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Abstract. We study the online list update problem under the advice
model of computation. Under this model, an online algorithm receives
partial information about the unknown parts of the input in the form of
some bits of advice generated by a benevolent offline oracle. We show that
advice of linear size is required and sufficient for a deterministic algorithm
to achieve an optimal solution or even a competitive ratio better than
15/14. On the other hand, we show that surprisingly two bits of advice
is sufficient to break the lower bound of 2 on the competitive ratio of
deterministic online algorithms and achieve a deterministic algorithm
with a competitive ratio of 1.6̄. In this upper-bound argument, the bits
of advice determine the algorithm with smaller cost among three classical
online algorithms.

1 Introduction

List update is a well-studied problem in the context of online algorithms. The
input is a sequence of requests to items of a list; the requests appear in a sequen-
tial and online manner, i.e., while serving a request an algorithm cannot look
at the incoming requests. A request involves accessing an item in the list 1. To
access an item, an algorithm should linearly probe the list; each probe has a cost
of 1, and accessing an item in the ith position results in a cost of i. The goal is
to maintain the list in a way to minimize the total cost. An algorithm can make
a free exchange to move an accessed item somewhere closer to the front of the
list. Further, it can make any number of paid exchanges, each having a cost of
1, to swap the positions of any two consecutive items in the list.

Similar to other online problems, the standard method for comparing online
list update algorithms is competitive analysis. The competitive ratio of an on-
line algorithm A is the maximum ratio between the cost of A for serving any
sequence and the cost of Opt for serving the same sequence. Here, Opt is an

⋆ Supported in part by the Danish Council for Independent Research and the Villum
Foundation.

1 Similar to other works, we consider the static list update problem in which there is
no insertion or deletion.
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optimal offline algorithm. It is known that, for a list of length l, no deterministic
online algorithm can achieve a competitive ratio better than 2l/(l+1) (reported
in [13]); this converges to 2 for large lists. There are 2-competitive (hence op-
timal) algorithms for the problem; these include Move-To-Front (Mtf) [20] and
Timestamp [1].

Although competitive analysis has been accepted as the standard tool for
comparing online algorithms, there are objections to it. One relevant objection
in this context is that assuming a total lack of information about the future is
unrealistic in many applications. This is particularly the case for the list update
problem when it is used as a method for compression [4]. In this application,
each character of a text is treated as an item in the list, and the text as the in-
put sequence which is parsed (revealed) in a sequential manner. A compression
algorithm can be devised from a list update algorithm A by writing the access
cost of A for serving each character in unary2. Hence, the size of the compressed
file is roughly equal to the access cost of the list update algorithm. In this appli-
cation, it is possible to include some partial information about the structure of
the sequence (text) in the compressed file, for example, which of three algorithms
was used to do the compression. This partial information could potentially be
stored using very little space compared to the subsequent savings in the size of
the compressed file compared with the original file, due to the availability of the
partial information.

Advice complexity provides an alternative for the analysis of online problems.
Under the advice model, the online algorithm is provided with some bits of ad-
vice, generated by a benevolent offline oracle with infinite computational power.
This reduces the power of the adversary relative to the online algorithm. Vari-
ant models are proposed and studied for the advice complexity model [10,11,7,6].
Here, we use a natural model from [7,6] that assumes advice bits are written on a
tape, and the online algorithm can access the tape at any time. The advice com-
plexity of an algorithm is then the length of the shortest prefix of the tape that
includes all accessed bits. Since its introduction, many online problems have been
studied under the advice model. These include classical online problems such as
paging [7,12,15], k-server [11,6,19], and bin packing [9].

1.1 Contribution

When studying an online problem under the advice model, the first question to
answer is how many bits of advice are required to achieve an optimal solution.
We show that advice of size Opt(σ) is sufficient to optimally serve a sequence
σ, where Opt(σ) is the cost of an optimal offline algorithm for serving σ, and
it is linear in the length of the sequence, assuming that the length of the list is
a constant. We further show that advice of linear size is required to achieve a
deterministic algorithm with a competitive ratio better than 15/14.

Another important question is how many bits of advice are required to break
the lower bound on the competitive ratio of any deterministic algorithm. We

2 Encodings other than unary correspond to other cost models for list update.
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answer this question by introducing a deterministic algorithm that receives two
bits of advice and achieves a competitive ratio of 1.6̄. The advice bit for a
sequence σ simply indicates the best option between three online algorithms
for serving σ. These three algorithms are Timestamp, MTF-Odd (MtfO) and
MTF-Even (MtfE). Timestamp inserts an accessed item x in front of the first
item y (from the front of the list) that precedes x in the list and was accessed at
most once since the last access to x. If there is no such item y or x is accessed
for the first time, no items are moved. MtfO (resp. MtfE) moves a requested
item x to the front on every odd (resp. even) request to x.

2 Optimal solution

In this section, we provide upper and lower bounds on the number of advice bits
required to optimally serve a sequence. We start with an upper bound:

Theorem 1. Under the advice model, Opt(σ) − n bits of advice are sufficient
to achieve an optimal solution for any sequence σ of length n, where Opt(σ) is
the cost of an optimal algorithm for serving σ.

Proof. It is known that there is an optimal algorithm that moves items using
only a family of paid exchanges called subset transfer [16]. In a subset transfer,
after serving a request to an item x, a subset S of items preceding x in the list
is moved (using paid exchanges) to just after x in the list, so that the relative
order of items in S among themselves remains unchanged. Consider an optimal
algorithm Opt which only moves items via subset transfer. After a request to x
at index i, an online algorithm can read i−1 bits from the advice tape, indicating
(bit vector style) the subset which should be moved to after x. Provided with
this, the algorithm can always maintain the same list as Opt. The total number
of bits read by the algorithm will be equal to Opt(σ)− n. ⊓⊔

The above theorem implies that for lists of constant size, advice of linear size
is sufficient to optimally serve a sequence. We show that advice of linear size is
also required to achieve any competitive ratio smaller than 15/14.

Consider instances of the list update problem on a list of two items x and
y which are defined as follows. Assume the list is ordered as [x, y] before the
first request. Also, to make explanation easier, assume that the length of the
sequence, n, is divisible by 5. Consider an arbitrary bitstring B, of size n/5,
which we refer to as the defining bitstring. Let σ denote the list update sequence
defined from B in the following manner: For each bit in B, there are five requests
in σ, which we refer to as a round. We say that a round in σ is of type 0 (resp.
1) if the bit associated with it in B is 0 (resp. 1). For a round of type 0, σ will
contain the requests yyyxx, and for a round of type 1, the requests yxxxx. For
example, if B = 011 . . ., we will have σ = 〈yyyxx, yxxxx, yxxxx, . . .〉.

Since the last two requests in a round are to the same item x, it makes sense
for an online algorithm to move x to the front after the first access. This is
formalized in the following lemma, which is easy to prove.
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Lemma 2. For any online list update algorithm A serving a sequence σ created
from a defining bitstring, there is another algorithm whose cost is not more than
A’s cost for serving σ and that ends each round with the list in the order [x, y].

Provided with the above lemma, we can restrict our attention to algorithms
that maintain the ordering [x, y] at the end of each round. In what follows, by
an ‘online algorithm’ we mean an online algorithm with this property.

Lemma 3. The cost of an optimal algorithm for serving a sequence of length n,
where the sequence is created from a defining bitstring, is at most 7n/5.

Proof. Since there are n/5 rounds, it is sufficient to show that there is an algo-
rithm which incurs a cost of at most 7 for each round. Consider an algorithm
that works as follows: For a round of type 0, the algorithm moves y to the front
after the first access to y. It also moves x to the front after the first access to x.
Hence, it incurs a cost 2+1+1+2+1 = 7. For a round of type 1, the algorithm
does not move any item and incurs a cost of 2+1+1+1+1 = 6. In both cases,
the list ordering is [x, y] at the end of the round and the same argument can be
repeated for the next rounds. ⊓⊔

For a round of type 0 (with requests to yyyxx), if an online algorithm A

moves each of x and y to the front after the first accesses, it has cost 7. If it does
not move y immediately, it has cost at least 8. For a round of type 1 (i.e., a round
of requests to yxxxx), if an algorithm does no rearrangement, its cost will be 6;
otherwise its cost is at least 7. To summarize, an online algorithm should ‘guess’
the type of each round and act accordingly after accessing the first request of the
round. If the algorithm makes a wrong guess, it incurs a ‘penalty’ of at least 1
unit. This relates our problem to the binary guessing problem, defined in [11,5].

Definition 4 ([5]). The Binary String Guessing Problem with known history
(2-SGKH) is the following online problem. The input is a bitstring of length m,
and the bits are revealed one by one. For each bit bt, the online algorithm A must
guess if it is a 0 or a 1. After the algorithm has made a guess, the value of bt is
revealed to the algorithm.

Lemma 5 ([5]). On an input of length m, any deterministic algorithm for 2-
SGKH that is guaranteed to guess correctly on more than αm bits, for 1/2 ≤
α < 1, needs to read at least (1 + (1− α) log(1−α) + α logα)m bits of advice. 3

We reduce the 2-SGKH problem to the list update problem:

Theorem 6. On an input of size n, any algorithm for the list update problem
which achieves a competitive ratio of γ (1 < γ ≤ 15/14) needs to read at least
(1 + (7γ − 7) log(7γ − 7) + (8− 7γ) log(8− 7γ))/5× n bits of advice.

3 In this paper we use log n to denote log2(n).



On the List Update Problem with Advice 5

Proof. Consider the 2-SGKH problem for an arbitrary bitstring B. Given an
online algorithm A for the list update problem, define an algorithm for 2-SGKH
as follows: Consider an instance σ of the list update problem on a list of length
2 where σ has B as its defining bitstring, and run A to serve σ. For the first
request y in each round in σ, A should decide whether to move it to the front or
not. The algorithm for the 2-SGKH problem guesses a bit as being 0 (resp. 1) if,
after accessing the first item requested in the round associated with the bit in B,
A moves it to front (resp. keeps it at its position). As mentioned earlier, for each
incorrect guess A incurs a penalty of at least 1 unit, i.e., A ≥ Opt+w, where w
is the number of wrong guesses for critical requests. Since A has a competitive
ratio of γ, we have A ≤ γOpt. Consequently, we have w ≤ (γ − 1)Opt(σ) and
by Lemma 3, w ≤ 7(γ − 1)/5× n. This implies that if A has a competitive ratio
of γ, the 2-SGKH algorithm makes at most 7(γ− 1)/5×n mistakes for an input
bitstring B of size n/5, i.e., at least n/5−7(γ−1)/5×n = (8−7γ)×n/5 correct
guesses. Define α = 8− 7γ, and note that α is in the range [1/2, 1) when γ is in
the range stated in the lemma. By Lemma 5, at least (1 + (1 − α) log(1 − α) +
α logα)n/5 bits of advice are required by such a 2-SGKH algorithm. Replacing
α with 8− 7γ completes the proof. ⊓⊔

Thus, to obtain a competitive ratio better than 15/14, a linear number of
bits of advice is required. For example, to achieve a competitive ratio of 1.01,
at least 0.12n bits of advice are required. Theorems 1 and 6 imply the following
corollary.

Corollary 7. For any fixed list, Θ(n) bits of advice are required and sufficient
to achieve an optimal solution for the list update problem. Also, Θ(n) bits of
advice are required and sufficient to achieve a 1-competitive algorithm.

3 An algorithm with two bits of advice

In this section we show that two bits of advice are sufficient to break the lower
bound of 2 on the competitive ratio of deterministic algorithms and achieve
a deterministic online algorithm with a competitive ratio of 1.6̄. The two bits
of advice for a sequence σ indicate which of the three algorithms Timestamp,
MTF-Odd (MtfO) and MTF-Even (MtfE), have the lower cost for serving σ.
Recall that MtfO (resp. MtfE) moves a requested item x to the front on every
odd (resp. even) request to x. We prove the following theorem:

Theorem 8. For any sequence σ, we have either Timestamp(σ) ≤ 1.6̄Opt(σ),
MtfO(σ) ≤ 1.6̄Opt(σ), or MtfE(σ) ≤ 1.6̄Opt(σ).

To prove the theorem, we show that for any sequence σ, Timestamp(σ) +
MtfO(σ) + MtfE(σ) ≤ 5Opt(σ). We note that all three algorithms have
the projective property, meaning that the relative order of any two items only
depends on the requests to those items and their initial order in the list (and
not on the requests to other items). MtfO (resp. MtfE) is projective since in



6 J. Boyar, S. Kamali, K. S. Larsen, and A.López-Ortiz

its list an item y precedes x if and only if the last odd (resp. even) access to y
is more recent than the last odd (resp. even) access to x. In the lists maintained
by Timestamp, item y precedes item x if and only if in the projected sequence
on x and y, y was requested twice after the second to last request to x or the
most recent request was to y and x has been requested at most once. Hence,
Timestamp also has the projective property.

Similar to most other work for analysis of projective algorithms,4 we consider
the partial cost model, in which accessing an item in position i is defined to have
cost i−1. We say an algorithm is cost independent if its decisions are independent
of the cost it has paid for previous requests. The cost of any cost independent
algorithm for serving a sequence of length n decreases n units under the partial
cost model when compared to the full cost model. Hence, any upper bound for
the competitive ratio of a cost independent algorithm under the partial cost
model can be extended to the full cost model.

To prove an upper bound on the competitive ratio of a projective algorithm
under the partial cost model, it is sufficient to prove that the claim holds for
lists of size 2. The reduction to lists of size two is done by applying a factoring
lemma which ensures that the total cost of a projective algorithm A for serving
a sequence σ can be formulated as the sum of the costs of A for serving projected
sequences of two items. A projected sequence of σ on two items x and y is a copy
of σ in which all items except x and y are removed. We refer the reader to [8,
p. 16] for details on the factoring lemma. Since MtfO, MtfE, and Timestamp

are projective and cost-independent, to prove Theorem 8, it suffices to prove the
following lemma:

Lemma 9. Under the partial cost model, for any sequence σxy of two items, we
have MtfO(σxy) +MtfE(σxy) +Timestamp(σxy) ≤ 5×Opt(σxy).

Before proving the above lemma, we study the aggregated cost of MtfO

and MtfE on certain subsequences of two items. One way to think of these
algorithms is to imagine they maintain a bit for each item. On each request, the
bit of the item is flipped; if it becomes ‘0’, the item is moved to the front. Note
that the bits of MtfO and MtfE are complements of each other. Thus, we can
think of them as one algorithm started on complementary bit sequences. We say
a list is in state [ab](i,j) if item a precedes b in the list and the bits maintained for
a and b are i and j (i, j ∈ {0, 1}), respectively. To study the value of Opt(σxy),
we consider an offline algorithm which uses a free exchange to move an accessed
item from the second position to the front of the list if and only if the following
request is to the same item. It is known that this algorithm is optimal for lists
of two items [17].

Lemma 10. Consider a subsequence of two items a and b of the form (ba)2i,
i.e., i repetitions of 〈baba〉. Assume the initial ordering of the two items is [ab].
The cost of each of MtfO and MtfE for serving the subsequence is at most 3i

4 Almost all existing algorithms for the list update problem are projective; the only
exceptions are Transpose, Move-Fraction [20], and Split [13]; see [14] for a survey.
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Bits for (a, b) Cost for 〈baba〉 Orders before accessing items Final order

(0, 0) 1 + 0 + 1 + 1 = 3 [ab] [ab] [ab ] [ba ] [ab]

(0, 1) 1 + 1 + 0 + 1 = 3 [ab ] [ba] [ba] [ba ] [ab]

(1, 0) 1 + 0 + 1 + 1 = 3 [ab] [ab] [ab ] [ba] [ba]

(1, 1) 1 + 1 + 1 + 0 = 3 [ab ] [ba ] [ab] [ab] [ab]

Table 1. Assuming the initial ordering of items is [ab], the cost of a both MtfO and
MtfE for serving subsequence 〈baba〉 is at most 3 (under the partial cost model). The
final ordering of the items will be [ab] in three of the cases.

(under the partial cost model). Moreover, at the end of serving the subsequence,
the ordering of items in the list maintained by at least one of the algorithms is
[ab].

Proof. We refer to repetition of baba as a round. We show thatMtfO andMtfE

have a cost of at most 3 for serving each round. Assume the bits associated with
both items are ‘0’ before serving baba. The first request has a cost of 1 and b
remains in the second position, the second request has cost 0, and the remaining
requests each have a cost of 1. In total, the cost of the algorithm is 3. The other
cases (when items have different bits) are handled similarly. Table 1 includes a
summary of all cases. As illustrated in the table, if the bits maintained for a
and b before serving baba are (0, 0), (0,1), or (1,1), the list order will be [ab]
after serving the round. Since both a and b are requested twice, the bits will be
also the same after serving baba. Hence, in these three cases, the same argument
can be repeated to conclude that the list order will be [ab] at the end of serving
(ba)2i. Since the bits maintained for the items are complements in MtfE and
MtfO, at least one of them starts with bits (0, 0), (0, 1), or (1, 1) for a and b;
consequently, at least one algorithm ends up with state [ab] at the end. ⊓⊔

Lemma 11. Consider a subsequence of two items a and b which has form 〈baa〉.
The total cost that MtfE and MtfO incur together for serving this subsequence
is less than or equal to 4 (under the partial cost model).

Proof. If the initial order of a and b is [ba], the first request has no cost, and
each algorithm incurs a total cost of at most 2 for the other two requests of the
sequence. Hence, the aggregated cost of the two algorithms is 4. Next, assume
the initial order is [ab]. Assume the bits maintained by one of the algorithms for
a and b are (1,0), respectively. As illustrated in Table 2, this algorithm incurs
a cost of 1 for serving baa; the other algorithm incurs a cost of 3. In total, the
algorithms incur a cost of 4. In the other case, when bits maintained for a and b
are both ‘0’ in one algorithm (consequently, both are ‘1’ in the other algorithm),
the total cost of the algorithms for serving 〈baa〉 is 3. ⊓⊔
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Initial order Bits for (a, b) Cost for Orders before Bits and Costs Total cost
〈baa〉 accessing items (other algorithm) (both algs.)

[ab] (0,0) 1 + 0 + 0 = 1 [ab] [ab] [ab] (1, 1) → 2 1 + 2 = 3

[ab] (0,1) 1 + 1 + 1 = 3 [ab ] [ba] [ba ] (1, 0) → 1 3 + 1 = 4

[ab] (1,0) 1 + 0 + 0 = 1 [ab] [ab] [ab] (0, 1) → 3 1 + 3 = 4

[ab] (1,1) 1 + 1 + 0 = 2 [ab ] [ba ] [ab] (0, 0) → 1 2 + 1 = 3

[ba] (0,0) (0,1) ≤ 0 + 1 + 1 = 2 - ≤ 2 2 + 2 = 4
(1,0) (1,1)

Table 2. The total cost of MtfO and MtfE for serving a sequence 〈baa〉 is at most
4 (under the partial cost model). Note that the bits of these algorithms for each item
are complements of each other.

Using Lemmas 10 and 11, we are ready to prove Lemma 9:

Proof (Lemma 9, and consequently Theorem 8).
Consider a sequence σxy of two items x and y. We use the phase partitioning

technique as discussed in [8]. We partition σxy into phases which are defined
inductively as follows. Assume we have defined phases up until, but not including,
the tth request (t ≥ 1) and the relative order of the two items is [xy] before the
tth request. Then the next phase is of type 1 and is of one of the following forms
(j ≥ 0 and k ≥ 1):

(a) xjyy (b) xj(yx)kyy (c) xj(yx)kx

In case the relative order of the items is [yx] before the tth request, the phase
has type 2 and its form is exactly the same as above with x and y interchanged.
Note that, after two consecutive requests to an item, Timestamp, MtfO and
MtfE all have that item in the front of the list. So, after serving each phase,
the relative order of items is the same for all three algorithms. This implies that
σxy is partitioned in the same way for all three algorithms. To prove the lemma,
we show that its statement holds for every phase.

Table 3 shows the costs incurred by all three algorithms as well as Opt for
each phase. Note that phases of the form (b) and (c) are divided into two cases,
depending on whether k is even or odd. We discuss the different phases of type
1 separately. Similar analyses, with x and y interchanged, apply to the phases
of type 2. Note that before serving a phase of type 1, the list is ordered as [xy]
and the first j requests to x have no cost.

Consider phases of form (a), xjyy. MtfO and MtfE incur a total cost of 3
for serving yy (one of them moves y to the front after the first request, while the
other keeps it in the second position). Timestamp incurs a cost of 2 for serving
yy (it does not move it to the front after the first request). So, in total, the three
algorithms incur an aggregated cost of 5. On the other hand, Opt incurs a cost
of 1 for the phase. So, the ratio between the sum of the costs of the algorithms
and the cost of Opt is 5.
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Next, consider phases of the form (b). Timestamp incurs a cost of 2k for
serving the phase; it incurs a cost of 1 for all requests in (yx)2i except the very
first one, and a cost of 1 for serving the second to last request to y. Assume k
is even and we have k = 2i for some i ≥ 1, so the phase looks like xj(yx)kyy.
By Lemma 10, the cost incurred by MtfO and MtfE is at most 3i for serving
(yx)2i. We show that for the remaining two requests to y, MtfO and MtfO

incur an aggregated cost of at most 3. If the list maintained by any of the
algorithms is ordered as [yx] before serving yy, that algorithm incurs a cost of 0
while the other algorithm incurs a cost of at most 2 for these requests; in total,
the cost of both algorithms for serving yy will be at most 2. If the lists of both
algorithms are ordered as [xy], one of the algorithms incurs a cost of 1 and the
other incurs a cost of 2 (depending on the bit they keep for y). In conclusion,
MtfO and MtfE incur a total cost of at most 6i+3. Timestamp incurs a cost
of 2k = 4i, while Opt incurs a cost of 2i + 1 for the phase . To conclude, the
aggregated cost of all algorithms is at most 10i+3 compared to 2i+1 for Opt,
and the ratio between them is less than 5.

Next, assume k is odd and we have k = 2i − 1, i.e., the phase has the form
xj(yx)2i−2yxyy. The total cost of MtfO and MtfE for (yx)2i−2 is at most
2 × (3(i − 1)) (Lemma 10), the total cost for the next request to y is at most
2, and the total cost for subsequent xyy is at most 4 (Lemma 11). In total,
MtfO and MtfE incur a cost of at most 6i for the phase. On the other hand,
Timestamp incurs a cost of 4i − 2 for the phase. The aggregated cost of the
three algorithms is at most 10i− 2 for the phase, while Opt incurs a cost of 2i.
So, the ratio between sum of the costs of the algorithms and Opt is less than 5.

Next, consider phases of type 1 and form (c). Timestamp incurs a cost of
2k− 1 in this case. Assume k is even, i.e., the phase has the form xj(yx)2ix. By
Lemma 10, MtfO and MtfE each incur a total cost of at most 3i for (yx)2i.
Moreover, after this, the list maintained for at least one of the algorithms is
ordered as [xy]. Hence, the aggregated cost of algorithms for the next request
to x is at most 1. Consequently, the total cost of MtfE and MtfO is at most
6i+ 1 for the round. Adding the cost 2k − 1 = 4i− 1 of Timestamp, the total
cost of all three algorithms is at most 10i. On the other hand, Opt incurs a
cost of 2i for the phase. So, the ratio between the aggregated cost of all three
algorithms and the cost of Opt is at most 5. Finally, assume k is odd, i.e., the
phase has form xj(yx)2i−2yxx. By Lemma 10, MtfO and MtfE together incur
a total cost of 2× 3(i− 1) for xj(yx)2i−2. By Lemma 11, they incur a total cost
of at most 4 for yxx. In total, they incur a cost of at most 6(i − 1) + 4 for the
phase. Timestamp incurs a cost of 4i− 3; this sums up to 10i− 5 for all three
algorithms. In this case, Opt incurs a cost of 2i − 1. Hence, the ratio between
the sum of the costs of all three algorithms and Opt is at most 5.

In fact, the upper bound provided in Theorem 3 for the competitive ratio of
the better algorithm among Timestamp, MtfO and MtfE is tight under the
partial cost model. To show this, we make use of the following lemma.

Lemma 12. Consider a sequence σα = x(yxxx yxxx)k, i.e., a single request to
x, followed by k repetitions of (yxxx yxxx). Assume the list is initially ordered
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Phase AlgMin AlgMax Timestamp
Sum (AlgMin +

Opt’ Sum

Opt′AlgMax + Timestamp)

xjyy 1 2 2 5 1 5

xj(yx)2iyy ≤ 3i+ 1 ≤ 3i+ 2 2× 2i = 4i ≤ 10i+ 3 2i+ 1 < 5

xj(yx)2i−2yxyy ≤ 3(i− 1) + 1 ≤ 3(i− 1) + 1 2× (2i− 1) ≤ 6(i− 1) + 2 + 4 2i < 5
+AlgMin(〈xyy〉) +AlgMax(〈xyy〉) = 4i− 2 +(4i− 2) = 10i− 2

xj(yx)2ix ≤ 3i ≤ 3i+ 1 2× 2i− 1 ≤ (6i+ 1) + (4i− 1) 2i ≤ 5
= 4i− 1 = 10i

xj(yx)2i−2yxx ≤ 3(i− 1) ≤ 3(i− 1) 2× (2i− 1)− 1 ≤ 6(i− 1) + 4 2i− 1 ≤ 5
+AlgMin(〈yxx〉) +AlgMax(〈yxx〉) = 4i− 3 +(4i− 3) = 10i− 5

Table 3. The costs of MtfO, MtfE, and Timestamp for a phase of type 1 (the phase
has type 1, i.e., the initial ordering of items is xy). The ratio between the aggregated
cost of algorithms and the cost of Opt for each phase is at most 5. AlgMin (resp.
AlgMax) is the algorithm among MtfO and MtfE, which incurs less (resp. more)
cost for the phase. Note that the costs are under the partial cost model.

as [xy]. We have MtfO(σ) = MtfE(σ) = 4k while Opt(σ) = 2k (under the
partial cost model).

Proof. We refer to each repetition of (yxxx yxxx) as a round. Initially, the bits
maintained by MtfO (resp. MtfE) for x, y are (1, 1) (resp. (0,0)). After the
first request to x, the bits of MtfO (resp. MtfE) change to (0, 1) (resp. (1,0))
for x, y. MtfO incurs a cost of 3 for the first half of each round; it incurs a cost
of 1 for all requests except the last request to x. MtfE incurs a cost of 1 for
serving the first half of a round; it only incurs a cost of 1 on the first requests y.
After serving the first half, the list for each algorithm will be ordered as [xy] and
the bits maintained by MtfO (resp. MtfE) for x, y will be (1, 0) (resp. (0,1)).
Using a symmetric argument, the costs of MtfO and MtfE for the second half
of a round are respectively 1 and 3. In total, both MtfO and MtfE incur a
cost of 4 for each round. After serving the round, the list maintained by both
algorithms will be ordered as [xy] and the bits associated with the items will be
the same as at the start of the first round. Thus, MtfO and MtfE each have
a total cost of 4k on σα. An optimal algorithm Opt never changes the ordering
of the list and has a cost of 2 for the whole round, giving a cost of 2k for σα. ⊓⊔

Theorem 13. There are sequences for which the costs of all of Timestamp,
MtfE, and MtfO are 1.6̄ times that of Opt (under the partial cost model).

Proof. Consider a sequence σ = σασβ where σα = x(yxxx yxxx)kα and σβ =
(yyxx)kβ . Here, kα is an arbitrary large integer and kβ = 2kα. By Lemma
12, we have MtfO(σα) = MtfE(σα) = 4kα while Opt(σα) = 2kα. We have
Timestamp(σα) = 2kα, because it does not move y from the second position.

Next, we study the cost of MtfO and MtfE for serving σβ . Note that after
serving σα, the lists maintained by these algorithms is ordered as [xy] and the
bits associated with x and y are respectively (0, 1) for MtfO and (1, 0) for
MtfE (see the proof of Lemma 12).We show that for each round yyxx of σβ ,
the cost of each algorithm is 3. On the first request to y, MtfO moves it to the
front (since the bit maintained for y is 1); so it incurs a cost of 1 for the first
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requests to y. On the first request to x, MtfO keeps x in the second position;
hence it incurs a cost of 2 for the requests to x. In total, it has a cost of 3 for
the round. With a similar argument, MtfE incurs a cost of 2 for the requests
to y and a cost of 1 for the requests to x and a total cost of 3. The list order and
bits maintained for the items will be the same at the end of the round as at the
start. Hence, the same argument can be extended to other rounds to conclude
that the cost of both MtfE and MtfO for serving σβ is 3kβ. On the other
hand, Timestamp incurs a cost of 4 on each round as it moves items to the
front on the second consecutive request to them; hence, the cost of Timestamp

for serving σβ is 4kβ . An algorithm that moves items in front on the first of two
consecutive request to them will incur a cost of 2 on each round; hence the cost
of Opt for serving σβ is at most 2kβ .

To summarize, the cost of each of MtfO and MtfE for serving σ is 4kα +
3kβ = 10kα while the cost of Timestamp is 2kα + 4kβ = 10kα, and the cost
of Opt is 2kα + 2kβ = 6kα. As a consequence, all three algorithms have a cost
which is 10/6 = 1.6̄ times that of Opt. ⊓⊔

4 Concluding remarks

It is generally assumed that the offline oracle that generates advice bits has
unbounded computational power. We used this assumption when we showed that
Opt(σ) bits are sufficient to achieve an optimal solution in Section 2. However,
for the algorithm introduced in Section 3, the advice bits can be generated
in polynomial time. The offline version of the list update problem is known
to be NP-hard [3]. In this sense, our algorithm can be seen as a linear-time
approximation algorithm with an approximation ratio of 1.6̄; this is, to the best
of our knowledge, the best deterministic offline algorithm for the problem. It
should be mentioned that there is a randomized online algorithm Bit which also
has a competitive ratio of 1.6̄ against an oblivious adversary [18]. Bit maintains
a bit for each item and flips the bit on each access; whenever the bit becomes ‘0’
it moves the item to the front. The bits are initially set uniformly at random;
hence, Bit uses l bits of advice for lists of length l. Comb is another randomized
algorithm which makes use of a linear number of random bits and improves the
competitive ratio to 1.6 [2]. We can conclude that there are online algorithms
which achieve a competitive ratio of at most 1.6 when provided a linear (in the
length of the list) number of advice bits. However, from a practical point of view,
it is not clear how an offline oracle can smartly generate such bits of advice.

We proved that with two bits of advice, one can achieve a (deterministic)
algorithm with a competitive ratio of at most 1.6̄. This bound is tight under
the partial cost model (Theorem 13); however, the lower bound argument for
the competitive ratio of this algorithm does not extend to the full cost mode,
i.e., the upper bound of 1.6̄ might be overly pessimistic. All studied projective
algorithms have the same competitive ratio under partial and full cost models;
our algorithm might be distinctive in this sense.
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While two bits of advice can break the lower bound of 2 on the competitive
ratio of online algorithms, it remains open whether this can be done with 1 bit of
advice. Regardless, it is not hard to see that any algorithm with one bit of advice
has a competitive ratio of at least 1.5. We conjecture that this lower bound can
be improved and leave it as future work.
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