
Nordic Journal of Computing

THE COMPETITIVE RATIO FOR

ON-LINE DUAL BIN PACKING

WITH RESTRICTED INPUT SEQUENCES ∗†

Joan Boyar Lene M. Favrholdt Kim S. Larsen Morten N. Nielsen

Abstract. We consider the On-Line Dual Bin Packing problem where we have
a fixed number n of bins of equal size and a sequence of items. The goal is to
maximize the number of items that are packed in the bins by an on-line algorithm.
An investigation of First-Fit and an algorithm called Log shows that, in the special
case where all sequences can be completely packed by an optimal off-line algorithm,
First-Fit has a constant competitive ratio, but Log does not. In contrast, if there
is no restriction on the input sequences, Log is exponentially better than First-Fit.
This is the first separation of this sort with a difference of more than a constant
factor. We also design randomized and deterministic algorithms for which the
competitive ratio is constant on sequences which the optimal off-line algorithm can
pack using at most αn bins, if α is constant and known to the algorithm in advance.

1. Introduction

First in this introduction, we present the On-Line Dual Bin Packing problem.
Then we discuss the relevant performance measures and give an overview of
our results.

1.1 The Problem

Bin Packing is one of the most classical problems in combinatorial opti-
mization and in theoretical computer science. In the Classical Bin Packing

problem we are given an unlimited number of bins and a set of items, each
with a positive size, where the goal is to minimize the number of bins used
to pack all the items. (For surveys on Classical Bin Packing, see [9, 12].) In
the Dual Bin Packing problem, we are given a fixed number n of bins and
a set of items, each with a positive size, where the goal is to maximize the

∗A preliminary version of this paper appeared as: Yossi Azar, Joan Boyar, Lene M.
Favrholdt, Kim S. Larsen, Morten N. Nielsen. “Fair versus Unrestricted Bin Packing”.
Proceedings of the Seventh Scandinavian Workshop on Algorithm Theory, Lecture Notes
in Computer Science, vol. 1851, pages 200–213, Springer-Verlag, 2000.

† Department of Mathematics and Computer Science, University of Southern Denmark,
Odense, Denmark, {joan,lenem,kslarsen,nyhave}@imada.sdu.dk. Supported in part by the
Danish Natural Science Research Council (SNF) and in part by the Future and Emerging
Technologies programme of the EU under contract number IST-1999-14186 (ALCOM-FT).

Received August 2001. Revised November 2001.

2 BOYAR, FAVRHOLDT, LARSEN, AND NIELSEN

number of items packed. In [8] this problem is reported to have been named
Dual Bin Packing in [15]. The Dual Bin Packing problem has been studied
in the off-line setting, starting in [10], and its applicability to processor and
storage allocation is discussed in [11]. In the on-line version of the problem,
On-Line Dual Bin Packing, the items arrive one by one and each item must
be packed without knowledge of future items.

In a variant of On-Line Dual Bin Packing called Fair Bin Packing [7], an
algorithm is only allowed to reject an item if it cannot fit in any bin at
the time when it is given. The problem On-Line Dual Bin Packing studied
in this paper (and in [5]) is the same problem with the fairness restriction
removed.

We assume that all items are integer-sized and the bins have size k. All of
the results in this paper hold with the weaker assumption that the bins are
unit-sized and the smallest item is known to have size at least 1

k
. However,

some of the results in [7] do not appear to hold with this assumption, so we
use the stronger assumption for consistency.

1.2 The Performance Measures

The standard measure for the quality of on-line algorithms is the competitive

ratio. For the On-Line Dual Bin Packing problem, the competitive ratio of
an algorithm A is the worst case ratio, over all possible input sequences,
of the number of items packed by A to the number of items packed by an
optimal off-line algorithm.

For the On-Line Dual Bin Packing problem, as well as for many other on-line
problems, the competitive ratio yields very pessimistic results. Restricting
the input sequences to those which can be completely packed by an optimal
off-line algorithm, we obtain significantly different results. Such sequences
are called accommodating sequences, since the off-line algorithm can accom-
modate the whole sequence.

Note that on accommodating sequences, the competitive ratio of On-Line
Dual Bin Packing is no worse than the competitive ratio of the fair problem,
since the off-line algorithm packs all items and hence is fair. In general, how-
ever, the competitive ratio of On-Line Dual Bin Packing is not necessarily
better than the competitive ratio of the fair problem since also the off-line
algorithm can benefit from not being fair. In fact, in many cases, consider-
ing unfair algorithms, i.e., performing admission control on the items, is the
more challenging problem; see for example the results for throughput rout-
ing in [1, 2, 3]. In particular, with the On-Line Dual Bin Packing problem,
the competitive ratio of different algorithms can vary over a large range.
This is in contrast to deterministic on-line algorithms for Fair Bin Packing
where all competitive ratios are within a constant factor of each other, in
the standard case of unrestricted sequences as well as in the special case of
accommodating sequences.

ON-LINE DUAL BIN PACKING 3

The notion of accommodating sequences can be extended to α-sequences.
A sequence of items is an α-sequence, if an optimal off-line algorithm can
pack all items of the sequence using at most αn bins. In this paper, we
concentrate on α ≥ 1.

1.3 The Results

We give an overview of the results obtained. The separation result depends
on the results obtained for Log and First-Fit on unrestricted as well as
accommodating sequences.

1.3.1 Unrestricted Sequences

In Section 3.2, we describe a “classify and randomly select” [2] algorithm,
Log, with competitive ratio Θ(1

log k
) and show that this is optimal. If n ≥

c ⌈log2 k⌉, for some constant c > 1, a derandomized version of the algorithm
can be used. In contrast, it is shown in [7] that the competitive ratio of any
deterministic on-line algorithm for Fair Bin Packing is Θ(1

k
).

1.3.2 Accommodating Sequences

If the sequences are all accommodating sequences, there exist algorithms for
the On-Line Dual Bin Packing problem with constant competitive ratios.
First-Fit, the algorithm which packs each item in the lowest indexed bin into
which it fits and only rejects items which do not fit in any bin, is studied
in [7]. It is shown there that, for the Fair Bin Packing problem, First-Fit
has a competitive ratio of at least 5

8
on accommodating sequences. Since

the competitive ratio on accommodating sequences is no worse when the
fairness restriction is removed, this result is also valid for On-Line Dual Bin
Packing. In [4] (of which a preliminary version appeared in [5]) it is shown
that the bound is asymptotically tight, i.e., there exist values of n for which
First-Fit’s competitive ratio on accommodating sequences is arbitrarily close
to 5

8
.

The competitive ratio of the algorithm Log is Θ(1
log k

) on accommodating

sequences, as on unrestricted sequences.

1.3.3 A Non-Constant Separation

From the discussion above it follows that for unrestricted sequences, the
algorithm Log has the better competitive ratio, and in the special case of
accommodating sequences, First-Fit has the better competitive ratio. This
is the first case of two algorithms, where one has the better competitive
ratio on unrestricted sequences and the other the better competitive ratio

4 BOYAR, FAVRHOLDT, LARSEN, AND NIELSEN

on accommodating sequences, and the difference is more than a constant
factor. In [7], a similar result was shown about First-Fit and Worst-Fit, but
only a constant separation could be obtained.

1.3.4 Knowing the Minimum Resources Necessary

We design randomized and deterministic on-line algorithms for which the
competitive ratio is a constant on α-sequences, if α is a constant and known
to the on-line algorithm in advance. In contrast, we observe that for First-
Fit the competitive ratio on accommodating sequences drops down to Θ(1

k
)

for α ≥ 1 + c, for any constant c > 0.

2. The Performance Measures

This section contains formal definitions of the performance measures dis-
cussed in the introduction.

For completeness, we define the competitive ratio and α-sequences. The
competitive ratio as a function of α is also called the accommodating func-

tion. Note that On-Line Dual Bin Packing is a maximization problem, and
all ratios are less than or equal to one.

Let A(I) denote the number of items algorithm A accepts when given the
sequence I and let OPT(I) denote the number of items an optimal off-line
algorithm, OPT, accepts.

Definition 1. An on-line algorithm, A, is c-competitive if

A(I) ≥ c ·OPT(I), for all input sequences I.

The competitive ratio CR = sup{c | A is c-competitive}.

Sometimes in the definition of the competitive ratio, an additive term is
allowed, so the requirement is weakened to A(I) ≥ c · OPT(I) − b, where
b is a fixed constant independent of I [6]. In that situation, our definition
would then be referred to as the strict competitive ratio. However, we will
not need the additive term in this paper.

Furthermore, one could have chosen to focus on the inverse ratio to obtain
numbers larger than one. However, we made our choice for consistency with
similar decisions in the area of approximation algorithms where ratios for
maximization problems are smaller than one and the inverse is referred to
as the approximation factor [14].

Definition 2. Let α > 0. A sequence of items is called an α-sequence if

an optimal off-line algorithm can pack the whole sequence using at most αn

bins. Let 0 < c ≤ 1. An on-line algorithm A is c-competitive on α-sequences
if A(I) ≥ c ·OPT(I), for any α-sequence I.

ON-LINE DUAL BIN PACKING 5

The accommodating function A is defined as

A(α) = sup{c | A is c-competitive on α-sequences}.

Definition 3. 1-sequences are also called accommodating sequences. The

competitive ratio on accommodating sequences is

AR = sup{c | A is c-competitive on accommodating sequences}.

3. A Non-Constant Separation

We discuss First-Fit, Log, and general hardness results separately.

3.1 First-Fit

It is easy to see that the competitive ratio of First-Fit for On-Line Dual
Bin Packing is 1

k
. For the upper bound, consider the sequence consisting

of n items of size k followed by n · k items of size 1. For the lower bound,
note that if First-Fit rejects anything, it accepts at least n items, and no
algorithm can accept more than n · k items. From that it follows that First-
Fit’s accommodating function drops down to 1

k
for α ≥ 2. Moreover, it is

Θ(1
k
) for α ≥ 1 + c, for any constant c > 0, by using (α− 1)n · k (instead of

n · k) items of size 1.

3.2 Algorithm Log

Algorithm Log uses the standard “classify and randomly select” technique [2].
First, we describe a derandomized version of the algorithm, Dlog, using a
number of bins which is at least the number of classes. The proof of the
lower bound for Dlog is similar to a proof in [2]. In the description and anal-
ysis of the algorithm Dlog, we assume that n ≥ c ⌈log2 k⌉, for some constant
c > 1.

Dlog divides the n bins into ⌈log2 k⌉ groups G1, G2, . . . , G⌈log
2
k⌉. Let p =

⌊ n
⌈log

2
k⌉⌋ and let s = n− p · ⌈log2 k⌉. Groups G1, G2, . . . , Gs consist of p+ 1

bins and the rest of the groups consist of p bins. Let S1 = {x | k
2
≤ x ≤ k},

and Si = {x | k
2i

≤ x < k
2i−1 } , for 2 ≤ i ≤ ⌈log2 k⌉. When Dlog receives

an item o of size so ∈ Si, it decides which group Gj of bins to pack it in by
calculating j = max{j ≤ i | there is a bin in Gj that has room for o}. If j
exists, o is packed in Gj according to the First-Fit packing rule. If not, the
item o is rejected.

Theorem 1. For every α ≥ 1, if n ≥ c ⌈log2 k⌉, for some constant c > 1,
the competitive ratio of Dlog on α-sequences is Θ(1

log k
).

6 BOYAR, FAVRHOLDT, LARSEN, AND NIELSEN

Proof. Consider first the lower bound. For i ∈ {1, 2, . . . , ⌈log2 k⌉}, let
ni(I) denote the number of items of size s ∈ Si accepted by OPT when
given the sequence I of items. Since group Gi is reserved for items of size
k

2i−1 or smaller, the bins in group Gi will receive at least min{2i−1p, ni(I)}

items. OPT can accept at most 2in items with sizes in Si, i.e., ni(I) ≤
2in. Thus, 2i−1p > 2i−1(n

⌈log
2
k⌉ − 1) ≥ ni(I)(

1
2⌈log

2
k⌉ − 1

2n
). Given the

same sequence, Dlog packs at least ni(I)(
1

2⌈log
2
k⌉ − 1

2n
) items in Gi, for

i ∈ {1, 2, . . . , ⌈log2 k⌉}. So, for any I,

Dlog(I)

OPT(I)
>

∑

i∈{1,2,...,⌈log
2
k⌉}

ni(I)(
1

2⌈log
2
k⌉ −

1
2n
)

∑

i∈{1,2,...,⌈log
2
k⌉}

ni(I)
=

1

2⌈log2 k⌉
−

1

2n
,

so CRDlog >
1

2⌈log
2
k⌉ −

1
2n
.

For the upper bound, consider the accommodating sequence I with n items
of size k. Then,

Dlog(I)

OPT(I)
=

⌈ n
⌈log

2
k⌉⌉

n
<

1

⌈log2 k⌉
+

1

n
,

so ARDlog <
1

⌈log
2
k⌉ +

1
n
. ✷

If there is no constant c > 1 such that n ≥ c ⌈log2 k⌉, a randomized version of
the algorithm Dlog can be used. Instead of dividing the bins into the groups
G1, G2, . . . , G⌈log

2
k⌉, we uniformly at random choose an index i among the

⌈log2 k⌉ possibilities. All of the bins are assigned to group Gi and the other
groups are empty. Items which would have been assigned to groups other
than Gi are rejected. We call this randomized algorithm Log.

Corollary 1. On accommodating sequences, the competitive ratio of Log

is Θ(1
log k

).

3.3 A Hardness Result

In this section, we consider an arbitrary on-line algorithm A for On-Line
Dual Bin Packing and prove general bounds on how well it can do. The
proof of this general upper bound for the competitive ratio is analogous to
the proof of the corresponding lemma in [1].

Clearly, if the input sequences are all accommodating, the algorithm Log
does not have the best possible competitive ratio, but on unrestricted se-
quences, its competitive ratio is quite close to optimal, as shown by the
following theorem.

ON-LINE DUAL BIN PACKING 7

Theorem 2. Any deterministic or randomized on-line algorithm for On-

Line Dual Bin Packing has a competitive ratio of less than 4
⌊log

2
k⌋ .

Proof. The items are given in phases numbered 0, 1, . . . , r, r ≤ ⌊log2 k⌋.
In Phase i, n2i items of size 2⌊log2 k⌋−i are given. Clearly, any optimal off-line
algorithm will accept all n2r items in Phase r.

Let xi be the expected number of items that the on-line algorithm accepts
in Phase i, 0 ≤ i ≤ r, and xi = 0, r < i ≤ ⌊log2 k⌋. By linearity of
expectations, the expected total number of items accepted by the on-line

algorithm is
∑⌊log

2
k⌋

i=0 xi and the expected total size of the items accepted

is
∑⌊log

2
k⌋

i=0 2⌊log2 k⌋−ixi >
∑⌊log

2
k⌋

i=0
k
2
2−ixi. Since there are only nk units of

capacity overall, we get:
∑⌊log

2
k⌋

i=0
k
2
2−ixi ≤ nk, or

∑⌊log
2
k⌋

i=0 2−ixi ≤ 2n.

We now show that r can be chosen such that
∑r

i=0 xi <
4·n2r

⌊log
2
k⌋ , meaning

that OPT will pack more than 1
4
⌊log2 k⌋ times as many items as the on-line

algorithm. Defining Sj = 2−j
∑j

i=0 xi, this statement can be reformulated
as ∃r ∈ {0, 1, . . . , ⌊log2 k⌋} : Sr < 4n

⌊log
2
k⌋ , which is proven by the following

inequality.

⌊log
2
k⌋∑

j=0

Sj =
∑

0≤i≤j≤⌊log
2
k⌋

2−jxi <

⌊log
2
k⌋∑

i=0

2 · 2−ixi ≤ 4n. ✷

4. Knowing the Minimum Resources Necessary

Suppose that, for each sequence I of items, the on-line algorithm knows,
beforehand, a good upper bound αn on the number of bins needed to pack
the items in I. Then even for α > 1, there exist simple algorithms (both
deterministic and randomized) with a constant (that is, independent of k
and n) accommodating function when evaluated at this α, as long as α is
a constant. Note that for α < 1, the existence of such algorithms follows
trivially from the constant competitive ratio of First-Fit on accommodating
sequences [7].

4.1 A Randomized Algorithm

In this section we describe an algorithm using the standard “classify and
randomly select” technique [2]. One way of exploiting the knowledge of
an upper bound on αn is to use αn “virtual” bins. At the beginning, the
randomized algorithm R chooses uniformly at random which n of the αn

virtual bins are going to correspond to the “real” n bins. Call the set of
these n virtual bins BA and the rest of the αn virtual bins BR. An algorithm
A with a “good” competitive ratio on accommodating sequences ARA is used
to decide where the actual items would be packed in the αn virtual bins.

8 BOYAR, FAVRHOLDT, LARSEN, AND NIELSEN

When A packs an item in a bin in BA, the algorithm R accepts the item
and places it in the corresponding real bin. All other items are rejected.

The expected fraction of the items which R accepts is at least ARA

α
, since

on average |BA|
|BA|+|BR| =

n
αn

= 1
α
of the items accepted by A will be packed

in BA. Using Unfair-First-Fit which was shown to have an asymptotically
competitive ratio of 2

3
an accommodating sequences in [4], this gives A(α) ≥

2
3α

(asymptotically), which is constant when α is.

Another way of using virtual bins is to use an algorithm that is known to
be able to pack any accommodating sequence of items in βn bins for some
constant β. In this case, αβn virtual bins are used. The algorithm with the
best known value of β is Harmonic++ [16]. In [16], it is shown that when n

goes to infinity, β goes to a value that is at most 1.58889. Furthermore, it is
proven in [17] that no on-line algorithm can have a β smaller than 1.54014.
Thus, using this approach, A(α) ≤ 1

1.54014α
≈ 0.649

α
, which is a little lower

(worse) than for the method described above using Unfair-First-Fit to pack
items in αn virtual bins.

Amos Fiat [13] has noted that the technique described above can be used
more generally, for many maximization problems, to give good values for
the accommodating function when α ≥ 1 is small. If an algorithm A with
competitive ratio on accommodating sequences ARA is used with a quantity
αn of the virtual resource, and a quantity n of these virtual resources are
randomly chosen and used on the real resources, then the algorithm will
achieve an accommodating function of A(α) ≥ ARA

α
.

4.2 A Deterministic Algorithm

It is also possible for a deterministic algorithm to have an accommodating
function such that the function value of the accommodating function is
constant (that is, independent of k and n) when evaluated at a constant
α as long as n ≥ 5. The following algorithm D has this property.

D divides the possible item sizes into ⌈log2 k⌉ intervals, S1, S2, . . . , S⌈log
2
k⌉,

defined by S1 = {x | k
2
≤ x ≤ k}, and Si = {x | k

2i
≤ x < k

2i−1 }, for
2 ≤ i ≤ ⌈log2 k⌉. Thus, for any two items with sizes sa and sb belonging to
the same size interval, sa ≥ 1

2
sb.

For each i, 1 ≤ i ≤ ⌈log2 k⌉, D does the following. It accepts the first item
with size s ∈ Si. After that it accepts every

α
β
th item with size s ∈ Si, for a

given constant β, and rejects all other items with sizes in Si. The accepted
items are packed according to the First-Fit packing rule and the constant β
will be chosen as described below, so that D has no problem doing so. Since
D accepts every α

β
th item in each size interval, A(α) ≥ β

α
.

Let O be the set of all the items given, let OF be the set of items consisting
of the first item in each size interval and let O′ = O \OF . Let A be the set

ON-LINE DUAL BIN PACKING 9

of items accepted by D and let A′ = A \ OF . For any set S of items, let
V (S), denote the sum of the sizes of the items in S.

Lemma 1. Let m be the number of bins containing at least c items in a

First-Fit packing. If c ≥ 1 and m ≥ c+1, then the total size V of the items

in these m bins is more than c
c+1

mk.

Proof. Let C denote the set of bins containing at least c items, and, for
any bin b, let V (b) denote the total size of the items in b.

Suppose, for the sake of contradiction, that V ≤ c
c+1

mk. Then there is a bin
b ∈ C such that V (b) = c

c+1
k−ε, ε ≥ 0. The size of any item placed in a bin

to the right of b must be greater than 1
c+1

k+ε, since otherwise it would fit in

b. Therefore any bin b′ ∈ C to the right of b has V (b′) > c
c+1

k + cε ≥ c
c+1

k.
This means that there is only one bin b ∈ C with V (b) ≤ c

c+1
k, and if b is

not the rightmost nonempty bin in C, then V > (m− 2) c
c+1

k+(c
c+1

k− ε)+
(c
c+1

k + cε) ≥ m c
c+1

k. Thus, b must be the rightmost nonempty bin in C.

One of the items in b must have size at most 1
c+1

k − ε
c
. Since this item

was not placed in one of the m − 1 bins to the left of b, these must all be
filled to more than c

c+1
k + ε

c
. Thus, V > (m− 1)(c

c+1
k + ε

c
) + (c

c+1
k − ε) =

m c
c+1

k+(m− 1) ε
c
− ε ≥ m c

c+1
k+ c ε

c
− ε = m c

c+1
k, which is a contradiction.

✷

It follows from Lemma 1 that the total size of the items in any First-Fit
packing using n bins is more than nk

2
. Thus, if β is chosen such that V (A) ≤

nk
2
, D will be able to pack all the accepted items.

To determine an appropriate value for β, first notice that V (O′) ≤ V (O) ≤
αnk, since all the items can fit in αn bins, and V (O′) > 1

2
α
β
V (A′), since for

every item o ∈ A′, α
β
−1 items, each of size s ≥ 1

2
size(o), have been rejected.

Combining these inequalities gives 1
2
α
β
V (A′) < αnk, and solving for V (A′)

yields V (A′) < 2βnk.

Furthermore, V (OF) ≤

⌈log
2
k⌉−1∑

i=0

k

2i
<

∞∑

i=0

k

2i
= 2k.

We now have that V (A) = V (A′) + V (OF) < 2βnk+2k. To obtain 2βnk+
2k ≤ nk

2
, n must be at least 5, for any β > 0. For n ≥ 5, β = 1

20
assures

that V (A) ≤ nk
2
. If we accept that n must be at least 10, then β = 3

20
can

be used. Thus, if n ≥ 5, A(α) ≥ 1
20α

, and if n ≥ 10, A(α) ≥ 3
20α

.

Acknowledgements

We would like to thank Yossi Azar for discussions which led to this work.

10 BOYAR, FAVRHOLDT, LARSEN, AND NIELSEN

References

[1] Awerbuch, B., Azar, Y., and Plotkin, S. 1993. Throughput-Competitive
On-Line Routing. In Proceedings of the 34th IEEE Symposium on Foundations

of Computer Science, 32–40.
[2] Awerbuch, B., Bartal, Y., Fiat, A., and Rosén, A. 1994. Competitive

Non-Preemptive Call Control. In Proceedings of the 5th Annual ACM-SIAM

Symposium on Discrete Algorithms, 312–320.
[3] Awerbuch, B., Gawlick, R., Leighton, T., and Rabani, Y. 1994. On-line

Admission Control and Circuit Routing for High Performance Computation and
Communication. In Proceedings of the 35th IEEE Symposium on Foundations

of Computer Science, 412–423.
[4] Azar, Y., Boyar, J., Epstein, L., Favrholdt, L. M., Larsen, K. S., and

Nielsen, M. N.. Fair versus Unrestricted Bin Packing. Algorithmica , to appear.
[5] Azar, Y., Boyar, J., Favrholdt, L. M., Larsen, K. S., and Nielsen, M. N.

2000. Fair versus Unrestricted Bin Packing. In Proceedings of the 7th Scandina-

vian Workshop on Algorithm Theory , Volume 1851 of Lecture Notes in Computer

Science. Springer-Verlag, 200–213.
[6] Borodin, A. and El-Yaniv, R. 1998. Online Computation and Competitive

Analysis. Cambridge University Press.
[7] Boyar, J., Larsen, K. S., and Nielsen, M. N. 2001. The Accommodating

Function: A Generalization of the Competitive Ratio. SIAM Journal on Com-

puting 31, 1, 233–258.
[8] Bruno, J. L. and Downey, P. J. 1985. Probabilistic Bounds for Dual Bin-

Packing. Acta Informatica 22, 333–345.
[9] Coffman Jr., E. G., Garey, M. R., and Johnson, D. S. 1997. Approxi-

mation Algorithms for Bin Packing: A Survey. In Approximation Algorithms

for NP-Hard Problems, Hochbaum, Dorit S., Editor. PWS Publishing Company,
chapter 2, 46–93.

[10] Coffman Jr., E. G., Leung, J. Y-T., and Ting, D. W. 1978. Bin Packing:
Maximizing the Number of Pieces Packed. Acta Informatica 9, 263–271.

[11] Coffman Jr., E. G. and Leung, Joseph Y-T. 1979. Combinatorial Analysis
of an Efficient Algorithm for Processor and Storage Allocation. SIAM Journal

on Computing 8, 202–217.
[12] Csirik, J. and Woeginger, G. 1998. On-Line Packing and Covering Problems.

In Online Algorithms, Amos Fiat, Gerhard J. Woeginger, Editor. Volume 1442
of Lecture Notes in Computer Science. Springer-Verlag, chapter 7, 147–177.

[13] Fiat, A. 1999. Personal communication.
[14] Hochbaum, D. S., Editor. 1997. Approximation Algorithms for NP-Hard Prob-

lems. PWS Publishing Company.
[15] Leung, J. Y. 1977. Fast Algorithms for Packing Problems. PhD thesis, Penn-

sylvania State University.
[16] Seiden, S. S. 2001. On the Online Bin Packing Problem. In Proceedings of

the 28th International Colloquium on Automata, Languages and Programming ,
Volume 2076 of Lecture Notes in Computer Science. Springer-Verlag, 237–248.

[17] van Vliet, A. 1992. An Improved Lower Bound for Online Bin Packing Algo-
rithms. Information Processing Letters 43, 277–284.

