and hence, the resource-asymptotic relative worst-order ratio of MARKLIFO to LRU is
WR∞MARKLIFO,LRU = 2 [Boyar et al. 2007].

4.4. Algorithms better than LRU?
With a quality measure that separates FWF and LRU, an obvious question to ask is:
Is there a paging algorithm which is better than LRU according to RWOA? With com-
petitive analysis, the answer would be “no”, since no deterministic paging algorithm
has a competitive ratio better than k. However, according to RWOA, the answer to this
is “yes”.

LRU-2 [O’Neil et al. 1993], which was proposed for database disk buffering, is the
algorithm which evicts the page with the earliest second-to-last request. The paper
presents compelling empirical evidence in support of the superiority of LRU-2 over
LRU in database systems. It was shown in [Boyar et al. 2010] that WRLRU,LRU-2 = k+1

2 ,
so LRU-2 is better according to RWOA. A generalization of LRU-2, LRU-K, was also
considered in [Boyar et al. 2010], and LRU and LRU-K were shown to be resource-
asymptotically comparable (see Definition 2.6; this is slightly weaker than being com-
parable) in LRU-K’s favor. It is interesting to note that according to competitive anal-
ysis, LRU-K is only kK-competitive, for any K ≥ 2, so these algorithms are deemed
worse than LRU and FWF according to competitive analysis.

In addition, a new algorithm, RLRU (Retrospective LRU), was defined in [Boyar
et al. 2007] and shown to be better than LRU according to RWOA. Experiments, simply
comparing the number of page faults on the same input sequences, have shown that
RLRU is consistently slightly better than LRU [Moruz and Negoescu 2012]. RLRU
is a phase-based algorithm. When considering a request, it determines whether OPT
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would have had the page in cache given the sequence seen so far (this is efficiently com-
putable), and uses that information in a marking procedure. The competitive ratio of
RLRU was shown to be k+ 1, so, as with LRU-2, RLRU is worse than LRU according
to competitive analysis, but better according to relative worst-order analysis.

4.5. Look-ahead
Considering LRU and LRU(`), which is LRU adapted to using look-ahead ` (the next
` requests after the current one), evicting a least recently used page not occurring
in the look-ahead, both algorithms have competitive ratio k, though look-ahead helps
significantly in practice. Using RWOA, WRLRU,LRU(`) = min {k, `+ 1}, so LRU(`) is
better [Boyar et al. 2007].

The same kind of separation has been proven with bijective analysis [Angelopoulos
et al. 2019] and relative interval analysis [Dorrigiv et al. 2009]. Similarly, for the k-
server problem which is a generalization of paging, the max/max-ratio gives results
reflecting that look-ahead can be an advantage. However, for the paging problem, the
max/max-ratio cannot separate algorithms; as the ratio between the sizes of the slow
memory and the cache tend to infinity, the max/max ratio of any paging algorithm
tends to 1.

5. OTHER ONLINE PROBLEMS
In this section, we give further examples of problems and algorithms where RWOA
gives results that are qualitatively different from those obtained with competitive
analysis. We consider various problems, including list accessing, bin packing, bin color-
ing, scheduling, and edge coloring. Other problems have also been considered, see [Bo-
yar and Favrholdt 2007; 2010; 2012; Boyar and Medvedev 2008; Ehmsen et al. 2010].
[Boyar and Kudahl 2018] presents results which apply to the independent set problem
and other problems, for different performance measures, including relative worst-order
analysis.

5.1. List Accessing
List accessing [Sleator and Tarjan 1985; Albers and Westbrook 1998] is a classic prob-
lem in data structures, focusing on maintaining an optimal ordering in a linked list.
In online algorithms, it also has the rôle of a theoretical benchmark problem, together
with paging and a few other problems, on which many researchers evaluate new tech-
niques or quality measures.

The problem is defined as follows: A list of items is given and requests are to items
in the list. Treating a request requires accessing the item, and the cost of that access is
the index of the item, starting with one. After the access, the item can be moved to any
location closer to the front of the list at no cost. (called free transpositions). In addition,
any two consecutive items may be transposed at a cost of one. (paid transpositions).
The objective is to minimize the total cost of processing the input sequence.

We consider three list accessing algorithms: On a request to an item x, the algorithm
MOVE-TO-FRONT (MTF) [McCabe 1965] moves x to the front of the list, whereas the
algorithm TRANSPOSE (TRANS) just swaps xwith its predecessor. The third algorithm,
FREQUENCY-COUNT (FC), keeps the list sorted by the number of times each item has
been requested.

For list accessing [Sleator and Tarjan 1985], letting l denote the length of the list,
the algorithm MOVE-TO-FRONT has strict competitive ratio 2 − 2

l+1 [Irani 1991] (re-
ferring to personal communication, Irani credits Karp and Raghavan with the lower
bound). In contrast, FREQUENCY-COUNT and TRANSPOSE both have competitive ra-
tio Ω(l) [Borodin and El-Yaniv 1998]. Extensive experiments demonstrate that MTF
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and FC are approximately equally good, whereas TRANS is much worse [Bentley and
McGeoch 1985; Bachrach and El-Yaniv 1997]. Using RWOA, MTF and FC are equally
good, whereas both WRTRANS,MTF ∈ Ω(l) and WRTRANS,FC ∈ Ω(l), so TRANS is much
worse [Ehmsen et al. 2013].

List accessing with locality of reference has been explored in [Albers and Lauer 2016;
Angelopoulos et al. 2019; Dorrigiv et al. 2015], proving MOVE-TO-FRONT optimal un-
der various locality models.

5.1.1. List Factoring. The idea behind list factoring is to reduce the analysis to lists
of two elements, thereby making the analysis much more manageable. The technique
was first introduced by Bentley and McGeoch [Bentley and McGeoch 1985] and later
extended and improved [Irani 1991; Teia 1993; Albers et al. 1995; Albers 1998]. In or-
der to use this technique, one uses the partial cost model, where the cost of each request
is one less than in the standard (full) cost model (the access to the item itself is not
counted). The list factoring technique is applicable for algorithms where, in treating
any request sequence I, one gets the same result by counting only the costs of pass-
ing through x or y when searching for y or x (denoted Axy(I)), as one would get if the
original list contained only x and y and all requests different from those were deleted
from the request sequence, denoted Ixy. If this is the case, that is Axy(I) = A(Ixy) for
all I, then A is said to have the pairwise property, and it is not hard to prove that
then A(I) =

∑
x 6=y A(Ixy). Thus, we can reduce the analysis of A to an analysis of lists

of length two. The results obtained also apply in the full cost model if the algorithms
are cost independent, meaning that their decisions are independent of the costs of the
operations.

Since the cost measure is different, some adaption is required to get this to work for
RWOA:

We now say that A has the worst-order projection property if and only if, for all
sequences I, there exists a worst ordering πA(I) of I with respect to A, such that for
all pairs {a, b} ⊆ L (a 6= b), πA(I)ab is a worst ordering of Iab with respect to A on the
initial list Lab.

The results on MOVE-TO-FRONT, FREQUENCY-COUNT, and TRANSPOSE, reported
on above, as well as results on TIMESTAMP [Albers 1998], were obtained [Ehmsen et al.
2013] using this tool.

5.2. Bin Packing and Friends
For bin packing, both Worst-Fit (WF), which places an item in a bin with largest avail-
able space (but never opens a new bin unless it has to), and Next-Fit (NF), which closes
its current bin whenever an item does not fit (and never considers that bin again), have
competitive ratio 2 [Johnson 1974]. However, WF is at least as good as NF on every
sequence and sometimes much better [Boyar et al. 2010]. Using RWOA, WRNF,WF = 2,
so WF is the better algorithm.

It is widely believed and consistent with experiments that for bin packing type
problems, FIRST-FIT algorithms perform better than WORST-FIT algorithms [Johnson
1973]. For dual bin packing, grid scheduling, and seat reservation, described below,
competitive analysis cannot distinguish between the algorithms, that is, they have the
same competitive ratio, whereas RWOA gives a separation in the right direction.

For dual bin packing (the variant of bin packing where there is a fixed number of
bins, the aim is to pack as many items as possible, and all bins are considered open
from the beginning), FIRST-FIT is better than WORST-FIT [Boyar and Favrholdt 2007].

For grid scheduling (a variant of bin packing where the items are given from the be-
ginning and variable-sized bins arrive online), FIRST-FIT-DECREASING is better than
FIRST-FIT-INCREASING [Boyar and Favrholdt 2010].
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For seat reservation (the problem where a train with a certain number of seats trav-
els from station 1 to some station k ∈ Z+, requests to travel from some station i to a sta-
tion j > i arrive online, and the aim is to maximize either the number of passengers or
the total distance traveled), FIRST-FIT and BEST-FIT are better than WORST-FIT [Bo-
yar and Medvedev 2008] with regards to both objective functions.

Bin coloring is a variant of bin packing, where items are unit-sized and each have
a color. The goal is to minimize the maximum number of colors in any bin, under
the restriction that only a certain number, q, of bins are allowed to be open at any
time and a bin is not closed until it is full. Consider the algorithms ONE-BIN, which
never has more than one bin open, and GREEDY-FIT, which always keeps q open bins,
placing an item in a bin already having that color, if possible, and otherwise in a bin
with fewest colors. If the bin size is larger than approximately q3, ONE-BIN has a
better competitive ratio than GREEDY-FIT [Krumke et al. 2008]. However, according to
strict RWOA, GREEDY-FIT is better [Epstein et al. 2012]. The latter result is supported
by [Hiller and Vredeveld 2008], proving that GREEDY-FIT is stochastically better than
ONE-BIN, i.e., for any given input length, any input distribution, and any number C,
the probability that the maximum number of colors used in a bin is at least C is no
larger for GREEDY-FIT than for ONE-BIN.

5.3. Scheduling
For Scheduling on two related machines to minimize makespan (the time when all
jobs are completed), the algorithm FAST, which only uses the fast machine, is s+1

s -
competitive, where s is the speed ratio of the two machines. If s is larger than
the golden ratio, this is the best possible competitive ratio. However, the algorithm
POST-GREEDY, which schedules each job on the machine where it would finish first, is
never worse than FAST and sometimes better. This is reflected in the relative worst-
order ratio, since WRFAST,POST-GREEDY = s+1

s [Epstein et al. 2006].

5.4. Edge Coloring
In graph edge coloring, the edges of a graph must be colored with as few colors as
possible, under the restriction that no two adjacent edges are given the same color. In
the online version, the edges arrive one by one, and the best possible competitive ratio
of 2 [Bar-Noy et al. 1992] is attained by the algorithm FIRST-FIT, i.e., the algorithm
also called GREEDY which colors each edge with the lowest numbered color possible.

Perhaps a more reasonable way to assign the predicate “greedy” to an algorithm
would be to refer to an algorithm as greedy if it never increases the objective function
unnecessarily, i.e., it only uses a new color if none of the colors already used on edges
given earlier results in a valid coloring. Any such algorithm is best possible according
to competitive analysis, including a less natural algorithm, NEXT-FIT. This algorithm
behaves as FIRST-FIT, except that it considers the colors used so far in a cyclic order,
starting with the color appearing just after the color that was most recently used. With
RWOA, FIRST-FIT and NEXT-FIT are comparable in FIRST-FIT’s favor [Ehmsen et al.
2010].

6. COMPARISONS OF PERFORMANCE MEASURES
Whereas we have also compared results from different performance measures in the
previous sections, it was the online problems that was the focus in those sections. In
this section, it is not the online problem, which is extremely simple, but rather the
performance measures that are the focus points.

A systematic comparison of performance measures for online algorithms was initi-
ated in [Boyar et al. 2015b], comparing some measures which are applicable to many
types of problems. To make this feasible, a particularly simple problem was chosen:
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the baby server problem, which is the 2-server problem on a line with three points, one
extreme point farther away from the middle point than the other.

A well known algorithm, Double Coverage (DC), is 2-competitive and best possible
for this problem [Chrobak et al. 1991] according to competitive analysis. DC moves
the closest server when the request is to the same side of both servers, but moves
both servers at the same speed when the request is somewhere between the servers.
A lazy version of this, LDC, memorizes the moves that should be made by DC, and
makes decisions based on the memorized locations, but only moves a server when it
will actually reach a request. It is fairly clear that LDC is at least as good as DC on
every sequence, and often better.

Investigating which measures can make this distinction, LDC was found to be better
than DC by bijective analysis and RWOA, but equivalent to DC according to compet-
itive analysis, the max/max ratio, and the random-order ratio. The first proof, for any
problem, of an algorithm being best possible under RWOA established this for LDC.

Another algorithm for the problem, GREEDY, simply always moves the server that
is closest to the request. GREEDY performs unboundedly worse than LDC on certain
sequences, so ideally a performance measure would not find GREEDY to be superior to
LDC. According to the max/max ratio and bijective analysis, GREEDY is the better al-
gorithm, but not according to competitive analysis, random-order analysis, or RWOA.
Using one of the extensions to RWOA described in Section 2.4, it was shown in [Boyar
et al. 2015b] that LDC and GREEDY are (2,∞)-related and thus weakly comparable in
LDC’s favor.

Further systematic comparisons of performance measures were made in [Boyar et al.
2014] and [Boyar et al. 2015], again comparing algorithms on relatively simple prob-
lems. The paper [Boyar et al. 2014] focuses on online search, a maximization problem
where bids in the interval [m,M ] arrive online and the aim is to choose (sell for) as
large a bid as possible. It is a “one-shot” problem, i.e., the processing terminates when
a bid is selected or at the end of the sequence with the last bid as the result. [Boyar
et al. 2015] investigates the frequent items problem, where the goal is to collect the
most frequent items over the entire sequence, having a (small) buffer available. The
online difficulty is that once an item is evicted from the buffer, it cannot be added
again, until a possible later occurrence in the input stream.

The larger collection of performance measures was considered in [Boyar et al. 2014]
for online search and we discuss these results. The paper considers an algorithm fam-
ily,Rp, parameterized by a so-called reservation price, p. The algorithm sells at the first
bid of at least p. The most clear conclusions were that bijective analysis found all algo-
rithms incomparable and average analysis preferred an intuitively poorer algorithm,
RM . Relative interval analysis focuses on additive differences and points to Rm+M

2
,

whereas competitive analysis focuses on multiplicative comparisons, arriving at the
classic result in trading that R√mM is the best algorithm [El-Yaniv 1998; El-Yaniv
et al. 2001]; the situation is the same for random-order analysis. One gets more nu-
anced answers from RWOA, but the measure also points toR√mM . Technically,R√mM
compares favorably to any other Rq when using the relatedness comparison.

7. OPEN PROBLEMS AND FUTURE WORK
For problems where competitive analysis deems many algorithms best possible or gives
counter-intuitive results, comparing algorithms with RWOA can often provide addi-
tional information. Such comparisons can be surprisingly easy, since it is often possible
to use parts of previous results when applying RWOA.

Often the exploration for new algorithms for a given problem ends when an algo-
rithm is proven to have a best possible competitive ratio. Using RWOA to continue the

ACM Computing Surveys, Vol. 0, No. 0, Article 0, Publication date: 0.



0:18 Boyar, Favrholdt, Larsen

search for better algorithms after competitive analysis fails to provide satisfactory an-
swers can lead to interesting discoveries. As an example, the paging algorithm RLRU
was designed in an effort to find an algorithm that could outperform LRU with respect
to RWOA.

Also for the paging problem, RLRU and LRU-2 are both known to be better than
LRU according to RWOA. It was conjectured [Boyar et al. 2010] that LRU-2 is com-
parable to RLRU in LRU-2’s favor. This is still unresolved. It would be even more
interesting to find a new algorithm better than both. It might also be interesting to
apply RWOA to an algorithm from the class of ONOPT algorithms from [Moruz and
Negoescu 2012].

As mentioned in Section 3.1, the existing proof that LRU and FIFO are incompara-
ble under RWOA on general access graphs uses a family of graphs where the size is
proportional to the length of the request sequence [Boyar et al. 2012]. It is not known
if this dependency on the length of the request sequence is necessary.

For bin packing, it would be interesting to know whether BEST-FIT is better than
FIRST-FIT, according to RWOA.

For the version of graph edge coloring where a limited number, k, of colors are avail-
able and the aim is to color as many edges as possible, the results so far are not as con-
clusive as for the classic version of the problem. The two online algorithms, FIRST-FIT
and NEXT-FIT, have very similar competitive ratios [Favrholdt and Nielsen 2003]:
NEXT-FIT has a competitive ratio of 2

√
3 − 3 ≈ 0.46, which is worst possible among

algorithms that never leave an edge uncolored, unless all k colors have already been
used on adjacent edges. The competitive ratio of FIRST-FIT lies between 2

√
3 − 3 and

2(
√

10− 1)/9 ≈ 0.48, so the two algorithms have not been separated using competitive
analysis, and the competitive ratio of FIRST-FIT can only be slightly better than that
of NEXT-FIT. Using RWOA, FIRST-FIT and NEXT-FIT are not comparable [Ehmsen
et al. 2010], but it is still open if they are asymptotically comparable.

Finally, as far as we know, no performance measure other than competitive analysis
has been used in the context of advice complexity or online problems with recourse.
This is of course due to the fact that competitive analysis is the natural starting point,
but probably also that with the extra technical complications of advice or recourse, it
has been more important to keep the basic measure simple. It would be interesting to
explore these directions using RWOA.
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