
Relative Interval Analysis of Paging Algorithms

on Access Graphs ⋆

Joan Boyar, Sushmita Gupta, and Kim S. Larsen

University of Southern Denmark, Odense, Denmark

{joan,sgupta,kslarsen}@imada.sdu.dk

Abstract. Access graphs, which have been used previously in connec-
tion with competitive analysis and relative worst order analysis to model
locality of reference in paging, are considered in connection with relative
interval analysis. The algorithms LRU, FIFO, FWF, and FAR are com-
pared using the path, star, and cycle access graphs. In this model, some
of the expected results are obtained. However, although LRU is found to
be strictly better than FIFO on paths, it has worse performance on stars,
cycles, and complete graphs, in this model. We solve an open question
from [Dorrigiv, López-Ortiz, Munro, 2009], obtaining tight bounds on
the relationship between LRU and FIFO with relative interval analysis.

1 Introduction

The paging problem is the problem of maintaining a subset of a potentially very
large set of pages from memory in a significantly smaller cache. When a page
is requested, it may already be in cache (called a “hit”), or it must be brought
into cache (called a “fault”). The algorithmic problem is the one of choosing an
eviction strategy, i.e., which page to evict from cache in the case of a fault, with
the objective of minimizing the total number of faults.

Many different paging algorithms have been considered in the literature,
many of which can be found in [3, 13]. Among the best known are LRU (least-
recently-used), which always evicts the least recently used page, and FIFO (first-
in-first-out), which evicts pages in the order they entered the cache. We also
consider a known bad algorithm, FWF (flush-when-full), which is often used for
reference, since quality measures ought to be able to determine at the very least
that it is worse than the other algorithms. If FWF encounters a fault with a
full cache, it empties its cache, and brings the new page in. Finally, we consider
a more involved algorithm, FAR, which works with respect to a known access
graph. Whenever a page is requested, it is marked. When it is necessary to evict
a page, it always evicts an unmarked page. If all pages are marked in such a
situation, FAR first unmarks all pages. The unmarked page it chooses to evict is

⋆ Supported in part by the Danish Council for Independent Research. Part of this
work was carried out while the first and third authors were visiting the University
of Waterloo, Ontario, Canada.

the one farthest from any marked page in the access graph. For breaking possible
ties, we assume the LRU strategy in this paper.

Understanding differences in paging algorithms’ behavior under various cir-
cumstances has been a topic for much research. The most standard measure of
quality of an online algorithm, competitive analysis [18, 15], cannot directly dis-
tinguish between most of them. It deems LRU, FIFO, and FWF equivalent, with
a competitive ratio of k, where k denotes the size of the cache. Other measures,
such as relative worst order analysis [5, 6], can be used to obtain more separa-
tions, including that LRU and FIFO are better than FWF and that look-ahead
helps. No techniques have been able to separate LRU and FIFO, without adding
some modelling of locality of reference.

Although LRU performs better than FIFO in some practical situations [19],
if one considers all sequences of length n for any n, bijective/average analysis
shows that their average number of faults on these sequences is identical [2],
which basically follows from LRU and FIFO being demand paging algorithms.
Thus, it is not surprising that some assumptions involving locality of reference
are necessary to separate them.

A separation between FIFO and LRU was established quite early using access
graphs for modelling locality of reference [10], showing that under competitive
analysis, no matter which access graph one restricts to, LRU always does at least
as well as FIFO. This proved a conjecture in [4], where the access graph model
was introduced. Another way to restrict the input sequences was investigated
in [1]. Using Denning’s working set model [11, 12] as an inspiration, sequences
were limited with regards to the number of distinct pages in a sliding window
of size k. This also favors LRU, as does bijective analysis [2], using the same
locality of reference definition as [1]. There has also been work in the direction
of probabilistic models, including the diffuse adversary model [17] and Markov
chain based models [16].

The earlier successes and the generality of access graphs, together with the
possibilities the model offers with regards to investigating specific access pat-
terns, makes it an interesting object for further studies. In the light of the recent
focus on development of new performance measures, together with the compar-
ative studies initiated in [9], exploring access graphs results in the context of
new performance measures seems like a promising direction for expanding our
understanding of performance measures as well as concrete algorithms.

One step in that direction was carried out in [7], where more nuanced results
were demonstrated, showing that restricting input sequences using the access
graph model, while applying relative worst order analysis, LRU is strictly better
than FIFO on paths and cycles. The question as to whether or not LRU is at
least as good as FIFO on all finite graphs was left as an open problem, but it was
shown that there exists a family of graphs which grows with the length of the
corresponding request sequence, where LRU and FIFO are incomparable. Since
LRU is optimal on paths, it is not surprising that both competitive analysis
and relative worst order analysis find that LRU is better than FIFO on paths.
Any “reasonable” analysis technique should give this result. Under competitive

analysis, LRU and FIFO are equivalent on cycles. The separation by relative
worst order analysis occurs because cycles contain paths, LRU is better on paths,
and relative worst order analysis can reflect this. The fact that there exists an
infinite family of graphs which grows with the length of the sequence where
LRU and FIFO are incomparable may or may not be interesting. There are
many sequences were FIFO is better than LRU; they just seem to occur less
often in real applications.

Comparing two algorithms under almost any analysis technique is generally
equivalent to considering them with the complete graph as an access graph, since
the complete graph does not restrict the request sequence in any way. Thus, LRU
and FIFO are equivalent on complete graphs under both competitive analysis
and relative worst order analysis, since they are equivalent without considering
access graphs.

In this paper, we consider relative interval analysis [14]. In some ways rel-
ative interval analysis is between competitive analysis and relative worst or-
der analysis. As with relative worst order analysis, two algorithms are com-
pared directly to each other, rather than compared to OPT. This gives the
advantage that, when one algorithm dominates another in the sense that it is
at least as good as the other on every request sequence and better on some,
the analysis will reflect this. However, it is similar to competitive analysis in
that the two algorithms are always compared on exactly the same sequence.
To compare two algorithms, LRU and FIFO for example, one considers the dif-
ference between LRU’s and FIFO’s performance on any sequence, divided by
the length of that sequence. The range that these ratios can take is the “in-
terval” for that pair of algorithms. For FIFO and LRU, [14] found two fami-

lies of sequences In and Jn such that limn→∞
FIFO(In)−LRU(In)

n
= −1 + 1

k
and

limn→∞
FIFO(Jn)−LRU(Jn)

n
= 1

2 −
1

4k−2 . They left it as an open problem to deter-
mine if worse sequences exist, making the interval even larger. In their notation,
they proved: [−1+ 1

k
, 1
2 −

1
4k−2] ⊆ I(FIFO,LRU). We start by proving that this

is tight: I(FIFO,LRU) = [−1+ 1
k
, 1
2 −

1
4k−2]. These results would be interpreted

as saying that FIFO has better performance than LRU, since the absolute value
of the minimum value in the interval is larger than the maximum, but also that
they have different strengths, since zero is contained in the interior of the in-
terval. We obtain more nuanced results by considering various types of access
graphs: complete graphs (KN), paths (PN), stars (SN), and cycles (CN). This
splits the interval of [−1+ 1

k
, 1
2 −

1
4k−2] into subintervals for the respective graph

classes. Table 1 shows our results.

Comparing these results with the results from competitive analysis and rel-
ative worst order analysis, both with respect to access graphs, it becomes clear
that different measures highlight different aspects of the algorithms. Both mea-
sures show that LRU is strictly better than FIFO on paths, which is not sur-
prising since it is in fact optimal on paths and FIFO is not. On the other access
graphs considered here, relative interval analysis gives results which can be in-
terpreted as incomparability, but leaning towards deeming FIFO the better al-
gorithm. Relative worst order analysis, on the other hand, shows that on cycles,

Table 1. Summary of Results: A ∈ {FAR,LRU}, B ∈ {FAR,FIFO,LRU}, N = k+ r,
with 1 ≤ r ≤ k − 1, Xr = r(x− 1) +

⌈

N

2x

⌉

with x =
⌊

log N

r

⌋

, and N̂ denotes N if N is
even, and N − 1 otherwise.

Lower Bound Relative Interval Upper Bound Theorem

IKN [FIFO,LRU] =
[

−1 + 1

k
, 1

2
− 1

4k−2

]

1

IKN [FWF,A] =
[

0, 1− 1

k

]

2
[

0, 1− k+1

k2

]

⊆ IKN [FWF,FIFO] ⊆
[

0, 1− 1

k

]

3

IPN [FIFO,A] =
[

0, 1

2
− 1

2k

]

4

IPN [FWF,A] =
[

0, 1− 1

k

]

2
[

0, 1− k+1

k2

]

⊆ IPN [FWF,FIFO] ⊆
[

0, 1− 1

k

]

3
[

− 1

2
+Θ(1

k
), 1

4
+Θ(1

k
)
]

⊆ ISN [FIFO,A] ⊆
[

− 1

2
+Θ(1

k
), 1

4
+Θ(1

k
)
]

5

ISN [FWF,B] =
[

0, 1

2

]

6
[

−1 + r

k
, 1

2
− 1

4k−2

]

⊆ ICN [FIFO,LRU] ⊆
[

−1 + 1

k
, 1

2
− 1

4k−2

]

7

ICN [FWF,LRU] =
[

0, 1− 1

k

]

8
[

−
r

(⌊

log N̂
r

⌋

−1
)

N−1
, 1− Xr

k

]

⊆ ICN [LRU,FAR] ⊆
[

−Xr−1

k
, 1− 1

k

]

9
[

−Xr−r

k
, 1− Xr

k

]

⊆ ICN [FIFO,FAR] ⊆
[

−Xr−1

k
, 1− 1

k

]

9
[

0, 1− Xr

k

]

⊆ ICN [FWF,FAR] ⊆
[

0, 1− 1

k

]

9
[

0, 1− k+1

k2

]

⊆ ICN [FWF,FIFO] ⊆
[

0, 1− 1

k

]

3

LRU is strictly better than FIFO, and on complete graphs, they are equivalent.
It has not yet been studied on stars, but an incomparability result for LRU and
FIFO has been found for a family of graphs growing with the length of the input.

2 Preliminaries

We have defined the paging algorithms in the introduction. If more detail is
desired, the algorithms are described in [3].

An access graph for paging models the access patterns, i.e., which pages can
be requested after a given page. Thus, the vertices are pages, and after a page
p has been requested, the next request is to p or one of its neighbors in the
access graph. We let N denote the number of vertices of the access graph under
consideration at a given time. This is the same as the number of different pages
we consider. We will always assume that N > k, since otherwise the problem
is trivial, and let r = N − k. A requests sequence is a sequence of pages and
the sequence respects a given access graph if any two consecutive requests are
either identical or neighbors in the access graph. We let L(G) denote the set of
all request sequences respecting G.

We use the definition of k-phases from [3]:

Definition 1. A request sequence can be divided recursively into a number of
k-phases as follows: Phase 0 is the empty sequence. For every i ≥ 1, Phase i is a
maximal sequence following Phase i− 1 containing at most k distinct requests.

Thus, Phase i begins on the (k + 1)st distinct page requested since the start of
Phase i − 1, and the last phase may contain fewer than k different pages. We
generally want to ignore Phase 0, and refer to Phase 1 as the first phase.

Similarly, we can define x-blocks, for some integer x, focusing on when a
given algorithm A has faulted x times.

Definition 2. A request sequence can be divided recursively into a number of
x-blocks with respect to an algorithm A as follows: The 0th x-block is the empty
sequence. For every i ≥ 1, the ith x-block is a maximal sequence following the
(i− 1)st x-block for which A faults at most x times.

The complete blocks are defined to be the ones with x faults, i.e., excluding
the 0th block and possibly the last.

There are some well-known and important classifications of paging algo-
rithms, which are used here and in most other papers on paging [3]: An paging
algorithm is called conservative if it incurs at most k page faults on any con-
secutive subsequence of the input containing k or fewer distinct page references.
LRU and FIFO belong to this class. Similarly, a paging algorithm is called a
marking algorithm if for any k-phase, once a page has been requested in that
phase, it is not evicted for the duration of that phase. LRU, FAR, and FWF are
marking algorithms.

If A is a paging algorithm, we let A(I) denote A’s cost (number of faults) on
the input (request) sequence I. We adapt relative interval analysis from [14] to
access graphs. Let A and B be two algorithms. We define the following notation:

MinG(A,B) = lim
n→∞

inf
min|I|=n,I∈L(G){A(I)− B(I)}

n
and

MaxG(A,B) = lim
n→∞

sup
max|I|=n,I∈L(G){A(I)− B(I)}

n

Definition 3. The relative interval of two algorithms A and B with respect to
the access graph, G, is

IG(A,B) = [MinG(A,B),MaxG(A,B)]

B has better performance than A if MaxG(A,B) > |MinG(A,B)|. B dominates
A if IG(A,B) = [0, β] for some β > 0. Note that MaxG(A,B) = −MinG(B,A).

This definition generalizes the one from [14] in that the original definition is
the special case where G is the complete graph, which is the same as saying that
there are no restrictions on the sequences.

Note that if B dominates A, this means that A does not outperform B on any
sequence (asymptotically), while there are sequences on which B outperforms A.
Also, when MaxG(A,B) is close to 0, this indicates that A’s performance is not
much worse than that of B’s.

Due to space limitations, most proofs and the statements of most lemmas
have been omitted. Refer to [8] for all the details.

3 Complete Graphs

As remarked earlier, if the access graph is complete, it incurs no restrictions, so
the result of this section is in the same model as [14]. In [14], it is shown that
[−k−1

k
, k−1
2k−1] ⊆ I(FIFO,LRU). Below, we answer an open question from [14],

proving that this is tight. The full version of the paper [8] contains a more
detailed proof.

Lemma 1. For any access graph G,

−1 +
1

k
≤ MinG(FIFO,LRU) and MaxG(FIFO,LRU) ≤

1

2
−

1

4k − 2
.

Proof. We first consider the Min value. Suppose that a sequence I has b com-
plete k-phases. Since LRU is conservative and a complete k-phase contains k

distinct pages, it cannot fault more than bk + k − 1 times [3]. With b complete
k-phases, FIFO(I) ≥ k + b − 1, so FIFO(I) − LRU(I) ≥ k + b − 1 − (bk + k −
1) = −b(k − 1). Each k-phase must have length at least k, so |I| ≥ bk. Thus,

MinG(FIFO,LRU) ≥ − b(k−1)
bk

= −1 + 1
k
.

We now consider the Max value. Given a request sequence I, we let Bi denote
the ith k-block for FIFO. Assume that there are b complete k-blocks. FIFO faults
k times per complete k-block and up to k−1 times for the possible final k-block.
Thus, FIFO(I) ≤ bk + (k − 1). Assume that LRU faults αi times in Bi. With
b complete k-blocks, which are at least as long as k-phases, LRU faults at least
b+ k − 1 times. Thus, Σb

i=1αi ≥ b+ k − 1.

We now compute a lower bound on the length of the request sequence I based
on the number of complete k-blocks in it and the algorithms’ behavior on it.

As a first step, with every request on which FIFO faults and LRU has a hit,
we associate a distinct request where FIFO has a hit. Let r be such a request
to a page p in Bi. Since it is a hit for LRU, p must have been requested in the
maximal subsequence of requests I ′ consisting of k distinct pages and ending just
before r. Consider the first such request, r′, in I ′. If it were a fault for FIFO,
FIFO could not have faulted again on r. Thus, r′ was a hit for FIFO and we
associate r′ with r.

To establish that the association is distinct, assume that r′ also gets asso-
ciated with a request r′′. Without loss of generality, assume that r′′ is later
than r. For FIFO to fault on both r and r′′, there must be at least k distinct
pages different from p in between r and r′′. However, since we are assuming that
LRU has a hit on r′′, by the property of LRU, the page requested by r′′ must
have been requested during the same k distinct pages. Thus, by the construction
above, the page that gets associated with r′′ (and r) will be later than r, which
is a contradiction.

Thus, if LRU faults αi times in Bi, by the procedure above, we identify
at least k − αi distinct requests. In total, there are at least Σb

i=1(k − αi) =
bk−Σb

i=1αi distinct hits for FIFO in I and, since there are b complete k-blocks,

at least bk faults. Thus, the length of I is at least 2bk −Σb
i=1αi, and

FIFO(I)− LRU(I)

|I|
≤

bk + k − 1−Σb
i=1αi

2bk −Σb
i=1αi

.

By the lower bound on Σb
i=1αi above, and the arithmetic observation that

u−y
v−y

< u−x
v−x

, if u < v and x < y < v, we have that

bk + k − 1−Σb
i=1αi

2bk −Σb
i=1αi

≤
bk + k − 1− (b+ k − 1)

2bk − (b+ k − 1)
=

b(k − 1)

b(2k − 1)− k + 1
.

Clearly, max|I|=n,I∈L(G){FIFO(I) − LRU(I))} is unbounded as a function of

n. Since limb→∞
b(k−1)

b(2k−1)−k+1 = k−1
2k−1 , we have MaxG(FIFO,LRU) ≤ k−1

2k−1 =
1
2 − 1

4k−2 . ⊓⊔

From [14] and Lemma 1, we have the following:

Theorem 1. I(FIFO,LRU) = [−1 + 1
k
, 1
2 − 1

4k−2].

3.1 FWF

FWF performs very badly compared to the other algorithms considered here,
LRU, FAR, and FIFO. The following is folklore:

Lemma 2. For any sequence I and any conservative or marking algorithm A,
we have A(I) ≤ FWF(I).

Thus, for any graph G, MinG[FWF,A] = 0, where A is either FAR, LRU, or
FIFO. Hence, LRU, FIFO, and FAR all dominate FWF.

Theorem 2. For the path access graph PN , where N ≥ k+1 (for LRU, for any
graph containing Pk+1), I

PN [FWF,A] =
[

0, 1− 1
k

]

, where A ∈ {LRU,FAR}.

For FWF versus FIFO, a result almost as tight holds:

Theorem 3. For any graph G containing a path with k + 1 vertices, if k is

odd, then IG[FWF,FIFO] =
[

0, 1− 1
k

]

, and if k is even, then [0, k2−k−1
k2] ⊆

IG[FWF,FIFO] ⊆
[

0, k−1
k

]

.

4 Path Graphs

Lemma 3. For the path access graph PN , we have MaxPN (FIFO,LRU) ≤ 1
2 −

1
2k .

Proof. Consider any request sequence I. We divide the sequence up into phases
as described now (these are not k-phases). Initially, define a direction by where
LRU makes its kth fault compared with its cache content. Without loss of gen-
erality, we assume this happens going to the right on the path.

We start the first phase with the first request and later explain how subse-
quent phases are started. In all the phases, we start to the left (relatively). In
all phases, except the first, LRU has the first k − 1 distinct pages that will be
requested during that phase in cache. In all phases, the first fault by LRU in
the phase, after having processed the first k − 1 distinct pages, is to the right.
We maintain this as an invariant that holds at the start of any phase, though
the direction can change, as we will get back to at the end of the proof. The
exception in the first phase, adding an extra k − 1 faults to the cost of LRU as
compared with the analysis below, will not influence the result in the the limit
for the length of the request sequence going towards infinity.

We want to analyze a phase where LRU faults to the right before it faults to
the left again. These faults to the right may not appear consecutively. There may
be some faults in a row, but then there may be hits and then faults again, etc.
Thus, assume that there are m maximal subsequences of requests to the right
where LRU faults—all of this before LRU faults going to the left again. Assume
further that these maximal subsequences of requests give rise to s1, s2, . . . , sm
faults, respectively, where, by definition, m ≥ 1, and let s = Σm

i=1si.

For now, we assume that for all i, si < k. Thus, LRU moves left and right at
least m times; maybe more times where it does not give rise to faults. Since it
does not fault going to the left during these turns, the faults are to pages further
and further to the right. Let Eright denote the extreme rightmost position it
reaches during these faults to the right.

When LRU faults again to the left after having processed Eright, we consider
the leftmost node Eleft, where LRU faults after the s faults described above,
but before it faults to the right again. We end the phase with the first request
to Eleft after the s faults. We define subsequent phases inductively in the same
way, starting with the first request not included in the previous phase, possibly
leaving an incomplete phase at the end.

We now consider the costs of the algorithms and the length of the sequence
per phase. LRU faults s times going to the right during the m turns in the phase.
Additionally, LRU must fault at least t times going from Eright to Eleft, where
t is defined by there being k + t nodes between Eleft and Eright, including both
endpoints. This sums up to s+ t faults.

For FIFO, we postpone the discussion of the first s1 distinct pages seen in
a phase. Just to avoid any confusion, note that these pages are immediately to
the right of Eleft (the endpoint of the previous phase) and thus not the pages
that LRU faults on. After that, consider the maximal subsequence of at most k
distinct pages. This subsequence starts with the (s1 + 1)st distinct request (the
last request to it before the s2 faults) and continues up to, but not including the
first request that LRU has one of its s2 faults on. We know that there are at

most k pages there, because LRU only faults s1 times there. Assume that FIFO
faults f1 times on this subsequence. Since FIFO is conservative, f1 ≤ k.

We define more such subsequences repeatedly, the (m− 1)st of these ending
just before LRU’s first fault of the sm faults, and the mth including the sm faults
and k of the k+ t nodes before we reach Eleft. Finally, we return to the question
of the first s1 distinct pages seen in the phase. These overlap with the “t pages”
from the previous phase; otherwise we would not have started the phase where
we did. If FIFO faults on one of these pages when going through the t pages in
the previous phase, it will not fault on them again in this phase. Thus, we only
have to count them in one phase, and choose to do this in the previous phase.
In total, FIFO faults at most (Σm

i=1fi) + t times, and for all i, fi ≤ k.

The difference between the cost of FIFO and LRU is then at most (Σm
i=1fi)+

t− (s+ t) = (Σm
i=1fi)− s = (Σm

i=1(fi − 1))− (s−m).

From the analysis of FIFO above, knowing that on a subsequence of length
at most k, FIFO can fault at most once on any given page, if it faults fi times,
the subsequence has at least fi distinct pages. Given that the subsequence starts
at the left end of the “si pages” and ends at the right end of the “si pages”,
all pages that FIFO faults on, except possibly the leftmost, must be requested
at least twice, giving at least 2fi − 1 requests. So, the length of the sequence
is at least (Σm

i=1(2fi − 1)) + t. We now sum up over all phases, equipping each
variable with a superscript denoting the phase number.

First, the total length, L, is at least

L ≥ Σj(Σ
mj

i=1(2f
j
i − 1)) + tj = Σj(Σ

mj

i=12f
j
i)−mj + tj .

Since s expresses how far we move to the right and t how far we move to the left,
and the whole path has a bounded number of nodes N , we have that Σjt

j ≥

Σjs
j −N . Thus, L ≥ (Σj(Σ

mj

i=12f
j
i)−mj + sj)−N .

I has a number of complete phases and then some extra requests in addition
to that. There must exist a fixed constant c independent of I such that the cost
of FIFO on the extra part of any sequence is bounded by c. This follows since
there is a limit of N on how far requests can move to the right. So if requests
never again come so far to the left that LRU faults, all requests thereafter are
to only k pages. This added constant can also take care of the initial extra cost
of k − 1. Since we are just using a lower bound on the sequence length, we can
ignore the length of a possibly incomplete phase at the end. Thus,

FIFO(I)− LRU(I)

|I|
≤

c+ΣjΣ
mj

i=1(f
j
i − 1)− (sj −mj)

−N +Σj(Σmj

i=12f
j
i)−mj + sj

≤
c+ΣjΣ

mj

i=1(f
j
i − 1)

−N +ΣjΣ
mj

i=12f
j
i

≤
c+Σjm

j(k − 1)

−N +Σjmj2k
=

c+ (k − 1)Σjm
j

−N + 2kΣjmj

The second inequality follows since sj ≥ mj , and the third inequality follows

because
f
j

i
−1

2fj

i

≤ 1
2 and k ≥ fi implies that

f
j

i
−1

2fj

i

≤ k−1
2k .

For sequences where the number of phases does not approach infinity, as ar-
gued above, FIFO’s cost will be bounded. For the number of phases approaching

infinity, limj→∞
c+(k−1)Σjm

j

−N+2kΣjmj = k−1
2k = 1

2 − 1
2k , which implies the result.

Now, for this proof, we assumed that si < k. If si ≥ k, we simply terminate
the phase after the processing of the si requests that LRU faults on, and continue
to define phases inductively from there. All the bounds from above hold with
t = 0 and the observation that FIFO will not fault on the first s1 requests in the
next phase. The direction of the construction is now reversed. In this process,
whenever we reverse the direction as above, we also rename the variable s to t

and t to s, such that s continues to keep track of movement to the right and t

of movement to the left, and the inequality Σjt
j ≥ Σjs

j −N still holds. ⊓⊔

Theorem 4. IPN [FIFO,LRU] =
[

0, 1
2 − 1

2k

]

, and LRU dominates FIFO on
paths.

Note that FAR and LRU perform identically on paths, so FAR also dominates
FIFO with the same interval.

5 Star Graphs

We let SN denote a star graph with N vertices. A star graph has a central vertex,
s, which is directly connected to N − 1 other vertices, none of which are directly
connected. Thus, we could also see a star graph as a tree with root s and N − 1
leaves, all located at a distance one from the root. The algorithms FAR and LRU
behave identically on star graphs. Neither of them ever evicts the central vertex.

Theorem 5. For A ∈ {LRU,FAR}, we have

[

− 1
2 + 1

2(k−1) ,
1
4 + 1

8k−12

]

⊆ ISN [FIFO,A]

⊆
[

− 1
2 + 1

2(k−1) +
1

2k(k−1) ,
1
4 + 1

8k−12

]

In [14], it was shown that MaxG(FIFO,LRU) ≥ k−1
2k−1 = 1

2 −
1

4k−2 . The above
result shows that for star access graphs, that bound can be decreased by a factor
of approximately two.

Since LRU and FAR perform identically on stars, MinSN (FAR,LRU) =
MaxSN (FAR,LRU) = 0.

Theorem 6. For A ∈ {LRU,FAR,FIFO}, we have ISN [FWF,A] =
[

0, 1
2

]

.

6 Cycle Graphs

We consider graphs consisting of exactly one cycle, containing N ≥ k+1 vertices,
and define r = N − k. We will concentrate on the case where r < k, since
otherwise the cycle is so large that for the algorithms considered here, it works
as if it were an infinite path. Thus, for example, there are sequences where FIFO

performs worse than LRU, but on worst case sequences, simply going around
the cycle, the algorithms perform identically.

In the following statements of theorems, we use N = k+r with 1 ≤ r ≤ k−1,
and Xr = r(x− 1) +

⌈

N
2x

⌉

, where x =
⌊

log N
r

⌋

, and N̂ to denote N if N is even
and N − 1 otherwise.

Theorem 7. For the cycle access graph CN ,

[

−1 +
r

k
,
1

2
−

1

4k − 2

]

⊆ ICN [FIFO,LRU] ⊆

[

−1 +
1

k
,
1

2
−

1

4k − 2

]

Theorem 8. For the cycle access graph CN ,

ICN [FWF,LRU] =

[

0, 1−
1

k

]

Theorem 9. For the cycle access graph CN ,

[

−
Xr − r

k
, 1−

Xr

k

]

⊆ ICN [FIFO,FAR] ⊆

[

−
Xr − 1

k
, 1−

1

k

]

,

−
r
(⌊

log N̂
r

⌋

− 1
)

N − 1
, 1−

Xr

k

 ⊆ ICN [LRU,FAR] ⊆

[

−
Xr − 1

k
, 1−

1

k

]

, and

[

0, 1−
Xr

k

]

⊆ ICN [FWF,FAR] ⊆

[

0, 1−
1

k

]

.

7 Concluding Remarks

Relative interval analysis has the advantage that it can separate algorithms
properly when one algorithm is at least as good as another on every sequence
and is better on some. This was reflected in the results concerning FWF which is
dominated by the other algorithms considered for all access graphs. It was also
reflected by the result showing that LRU and FAR have better performance than
FIFO on paths. The analysis also found the expected result that FAR, which is
designed to perform well on access graphs, performs better than both LRU and
FIFO on cycles.

However, it is disappointing that the relative interval analysis of LRU and
FIFO on stars and cycles found that FIFO had the better performance, confirm-
ing the original results by [14] on complete graphs. Clearly, access graphs cannot
automatically be used with arbitrary quality measures for online algorithms to
show that LRU is better than FIFO. To try to understand other quality mea-
sures for online algorithms better, it would be interesting to determine on which
such measures access graphs are useful for separating LRU and FIFO, and on
which they are not.

References

1. Albers, S., Favrholdt, L.M., Giel, O.: On paging with locality of reference. Journal
of Computer and System Sciences 70(2), 145–175 (2005)

2. Angelopoulos, S., Dorrigiv, R., López-Ortiz, A.: On the separation and equivalence
of paging strategies. In: SODA ’07. pp. 229–237 (2007)

3. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

4. Borodin, A., Irani, S., Raghavan, P., Schieber, B.: Competitive paging with locality
of reference. Journal of Computer and System Sciences 50(2), 244–258 (1995)

5. Boyar, J., Favrholdt, L.M.: The relative worst order ratio for on-line algorithms.
ACM Transactions on Algorithms 3(2) (2007), article No. 22

6. Boyar, J., Favrholdt, L.M., Larsen, K.S.: The relative worst order ratio applied to
paging. Journal of Computer and System Sciences 73(5), 818–843 (2007)

7. Boyar, J., Gupta, S., Larsen, K.S.: Access graphs results for lru versus fifo under
relative worst order analysis. In: Fomin, F.V., Kaski, P. (eds.) SWAT ’12. LNCS,
vol. 7357, pp. 328–339. Springer, Heidelberg (2012)

8. Boyar, J., Gupta, S., Larsen, K.S.: Relative interval analysis of paging algorithms
on access graphs (2013), arXiv:1305.0669 [cs.DS]

9. Boyar, J., Irani, S., Larsen, K.S.: A comparison of performance measures for online
algorithms. In: Dehne, F.K.H.A., Gavrilova, M.L., Sack, J.R., Tóth, C.D. (eds.)
WADS ’09. LNCS, vol. 5664, pp. 119–130. Springer, Heidelberg (2009)

10. Chrobak, M., Noga, J.: LRU is better than FIFO. Algorithmica 23(2), 180–185
(1999)

11. Denning, P.J.: The working set model for program behaviour. Communications of
the ACM 11(5), 323–333 (1968)

12. Denning, P.J.: Working sets past and present. IEEE Transactions on Software
Engineering 6(1), 64–84 (1980)

13. Dorrigiv, R., López-Ortiz, A.: A survey of performance measures for on-line algo-
rithms. SIGACT News 36(3), 67–81 (2005)

14. Dorrigiv, R., López-Ortiz, A., Munro, J.I.: On the relative dominance of paging
algorithms. Theoretical Computer Science 410, 3694–3701 (2009)

15. Karlin, A.R., Manasse, M.S., Rudolph, L., Sleator, D.D.: Competitive snoopy
caching. Algorithmica 3, 79–119 (1988)

16. Karlin, A.R., Phillips, S.J., Raghavan, P.: Markov paging. SIAM Journal on Com-
puting 30(3), 906–922 (2000)

17. Koutsoupias, E., Papadimitriou, C.H.: Beyond competitive analysis. SIAM Journal
on Computing 30(1), 300–317 (2000)

18. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Communications of the ACM 28(2), 202–208 (1985)

19. Young, N.: The k-server dual and loose competitiveness for paging. Algorithmica
11, 525–541 (1994)

