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Abstract We consider the online bin packing problem under the advice com-
plexity model where the “online constraint” is relaxed and an algorithm re-
ceives partial information about the future items. We provide tight upper
and lower bounds for the amount of advice an algorithm needs to achieve
an optimal packing. We also introduce an algorithm that, when provided with
log n+o(log n) bits of advice, achieves a competitive ratio of 3/2 for the general
problem. This algorithm is simple and is expected to find real-world applica-
tions. We introduce another algorithm that receives 2n + o(n) bits of advice
and achieves a competitive ratio of 4/3+ ε. Finally, we provide a lower bound
argument that implies that advice of linear size is required for an algorithm
to achieve a competitive ratio better than 9/8.
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1 Introduction

In the classical one-dimensional bin packing problem the goal is to pack a
given sequence of items into a minimum number of bins with fixed and equal
capacities. For convenience, it is assumed that items sizes are in the range
(0, 1] and the capacities of bins are 1. In the online version of the problem, the
items are revealed one by one, and an algorithm must pack each item without
any knowledge about future items. The decisions of an online algorithm are
irrevocable, i.e., it is not possible to move an item from one bin to another
after it is packed in a bin.

The online bin packing problem has many applications in practice, from
cutting stock applications to creating file backups in removable media [15,16].
Heuristics that have been proposed for the problem include Next-Fit (Nf),
First-Fit (Ff), Best-Fit (Bf), and the Harmonic-based class of algorithms.
Nf maintains a single open bin and places an item in that bin; in the case
the item does not fit, it closes the bin and opens a new one. Ff keeps a list
of bins in the order they are opened, packs an item in the first bin that has
enough space, and opens a new bin if necessary. Bf performs similarly to Ff,
except that the bins are ordered in increasing order of their remaining capacity.
Harmonic-based algorithms are based on the idea of packing items of similar
sizes together in a bin. For HarmonicK , an item has type i (1 ≤ i ≤ K−1) if it
is in the range ( 1

i+1 ,
1
i ], and type K if it is in the range (0, 1

K ]. The algorithm
applies the Nf strategy for items of each type separately.

As for other online problems, the standard method for comparing bin pack-
ing algorithms is competitive analysis. Under competitive analysis, the perfor-
mance of an algorithm A is compared to that of Opt, which is the optimal
offline algorithm. More precisely, the competitive ratio of an algorithm A is
the asymptotically maximum ratio of the number of bins used by A to that of
Opt for packing the same sequence σ. Ff and Bf have the same competitive
ratio of 1.7, while the best Harmonic-based algorithm has a competitive ratio
of at most 1.58889 [33]. It is also known that no online algorithm can have a
competitive ratio better than 1.54037 [4].

The total lack of information about the future is unrealistic in many real-
world scenarios [19]. A natural approach for addressing this issue is to relax
the problem by providing extra information about the input sequence. For
the online bin packing problem, such relaxations have been studied in the
contexts of lookahead, in which the online algorithm can look at the items
arriving in the near future [25], and closed bin packing, in which the length
of the input sequence is known to the online algorithm [2]. In both cases,
the average performance of the online algorithm improves, compared to the
online algorithm with no information about the future. In [20], bin packing
is studied in an almost-online setting in which the online algorithm knows
the value of Opt in advance. It is proven that any online algorithm has a
competitive ratio of at least 47/36 = 1.305 under this setting. This lower
bound was later improved to 1.3231 [3]. Other almost-online settings allow
the online algorithms to repack some items or arrange for some pre-ordering
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of the items [22,27,23]. Along similar lines, the almost-online setting is studied
for the related problem of scheduling; see [14,1,34], for example.

Under the advice complexity model for online algorithms, the “no knowl-
edge assumption” behind online algorithms is relaxed by letting the online
algorithm receive some bits of advice about the future items. The advice can
be any information about the input sequence and is generated by an offline
oracle which has unbounded computational power. Provided with the appro-
priate advice, the online algorithms are expected to achieve improved com-
petitive ratios. The advice model has received significant attention since its
introduction [12,26,19,11,29,30,9,6,17,21,28,10,7,32].

The advice model provides a framework to measure the information content
of online problems [26]. There is generally a trade-off between the number of
advice bits and the quality of solutions. For some problems, including list
updating and a variant of knapsack, a constant number of bits of advice is
known to be sufficient to outperform all online algorithms [13,9]. On the other
hand, for many online problems, at least a linear number of bits is required to
achieve optimal solutions. In this paper, we investigate the trade-off between
the size of advice and the competitive ratio of online bin packing algorithms.
This leads to a better understanding of the problem when compared to other
problems in terms of the information content.

Our interest in studying the problem under this setting is mostly theo-
retical. Nevertheless, in many practical scenarios, it can be justified to allow
a fast offline oracle to take a “quick look” at the input sequence and send
some advice to the online algorithm. For example, it may be possible to take
a quick look and count the number of items which are larger than 1/2 and
smaller than 2/3 of the bin capacity. We show that this form of advice can be
used to achieve an algorithm which outperforms all online algorithms.

1.1 Model

In the last few years, slightly different models of advice complexity have been
proposed for online problems. All these models assume that there is an offline
oracle with infinite computational power, which provides the online algorithm
with some bits of advice. How these bits of advice are given to the algorithm
is the source of difference between the models. In the first model, presented
in [18], an online algorithm poses a series of questions which are answered by
the offline oracle in blocks of answers. The total size of the answers, measured
in the number of bits, defines the advice complexity. The problem with this
model is that a lot of information can be encoded in the individual length
of each block. To address this issue, another model is proposed in [19] which
assumes that online algorithms receive a fixed number of bits of advice (per
item). We call this model the advice-with-request model. This model is stud-
ied for problems, such as metrical task systems and k-server, and the results
tend to use at least a constant number of bits of advice per request [19,30].
Nevertheless, there are many online problems for which a sublinear and even a
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constant number of bits of advice in total is sufficient to achieve good compet-
itive ratios. However, under the advice-with-request model, the possibility of
sending a sublinear number of advice bits to the algorithm is not well defined.
In [12,11] another model of advice complexity is presented which assumes that
the online algorithm has access to an advice tape, written by the offline oracle.
At any time step, the algorithm may refer to the tape and read any number of
advice bits. The advice complexity is the number of bits on the tape accessed
by the algorithm. We refer to this model as advice-on-tape model. Since its
introduction, the advice-on-tape model has been used to analyze the advice
complexity of many online problems including paging [12,26,29], disjoint path
allocation [12], job shop scheduling [12,29], k-server [11,30], knapsack [9], var-
ious coloring problems [5,21,7,32], set cover [28,10], maximum clique [10], and
graph exploration [17].

Under the advice-on-tape model, we require a mechanism to infer how
many bits of advice the algorithm should read at each time step. This could be
implicitly derived during the execution of the algorithm or explicitly encoded
in the advice string itself. For example, we may use a self-delimited encoding
as used in [11], in which the value of a non-negative integer X is encoded by
writing the value of ⌈log(⌈log(X + 1)⌉+ 1)⌉ in unary (a string of 1’s followed
by a zero), the value of ⌈log(X + 1)⌉ in binary, and the value of X in binary
(throughout, we use log n to denote log2(n)). These codes respectively require
⌈log(⌈log(X + 1)⌉ + 1)⌉ + 1, ⌈log(⌈log(X + 1)⌉ + 1)⌉, and ⌈log(X + 1)⌉ bits.
Thus, the self-delimited encoding of X requires

e(X) = ⌈log(X + 1)⌉+ 2⌈log(⌈log(X + 1)⌉+ 1)⌉+ 1

bits. The existence of self-delimited encodings at the beginning of the tape
usually adds a lower-order term to the number of advice bits required by an
algorithm.

Regarding notation, we use A(σ) to denote the number of bins used by
A to pack a sequence σ. When σ follows from the context, we simply use A

to denote this number. We use similar notation for all algorithms, including
Opt.

We consider the bin packing problem under the advice-on-tape model,
which is formally defined as follows, based on the definition of the advice
model in [11]:

Definition 1 In the online bin packing problem with advice, the input is a
sequence of items σ = 〈x1, . . . , xn〉, revealed to the algorithm in an online
manner (0 < xi ≤ 1). The goal is to pack these items in the minimum number
of bins of unit size. At time step t, an online algorithm should pack item xt

into a bin. The decision of the algorithm to select the target bin is a function
of Φ, x1, . . . , xt−1, where Φ is the content of the advice tape. An algorithm A

is c-competitive with advice complexity s(n) if there exists a constant c0 such
that, for all n and for all input sequences σ of length at most n, there exists
some advice Φ such that A(σ) ≤ c Opt(σ) + c0, and at most the first s(n)
bits of Φ have been accessed by the algorithm. If c = 1 and c0 = 0, then A is
optimal.
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1.2 Contribution

We answer different questions about the advice complexity of the online bin
packing problem. First, we study how many bits of advice are required to
achieve an optimal solution. We consider two different settings of the problem.
When there is no restriction on the number of distinct items or their sizes,
we present the easy result that n⌈logOpt(σ)⌉ bits of advice are sufficient to
achieve an optimal solution, where Opt(σ) is the number of bins in an optimal
packing. We also prove that at least (n− 2Opt(σ)) logOpt(σ) bits of advice
are required to achieve an optimal solution.

When there are m distinct items in the sequence, we prove that at least
(m − 3) log n − 2m logm bits of advice are required to achieve an optimal
solution. If m is a constant, there is a polynomial time online algorithm that
receives m log n+ o(log n) bits of advice and achieves an optimal solution. We
also show that, even if m is not a constant, there is a polynomial time online
algorithm that receives m⌈log(n+ 1)⌉+ o(log n) bits of advice and achieves a
packing with (1 + ε)Opt(σ) + 1 bins.

We also study a relevant question that asks how many bits of advice are
required to perform strictly better than all online algorithms. We bound this
by providing an algorithm which receives log n + o(log n) bits of advice and
achieves a competitive ratio of 3/2. Recall that any online bin packing algo-
rithm has a competitive ratio of at least 1.54037 [4]. Hence, our algorithm
outperforms all online algorithms.

Moreover, we introduce an algorithm that receives 2n+ o(n) bits of advice
and achieves a competitive ratio of 4/3+ε, for arbitrarily small constant values
of ε > 0. We also prove a lower bound that implies that a linear number of
bits of advice are required to achieve a competitive ratio of 9/8 − δ for any
fixed value of δ > 0.

In the advice model, the offline oracle has unlimited computational power.
However, except for optimal online algorithms, the algorithms that we intro-
duce in this paper can be implemented to run in polynomial time.

1.2.1 Comparison to other results

Online bin packing with advice has also been studied by Renault et al. in [31].
They present an algorithm for online bin packing which is (1+3δ)-competitive
(or asymptotically (1 + 2δ)-competitive), using s = 1

δ log
2
δ2 + log 2

δ2 + 3 bits
of advice per item. This is a nice theoretical result, showing that techniques
for designing polynomial approximation schemes can also be useful when con-
sidering online algorithms with advice. Unfortunately, applying their theorem
for reasonable length input sequences and c-competitiveness, where c ≤ 4/3,
the result is not better than the logOpt(σ) bits per item, which are sufficient
for optimality. To put this in context, we present an algorithm below which is
4/3 + ε-competitive and uses only two bits of advice per item, plus advice of
o(n) at the beginning. In total, the amortized size will be 2+o(1) bits per item.
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To achieve a ratio of 4/3, Renault et al.’s algorithm has δ = 1/9 (for the asymp-
totic result, δ = 1/6), so the number of bits is at least 9 log 162+log 162+3 > 76
(for the asymptotic result, 6 log 72+log 72+2 > 45). Thus, there must be more
than 276 (respectively 245) bins before the result improves on the naive ap-
proach of using logOpt(σ) bits per item.

2 Optimal Algorithms with Advice

In this section we study the amount of advice required to achieve an optimal
solution. We first investigate the theoretical setting in which there is no restric-
tion on the number of distinct items or on their sizes. We observe that there
is a simple algorithm that receives n⌈logOpt(σ)⌉ bits of advice and achieves
an optimal solution. Such an algorithm basically reads ⌈logOpt(σ)⌉ bits for
each item, encoding the index of the bin that includes the item in an optimal
packing. We show that the upper bound given by this algorithm is tight up to
lower order terms, when n− 2Opt(σ) ∈ Θ(n).

Theorem 1 To achieve an optimal packing for a sequence of size n which can
be optimally packed in Opt(σ) bins, it is sufficient to receive n⌈logOpt(σ)⌉
bits of advice, and any deterministic online algorithm requires at least (n −
2Opt(σ)) logOpt(σ) bits of advice to achieve an optimal packing.

Proof Upper Bound: Consider an offline oracle that knows an optimal packing
(note that such an oracle has unbounded computational power). This oracle
simply writes on the advice tape, for each item x, except for the last two, the
index of the bin in an optimal packing that x is packed in. To pack any item x,
the online algorithm simply reads the index of the bin that x should be packed
in and packs x accordingly. For the last two items, the algorithm simply uses
Best-Fit. Since the packing is the same as one for an optimal algorithm up to
that point, if it is impossible to fit both of the remaining items in the bins
already used, Best-Fit will ensure that at least one fits if that is possible. If
both of the remaining items fit in the same already open bin, it is fine to put
the first one of the last two items anywhere it fits, since there will still be
space remaining for the last. If both of the remaining items fit in open bins,
but should be in different bins, using Best-Fit will ensure that they are both
placed there. This requires ⌈logOpt(σ)⌉ bits of advice per item which sums
up to (n− 2)⌈logOpt(σ)⌉ bits of advice. The algorithm should also know the
value of X = ⌈logOpt(σ)⌉ in order to read the appropriate number of bits on
each request. This can be done by encoding X in unary and terminating with a
zero. This uses no more than 2⌈logOpt(σ)⌉ bits. Consequently the number of
advice bits used by the algorithm is n⌈logOpt(σ)⌉ as stated by the theorem.

Lower Bound: Consider a set S = {σ1, . . . , σN} of sequences, so that each
σr has length n for 1 ≤ r ≤ N . Let 1 ≤ k ≤ n − 1. Each sequence σr in the
set has the form

〈

1

4
,
1

8
,
1

16
, . . . ,

1

2n−k+1
, ur

1, u
r
2, . . . , u

r
k

〉
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in which ur
1, . . . , u

r
k are defined as follows. Consider a set V of vectors of the

form

Vr = (vr1 = 1, vr2 = 2, . . . , vrk = k, vrk+1, v
r
k+2, . . . , v

r
n−k)

such that also for each h ∈ {k + 1, . . . , n− k}, we have vrh ∈ {1, . . . , k}.
An an example, when n = 8 and k = 3, the vector (1, 2, 3, 2, 1) is a vector

in V .
We associate with each vector Vr ∈ V a sequence σr ∈ S. For a vector

Vr ∈ V and bin j, define

ur
j = 1−

∑

1≤i≤n−k
vr

i
=j

ai,

where ai is the ith item in the sequence σr, i.e., ai =
1

2i+1 . Note that all ujs
are strictly larger than 0.5. Clearly, Opt(σr) = k for all r. We refer to the first
n−Opt(σ) items as small items and the last Opt(σ) items as large items.

As an example, assume n = 8 and Opt(σ) = 3. For a vector Vr =
(1, 2, 3, 2, 1), we have ur

1 = 1−( 14+
1
64 ) = 0.734375, ur

2 = 1−( 18+
1
32 ) = 0.84375,

and ur
3 = 1 − 1

16 = 0.9375. Hence, the sequence σr associated with Vr is
〈 14 ,

1
8 ,

1
16 ,

1
32 ,

1
64 , 0.734375, 0.84375, 0.9375〉.

In fact, Vr indicates in which bin each of the first n−Opt(σ) items of σr

should be packed, and at the end, ur
j fills the empty space of the jth bin to

capacity to achieve an optimal packing P for a given sequence (it is optimal
since all bins are fully packed). The restriction that the sequence starts with k
distinct items ensures that we do not need to consider permutations of the bins
in P as additional optimal packings. We claim that P is the unique optimal
packing. Suppose there is another optimal packing P ′. Observe that each bin
includes at most one large item, and indeed exactly one since we assume it is
also optimal. Let ai(1 ≤ i ≤ n − Opt(σ)) be the first item which is packed
in some other bin in P ′ than the one prescribed by P . Consider the bin B
that ai is packed into in P . This bin cannot be fully packed in P ′ since ai is
strictly larger than the total size of all remaining small items, i.e., even if we
put all of them in the empty space of ai, there is still some empty space in B.
As a result P ′ cannot be optimal. Hence there is unique solution to pack each
sequence in the set S.

Note that there are N = Opt(σ)n−2Opt(σ) sequences S. We claim that
these sequences need separate advice strings. Assume to the contrary that
this is not the case, and let σr, σr′ ∈ S (r 6= r′) be two different sequences
with the same advice string. Note that the first n − Opt(σ) items in these
sequences are the same. Since the online algorithm performs deterministically
and we assume it receives the same advice for both σr and σr′ , the partial
packings of the algorithms after packing the first n − Opt(σ) items are the
same for both sequences. However, as discussed earlier, this implies that the
final packing of the algorithm is different from the optimal packing prescribed
by Vr′′ for at least one of the sequences. As discussed, such a packing is the
unique optimal packing and deviating from that increases the number of bins
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used by the algorithm by at least one unit. As a result, the algorithm performs
non-optimally for at least one of σr or σr′ . We conclude that the sequences in
the set S need separate advice strings. Since there are N = Opt(σ)n−2Opt(σ)

sequences in S, at least log(Opt(σ)n−2Opt(σ)) = (n − 2Opt(σ)) logOpt(σ)
bits of advice are required to get that many distinct advice strings. ⊓⊔

Next, we consider a more realistic scenario where there are m ∈ o(n)
distinct item item sizes and these are known to the algorithm. Assume that the
advice tape specifies the number of items of each size. If we are not concerned
about the running time of the online algorithm, there is enough information
to obtain an optimal solution. If we are concerned, we can use known results
for solving the offline problem [8,36,35]. We formalize this in what follows.

Lemma 1 ([8]) Consider the restriction of the bin packing problem to in-
stances in which the number of distinct item sizes is a constant non-negative
integer m. There is a polynomial time algorithm that optimally solves this
restricted problem.

If there are more than a constant number of distinct items sizes, we can
solve the problem almost optimally if the item sizes are lower bounded by a
fixed value ε.

Lemma 2 ([36,35]) There is a polynomial algorithm for the bin packing
problem which opens at most (1 + ε)Opt(σ) + 1 bin, in which ε is any small
but fixed value.

We use the above results to obtain the following:

Theorem 2 Consider the online bin packing problem in which there are m
distinct item sizes. The item sizes are assumed to be known. If m is a constant,
there is a (linear time) optimal online algorithm that receives m log n+o(log n)
bits of advice. If m is not a constant, there is a (polynomial time) online
algorithm that reads m⌈log(n + 1)⌉ + o(log n) bits of advice and achieves an
almost optimal packing with at most (1 + ε)Opt(σ) + 1 bins, for any small
but constant value of ε.

Proof The offline oracle simply encodes the input sequence, considered as a
multi-set, in m⌈log(n + 1)⌉ bits of advice. In order to do that, it writes the
number of occurrences of each of the m distinct items on the tape. The online
algorithm uses the algorithms of Lemma 1 (for constant values of m) or that
of Lemma 2 (for non-constant m) to compute an (almost) optimal packing.
Then it packs the items in an online manner according to such an (almost)
optimal packing. The algorithms reads frequencies of items in chunks of X =
⌈log(n+ 1)⌉ bits and consequently needs to know the value of X. So, we add
a self-delimited encoding of X at the beginning of the tape using e(X) bits.
The number of advice bits used by the algorithm is thus m⌈log(n + 1)⌉ +
O (log log n), which is m⌈log(n+ 1)⌉+ o(log n) as m ∈ o(n). ⊓⊔
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We show that the above upper bound is asymptotically tight. We start
with the following simple lemma.

Lemma 3 Consider the equation x1 + 2x2 + . . .+ αxα = X in which the xis
(i ≤ α) and X are non-negative integers. If X is sufficiently large, then this

equation has at least
(

1 + 2X
α(α+1)

)α−1

solutions.

Proof Define A =
∑α

i=1 i. Assign arbitrary values in the range [0, X/A] to
all xis for 2 ≤ i ≤ α (for simplicity assume X/A is an integer). There are
(1 +X/A)α−1 different such assignments. Any of these assignments defines a
valid solution for the equation since by definition of A we have

∑α
i=2 ixi ≤ X,

and we can assign x1 = X−
∑α

i=2 ixi. Replacing A with α(α+1)/2 completes
the proof. ⊓⊔

Theorem 3 At least (m − 3) log n − 2m logm bits of advice are required to
achieve an optimal solution for the online bin packing problem on sequences
of length n with m distinct item sizes.

Proof We define a family of sequences of length n and containing m distinct
item sizes and show that the sequences in this family need separate advice
strings to be optimally packed by an online algorithm. To define the family,
we fix m item sizes as being { 1

2m , m+2
2m , m+3

2m , . . . , 2m−1
2m , 1}. To simplify the

argument, we scale up the sizes of bins and items by a factor of 2m. So, we
assume the item sizes are {1,m+2,m+3 . . . , 2m− 1, 2m}, and the bins have
capacity 2m. Each sequence in the family starts with n/2 items of size 1.
Consider any packing of these items in which all bins have level at most equal
to m−2. Such a packing includes a1 bins of level 1 (one item of size 1 in each),
a2 bins of level 2 (two items of size 1 in each), etc., such that the ais are non-
negative integers and a1+2a2+ . . .+(m− 2)am−2 = n/2. By Lemma 3, there

are at least
(

1 + n
(m−1)(m−2)

)m−3

distinct packings with the desired property.

For any of these packings, we define a sequence in our family. Such a sequence
starts with n/2 items of size 1 and is followed by another n/2 items. Let B
denote the number of bins in a given packing of the first n/2 items, so that
B ≤ n/2. The sequence associated with the packing is followed by B items of
size larger than m+1 which completely fit these bins (in non-increasing order
of their sizes). Finally, we include another n/2 − B items of size 2m in the
sequence to achieve a sequence of length n.

We claim that any of the sequences in the family has a unique optimal
packing of size n/2. This is because there are exactly n/2 large items of size
strictly greater than m (more than half the capacity of the bin), and the other
n/2 items have small size 1 (which fit the empty space of all bins). So each
bin is fully packed with one large item of size x and 2m − x items of size 1
(see Figure 1).

The unique optimal packing of each sequence is defined by the partial
packing of the first n/2 small items. Consider a deterministic online algorithm
A receiving the same advice string for two sequence σ1 and σ2. Since A is
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The packing of sequence 〈1(15) 11 11 11 11 11 11 11 8 8 12(6)〉

Figure 1 The optimal packings for two sequences of the family when n = 30 and m = 6
(item sizes and bin capacities are scaled by 2m = 12).

deterministic and both sequences start with the same sub-sequence of small
items, the partial packing of the algorithm after packing the first n/2 items is
the same for both σ1 and σ2. As a result, the final packing of A is sub-optimal
for at least one them. We conclude that any deterministic online algorithm
should receive distinct advice strings for each sequence in the family. Since

there are at least
(

1 + n
(m−1)(m−2)

)m−3

sequences in the family, at least (m−

3) log
(

1 + n
(m−1)(m−2)

)

> (m−3) log n−2m logm bits of advice are required.

⊓⊔

3 An Algorithm with Sublinear Advice

In what follows we introduce an algorithm that receives log n+o(log n) bits of
advice and achieves a competitive ratio of 3

2 , for any instance of the online bin
packing problem. An offline oracle can compute and write the advice on the
tape in linear time, and the online algorithm runs as fast as First-Fit. Thus,
the algorithm might be applied in practical scenarios in which it is allowed
to have a “quick look” at the input sequence. Note that the offline oracle
runs in linear time, and the time complexity of the algorithm is polynomial
(O(n log n)).

We call items tiny, small, medium, and large if their sizes lie in the intervals
(0, 1/3], (1/3, 1/2], (1/2, 2/3], and (2/3, 1], respectively. The advice that the
algorithm receives is the number of medium items, which we denote by α.
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The algorithm reads the advice tape, obtains α, opens α bins, called critical
bins, and reserves 2/3 of the space in each of them. This reserved space will be
used to pack a medium item in each of the critical bins, and these bins have
a virtual level of size 2/3 at the beginning. All other bins have virtual level
zero when they are opened. The algorithm packs an item x in the following
manner:

– If x is a large item, open a new bin for it. Set the virtual level to its size.
– If x is a medium item, put it in the reserved space of a critical bin B.

Update the virtual level to the actual level. (B will not have any reserved
space now.)

– If x is small or tiny, use the First Fit (Ff) strategy to put it into any of
the open bins, based on virtual levels (open a new bin if required). Add
the size of the item to the virtual level.

Note that the critical bins appear first in the ordering maintained by the
algorithm as they are opened before other bins.

Theorem 4 There is an online algorithm which receives log n+ o(log n) bits
of advice and opens at most 3/2Opt(σ) + 2 bins to pack any sequence σ of
size n.

Proof We prove that the algorithm described above has the desired property.
The value of α is encoded in X = ⌈log(n + 1)⌉ bits of advice. In order to
read this properly from the tape, the algorithm needs to know the value of
X. This can be done by adding the self-delimited encoding of X in e(X) =
⌈logX⌉ + 2⌈log log(X)⌉ + 2 bits at the beginning of the tape. Consequently
the number of advice bits used by the algorithm is X + O (logX), which is
log n+ o(log n) as stated by the theorem.

Consider the packing of the algorithm for a sequence σ. There are two
cases. In the first case, there is a critical bin B so that no other item, except
a medium item, is packed in it. Since all tiny items are smaller than 1/3 and
can fit in B, all the non-critical bins that are opened after B include small
and large items only. More precisely, they include either a single large item or
two small items (except the last one which might have a single small item).
Let L, M , and S denote the number of large, medium, and small items. The
number of bins used by the algorithm is at most L + M + S/2 + 1. Now, if
S ≤ M , this would be at most L+ 3/2M + 1. Since L+M is a lower bound
for the number of bins in an optimal solution, the number of bins used by
the algorithm is at most 3/2Opt(σ) + 1 and we are done. If S > M , Opt

should open L + M bins for large and medium items, and in the best case,
it packs M small items together with medium ones. For the other S − M
small items, Opt has to open at least (S −M)/2 bins. Hence the number of
bins of Opt is at least L +M + (S −M)/2 = L +M/2 + S/2, and we have
3/2Opt(σ) ≥ 3L/2+3M/4+3S/4 > L+M +S/2. Thus, the number of bins
used by the algorithm is at most 3/2Opt(σ) + 1.

In the second case, we assume that all critical bins include another item in
addition to the medium item. We claim that, at the end of packing a sequence,
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all bins, except possibly two, have level at least 2/3. First, we verify this for
non-critical bins (bins without medium items). If a non-critical bin is opened
by a large item, it clearly has level higher than 2/3. All other non-critical bins
only include items of size at most 1/2. Hence, these bins, except possibly the
last one, include at least two items. Among the non-critical bins that include
two items, consider two bins bi and bj (i < j) that have levels smaller than
2/3. Since bj contains at least two items, at least one of them has size smaller
than 1/3. This item could fit in bi by the Ff property. We conclude that all
non-critical bins, except possibly two, have level at least 2/3. Now, suppose
two critical bins bi and bj have levels smaller than 2/3. Consider the first non-
medium item x which is packed in bj (in the second case, such an item exists).
Since a medium item is packed in the bin, x should be either tiny or small. If
x is small, then the level of bj is at least 1/2+1/3, which contradicts the level
of bj being smaller than 2/3. Similarly, x cannot be a tiny item of size larger
than 1/6 (since 1/2 + 1/6 ≥ 2/3). Hence, x is a tiny item of size at most 1/6.
This implies that at the time the online algorithm packs x, bin bi has a virtual
level of at least 5/6. The virtual level is at most 1/6 larger than the actual
level (the final level). Hence, the actual level of bi is at least 5/6− 1/6 = 2/3.
We conclude that at most one critical bin has level smaller than 2/3.

To summarize, there are at most two non-critical bins and one critical bin
which have level smaller than 2/3. On the other hand, it is not possible to have
one critical bin with content less than 2/3 and one non-critical bin (other than
the last) with such content. This is because the rightmost bin will have an
item of size at most 1/3, which should have gone in the leftmost. To conclude,
in the final packing, there are at most two bins with content less than 2/3 (in
which case both will be non-critical). Hence, the number of bins used by the
algorithm is at most 3/2Opt(σ) + 2. ⊓⊔

4 An Algorithm with Linear Advice

In this section, we present an algorithm that receives 2n + o(n) bits of ad-
vice and achieves a competitive ratio of 4/3 + ε for any sequence of size n,
and arbitrarily small constant values of ε. Consider an algorithm that receives
an approximate size for each sufficiently large item x encoded using k bits.
The approximate size of x would be larger than its actual size by at most an
additive term of 1/2k. The algorithm can optimally pack items by their ap-
proximate sizes and achieve an approximate packing which includes a reserved
space of size x + ε (ε ≤ 1/2k) for each item. Precisely, for each sufficiently
large item x, the approximate packing includes a reserved space of size x+ ε
(ε ≤ 1/2k) for x. This enables the algorithm to place x in the reserved space for
it in the approximate packing. Note that, since the number of approximated
sizes is bounded (it is 1/ε), the approximate packing can be created in poly-
nomial time using the algorithm of [24]. Smaller items are treated differently
and the algorithm does not reserve any space for them in the approximate
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packing. In the remainder of this section, we elaborate on this idea to achieve
a 4/3-competitive algorithm.

Notice that the number of bins in an approximate packing can be as large
as 3

2 times that ofOpt. To see that, consider a sequence which is a permutation
of

〈
1

2
+ ε1,

1

2
− ε1,

1

2
+ ε2,

1

2
− ε2, . . . ,

1

2
+ εn/2,

1

2
− εn/2〉,

where εi < 1/2n(1 ≤ i ≤ n/2). Since Opt packs all bins tightly, an increase
in the sizes of items by a constant (small) ε results in opening a new bin for
each two bins Opt uses. Hence, the number of bins in an optimal approximate
packing can be as bad as 3

2 Opt. This example suggests that using approximate
packings is not good for the bins in which a small number of large items are
tightly packed. To address this issue we divide the bins ofOpt into two groups:

Definition 2 Consider an optimal packing of a sequence σ. Given a small
parameter ε′ < 1/60, define good bins to be those where the total size of the
items smaller than 1/4 in the bin is at least 5ε′. Define all other bins to be
bad bins.

A part of the advice received for each item x indicates if x is packed by Opt

in a good bin or in a bad bin. This enables us to treat items packed in these
two groups separately.

Lemma 4 Consider sequences for which all bins in the optimal packing are
good (as defined above). There is an online algorithm that receives o(n) bits of
advice and achieves a competitive ratio of 4/3.

Proof Call an item small if it is smaller than or equal to 1/6 and large oth-
erwise. The advice bits define the approximate sizes of all large items with a
precision of ε′, i.e., it gives the count for each possible rounded item size. The
amount of advice will be roughly 1

ε′ log n, which is o(n) for constant values of
ε′. The online algorithm A can build the optimal approximate packing of large
items. In such a packing, there is a reserved space of size at most x+ε′ for any
large item of size x. The algorithm considers this packing as a partial packing
and initializes the level of each bin to be the total sizes of approximated items
in that bin. To pack an item x, if x is large, A places it in the space reserved
for it in the approximate packing. It also updates the level of the bin to reflect
the actual size of x. If x is small, A simply applies the First-Fit strategy to
pack x in a bin of the partial packing (and opens a new bin for it if necessary).
We prove that A is 4/3-competitive. In the final packing by A, call a bin “red”
if all items packed in it are small items and call it “blue” otherwise (the blue
bins constitute the approximated packing at the beginning). There are two
cases to consider.

In the first case, there is no red bin in the final packing of A, i.e., all small
items fit in the remaining space of the bins in the approximate packing of large
items. Let σ′ be a copy of the input sequence in which the sizes of large items
are approximated, i.e., increased by at most ε′; also letX be the number of bins
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for the optimal packing of σ′. Since there is no red bin in the final packing of
A, the number of bins used by A is equal to X. Consider the optimal packing
of the actual input sequence σ. By definition, good bins contain a set S of
items, each of size at most 1/4, and with a total size of at least 5ε′. We claim
that one can transfer a subset T ⊂ S of items to provide an available space
of size at least 5ε′ in each bin so that the total size of items in T is no more
than 1/4. If S includes an item x with size in the range [5ε′, 1/4], we define
T = {x}, and we are done. Otherwise (when all items in S are smaller than
5ε′), starting from an empty set, we add items of S to T , one by one, until
their total size exceeds 5ε′. A this point, since the total size is increased by at
most 5ε′ after adding each item, the total size of items in T is no more than
5ε′ + 5ε′ < 1/6. Consequently, a subset T with the desired property exists.
After transferring items into T , we can increase the sizes of large items to their
approximate sizes. Since there are at most 5 large items in each bin and also
available space of size at least 5ε′, the packing constructed this way is a valid
packing for the sequence σ′. Since the size of the transferred items for each bin
is at most 1/4, the transferred items from each group of four bins can fit in
one new bin. Consequently the number of bins in the new packing is at most
5/4Opt(σ). We know that the final packing by A is the optimal packing for
σ′ (with X bins), and in particular not worse than the packing constructed
above. Hence, the number of bins used by A is no more than 5/4Opt(σ).

In the second case, there is at least one red bin in the final packing of A.
We claim that all bins in the final packing of A, except possibly the last, have
levels larger than 3/4. The claim obviously holds for the red bins since the
levels of all these bins (excluding the last one) are larger than 5/6. Moreover,
since there is a bin which is opened by a small item, all blue bins have levels
larger than 5/6, i.e., the total size of packed items and reserved space for the
large items is larger than 5/6. Since there are at most 5 large items in each bin,
the actual level of each bin in the final packing of A is at least 5/6−5ε′, which
is not smaller than 3/4 for ε′ ≤ 1/60. So, all bins, except possibly one, have
levels larger than 3/4. Consequently, the algorithm is 4/3-competitive. ⊓⊔

It remains to address how to deal with bad bins. The next three lemmas
do this.

Lemma 5 Consider sequences for which all bins in the optimal packing in-
clude precisely two items. There is an algorithm that receives 1 bit of advice
per item and achieves an optimal packing.

Proof The single bit of advice for an item x determines whether or not the
partner of x appeared as a previous item, where the partner of x is the item
which is packed in the same bin as x in Opt’s packing. Consider an algorithm
A that works as follows: If the partner of x has not appeared yet, A opens a
new bin for x. Otherwise, it uses the Bf strategy to pack x in one of the open
bins. We claim that A achieves an optimal packing.

Assume that initially we have a mapping that maps the last item to go
into a bin to the item it goes on top of in the optimal packing, i.e., it maps
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the second item of each bin to the first item. We update this mapping when
necessary and maintain the invariant that we can always pack optimally ac-
cording to the mapping. For packing an item x, if Bf does not pack according
to this mapping, it packs x on top of y′, while, according to the mapping, it
was supposed to pack x on top of y, and a later x′ is supposed to go on top of
y′. Due to the Bf strategy, y′ ≥ y, so we can update the mapping to map the
currently unprocessed x′ to y, and, of course, x to y′. ⊓⊔

Lemma 6 Consider a sequence σ for which all items have sizes larger than
1/4 and for which each bin in Opt’s packing includes precisely three items.
The Harmonic algorithm uses at most 4/3Opt(σ) + 3 bins to pack such a
sequence.

Proof The proof is based on a simple weighting function. Call an item x large
if 1/3 < x < 1/2 and small otherwise (1/4 < x ≤ 1/3). Note that, since there
are three items in each bin and all are larger than 1/4, no item can have size
1/2 or larger. Define the weight of x to be 1/2 if x is large and 1/3 if it is small.
Consider a bin B in the packing of σ by Opt. Since there are three items in
B, its weight is maximized when there are two large items and one small item
in it (three large item do not fit in the same bin). Hence, the weight of each
bin in the Opt packing is at most 2(1/2) + 1/3 = 4/3. Consequently, we have
Opt(σ) ≥ 3/4W , where W is the total weights of all items.

The Harmonic algorithm (Ha) simply packs small and large items in sep-
arate collections of bins. So, each of the algorithm’s bins, except possibly two
bins, contains either three small items or two large items. In both cases, the
weight of each bin is at least 1 and we have Ha(σ) ≤ W + 2. As a conclusion
Ha(σ) ≤ 4/3Opt(σ) + 2 which completes the proof. ⊓⊔

Lemma 7 Consider a sequence σ for which all bins in the optimal packing
are bad bins (as defined earlier). There is an algorithm that receives two bits

of advice per item, and opens at most (4/3 + 5ε′

1−5ε′ )Opt(σ) + 4 bins.

Proof By the definition of bad bins, for any bin in the optimal packing, all
items are either smaller than 5ε′ or larger than 1/4. We call the former group
of items tiny items and pack them separately using the Ff strategy. We refer
to other items as normal items. Consider an offline packing P which is the
same as Opt’s packing, except that all tiny items are removed from their bins
and packed separately in new bins using the Ff strategy. By the definition of
bad bins, the total size of the tiny items in each bin is at most 5ε′, so the total
size of the tiny items in all bins is at most 5ε′ Opt(σ). In P, the level of each
bin (except the last) opened by these items is at least 1 − 5ε′. Consequently,

the number of bins in P opened by tiny items is at most 5ε′

1−5ε′ Opt(σ) + 1.
Let Q be the optimal packing for normal items. Since all normal items are
larger than 1/4, each bin of Q contains at most three items. We say a bin of
Q has type i (i ∈ {1, 2, 3}), if it contains i normal items. Similarly, we say
an item x has type i if it is packed in a type i bin. All items in type 3 bins
have sizes smaller than 1/2 (otherwise one will have size at most 1/4 which
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contradicts the assumption). Moreover, the sizes of the items in all type 1 bins
(except possibly the last one) are larger than 1/2 (otherwise a better packing
is achieved by pairing two of them). With two bits of advice, we can detect
the type of an item as follows: Let b denote the two bits of advice with item
x. If b is “01” and x > 1/2, then x has type 1; if b is “01” and x ≤ 1/2, then
x has type 3; and if b is “10” or b is “11”, then x has type 2. Note that the
code “00” is not used at this point (this is used later on), and the use of “10”
and “11” is still to be detailed.

Let Xi denote the number of bins of type i (1 ≤ i ≤ 3). Hence, the number
of bins used by Q is X1 +X2 +X3, and consequently the number of bins used
by P is at least X1 +X2 +X3 +X ′, where X ′ is the number of bins filled by
tiny items. Consider an algorithm A that performs as follows. If an item x has
type 1, A simply opens a new bin for x. If x has type 2, A applies the strategy
of Lemma 5 to place it in one of the bins maintained for items of type 2. Recall
that the advice in this case is either “10” or “11”, so the second bit provides the
advice required by Lemma 5. If x has type 3, A applies the Harmonic strategy
to pack the item in a set of bins maintained for type 3 items. By Lemma 6,
the number of bins used by A for these items is at most 4/3X3 + 3. Finally,
A uses the Ff strategy to pack tiny items in separate bins. Consequently, the
number of bins used by the algorithm is at most X1 +X2 +4/3X3 +X ′ +3 ≤

( 5ε′

1−5ε′ )Opt(σ) +X3/3 + 4 ≤ (4/3 + 5ε′

1−5ε′ )Opt(σ) + 4. ⊓⊔

Provided with the above results, we arrive at the following result:

Theorem 5 There is an online algorithm which receives two bits of advice
per item, plus an additive lower order term, and achieves a competitive ratio
of 4/3 + ε, for any positive value of ε.

Proof Define ε′ to be 11ε
60 . For ε < 1/11, we have ε′ < 1/60. Moreover, we

have 5ε′

1−5ε′ ≤ 5ε′

1−1/12 = 60ε′

11 = ε. In an optimal packing, divide bins into

good and bad bins using Definition 2. Also, let Gd and Bd respectively denote
the number of good and bad bins. Use advice bits to distinguish items which
are packed in good and bad bins, and pack them in separate lists of bins.
More precisely, let the two bits of advice for an item x be “00” if it is packed
by Opt in a good bin, and apply Lemma 4 to pack these items in at most
4/3Gd bins. Similarly, apply Lemma 7 to pack items from bad bins in at most

(4/3 + 5ε′

1−5ε′ ) Bd + 4 ≤ (4/3 + ε) Bd + 4 bins, using bits of advice of the form
“01”, “10”, or “11”, as discussed in the proof of Lemma 7. Consequently, the
number of bins used by the algorithm will be at most 4/3Gd+(4/3+ε) Bd+4 ≤
(4/3 + ε)Opt(σ) + 4. ⊓⊔

5 A Lower Bound for Linear Advice

The GMP problem [19] and the String Guessing Problem [10] both contain a
core special case of guessing a binary sequence. We use their results to show
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that an online algorithm needs a linear number of bits of advice to achieve a
competitive ratio better than 9/8 for bin packing.

Definition 3 ([19,10]) The Binary String Guessing Problem with known
history (2-SGKH) is the following online problem. The input is of the form
(n, σ = 〈x1, x2, . . . , xn〉). It consists of n items that are either “0” or “1” and
that are revealed one by one. For each item xt, the online algorithm A must
guess if it is a “0” or a “1”. After the algorithm has made a guess, the value
of xt is revealed to the algorithm.

Lemma 8 ([10]) On any input of length n, any deterministic algorithm for
2-SGKH that is guaranteed to guess correctly on more than αn bits, for 1/2 ≤
α < 1, needs to read at least (1 + (1− α) log(1− α) + α logα)n bits of advice.

Since the number of bits needed to express the number of “0”s in the input
is at most ⌈log(n + 1)⌉ ≤ log n + 1, and this number can be given as advice
by an oracle, if it is not given to the algorithm otherwise, we easily obtain the
following lemma. Recall that the definition of e, the length of the encoding
function, is given in Section 1.1.

Lemma 9 Consider instances of size n of the 2-SGKH problem in which the
number of “0”s is given to the algorithm as part of the input. For these in-
stances, any deterministic algorithm that is guaranteed to guess correctly on
more than αn bits, for 1/2 ≤ α < 1, needs to read at least (1+ (1−α) log(1−
α) + α logα)n− e(n) bits of advice.

Proof Assume to the contrary that the statement is not true. Hence, there is
an algorithm, Bsga, that knows the number of “0”s and receives fewer than
(1+(1−α) log(1−α)+α logα)n−e(n) bits of advice while guessing correctly
on more than αn bits. This algorithm can be used to serve arbitrary instances
of the 2-SGKH problem (in which the number of “0”s is not known). Modify
the advice tape used by the algorithm Bsga so that it contains at most e(n)
additional bits at the beginning specifying the number of “0”s. (This can be
done with the self-delimited encoding of the number of “0”s.) The algorithm
for 2-SGKH reads this number and gives it to Bsga. Then it asks Bsga

for its guess for each bit in the sequence and answers the same as Bsga. It
also informs Bsga of when it is correct and when it is wrong, with the same
information it is given. The algorithm is correct exactly when Bsga is correct.
The total number of advice bits will be less than e(n) + (1 + (1 − α) log(1 −
α)+α logα)n− e(n) = (1+ (1−α) log(1−α)+α logα)n. However, Lemma 8
implies that no algorithm can guess correctly on more than αn bits with this
many bits of advice. In conclusion, the initial assumption is incorrect and the
statement holds. ⊓⊔

In order to relate the Binary String Guessing Problem to the online bin
packing problem, we introduce another problem called the Binary Separation
Problem.
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Algorithm 1 Implementing Binary String Guessing via Binary Separation.
The Binary Guessing algorithm knows the number of “0”s (n1) and passes it as a
parameter (the number of large items) to the Binary Separation algorithm

1: small = 0; large = 1
2: repeat
3: mid = (large − small) / 2
4: class guess = SeparationAlgorithm.ClassifyThis(mid)
5: if class guess = “large” then
6: bit guess = 0
7: else
8: bit guess = 1
9: actual bit = Guess(bit guess) {The actual value is received after guessing (2-SGKH).}

10: if actual bit = 0 then
11: large = mid {We let “large” be the correct decision.}
12: else
13: small = mid {We let “small” be the correct decision.}
14: until end of sequence

Definition 4 The Binary Separation Problem is the following online problem.
The input I = (n1, σ = 〈y1, y2, . . . , yn〉) consists of n = n1+n2 positive values
which are revealed one by one. There is a fixed partitioning of the set of items
into a subset of n1 large items and a subset of n2 small items, so that all large
items are larger than all small items. Upon receiving an item yi, an online
algorithm for the problem must guess if y belongs to the set of small or large
items. After the algorithm has made a guess, it is revealed to the algorithm
whether yi actually belongs to class of small or large items.

We provide reductions from the modified Binary String Guessing Problem
to the Binary Separation Problem, and from the Binary Separation Problem
to the online bin packing problem. In order to reduce a problem P1 to another
problem P2, given an instance of P1 defined by a sequence σ1 and a set of
parameters η1 (such as the length of σ1 or the number of “0”s in it), we create
an instance of P2 which is defined by a sequence σ2 and also a set of parameters
η2. In our reductions, we assume η2 is derived from η1, and since σ1 is revealed
in an online manner, σ2 is created in an online manner by looking only at η1
and the revealed items of σ1.

Lemma 10 Assume that there is an online algorithm that solves the Binary
Separation Problem on sequences of length n with b(n) bits of advice, and
makes at most r(n) mistakes. Then there is also an algorithm that solves the
Binary String Guessing Problem on sequences of length n, assuming the num-
ber of “0”s is given as a part of input, so that the algorithm receives b(n) bits
of advice and makes at most r(n) errors.

Proof We assume that we have an algorithm Bsa that solves the Binary Sep-
aration Problem under the conditions of the lemma statement. Using that
algorithm, we define the number n1 of large items to be the number of “0”s in
the instance of the Binary String Guessing Problem. Then, we implement our



Online Bin Packing with Advice 19

algorithm Bsga for the Binary String Guessing Problem as outlined in Algo-
rithm 1, which defines the reduction. This Bsga implementation, defined in
Algorithm 1, functions as an adversary for Bsa, e.g., in Line 4, Bsga gives Bsa

its next request. Notice that we ensure that the Bsga makes a correct guess
if and only if Bsa makes a correct guess. The advice tape is filled with bits of
advice for this combined algorithm. The Bsga uses the Bsa as a sub-routine,
but all the questions are effectively coming from the Bsa.

The set-up, reminiscent of binary search, is carried out as specified in the
algorithm with the purpose of ensuring that when the Bsa is informed of the
actual class of the item it considered, no result can contradict information
already obtained. Specifically, the next item for the Bsa to consider is always
in between the largest item which has previously been deemed “small” and
the smallest item which has previously been deemed “large”. The fact that we
give the middle item from that interval is unimportant; any value chosen from
the open interval would work. ⊓⊔

Now, we prove that if we can solve a special case of the bin packing problem,
we can also solve the Binary Separation Problem.

Lemma 11 Consider the bin packing problem on sequences of length 2n for
which Opt opens n bins. Assume that there is an online algorithm A that
solves the problem on these instances with b(n) bits of advice and opens at
most n + r(n)/4 bins. Then there is also an algorithm Bsa that solves the
Binary Separation Problem on sequences of length n with b(n) bits of advice
and makes at most r(n) errors.

Proof In the reduction, we encode requests for the Bsa as items for bin pack-
ing. Assume we are given an instance I = (n1, σ = 〈y1, y2, . . . , yn〉) of the Bi-
nary Separation problem, in which n1 is the number of large items (n1 +n2 =
n), and the values of yts are revealed in an online manner (1 ≤ t ≤ n). We cre-
ate an instance of the bin packing problem which has length 2n. Algorithm 2
shows the details of the reduction. The bin packing sequence starts with n1

items of size 1
2 + εmin (in Algorithm 2, the variable “NumberOfLargeItems” is

n1 from the Binary Separation Problem). Any algorithm needs to open a bin
for each of these n1 items. We create the next n items in an online manner, so
that we can use the result of their packing to guess the requests for the Binary
Separation Problem. Let τ = yt (1 ≤ t ≤ n) be a requested item of the Binary
Separation Problem; we ask the bin packing algorithm to pack an item whose
size is an increasing function of τ , and slightly less than 1

2 . Depending on the
decision of the bin packing algorithm for opening a new bin or placing the
item in one of the existing bins, we decide the type of τ as being consecutively
small or large. The last n2 items of the bin packing instance are defined as
complements of the items in the bin packing instance associated with small
items in the binary separation instance (the complement of item x is 1 − x).
We do not need to give the last items complementing the small items in order
to implement the algorithm, but we need them for the proof of the quality of
the correspondence that we are proving.
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Algorithm 2 Implementing Binary Separation via Special Case Bin Packing.

1: Choose εmin and εmax so that 0 < εmin < εmax < 1
6

2: Choose a decreasing function f : R → (εmin..εmax)
3: for i = 1 to NumberOfLargeItems do
4: BinPacking.Treat( 1

2
+ εmin) {The decision can only be to open a bin.}

5: repeat
6: Let τ be the next request
7: decision = BinPacking.Treat( 1

2
− f(τ)) {Placing an item of size 1

2
− f(τ).}

8: if decision = “packed with an 1
2

+ εmin item” then
9: class guess = “large”

10: else
11: class guess = “small”
12: actual class = Guess(class guess)
13: if actual class = “small” then
14: SmallItems.append( 1

2
− f(τ)) {Collecting small items for later.}

15: until end of request sequence
16: for i = 1 to length(SmallItems) do
17: BinPacking.Treat(1 − SmallItems[i]) {The decision is not used.}

Call an item in the bin packing sequence “large” if it is associated with
large items in the Binary Separation Problem, and “small” otherwise. For
the bin packing sequence produced by the reduction, an optimal algorithm
pairs each of the large items with one of the first n1 items (those with size
1
2 + εmin), placing them in the first n1 bins. Opt pairs the small items with
their complements, starting one of the next n2 bins with each of these small
items. Hence, the number of bins in an optimal packing is n1 + n2 = n. The
values εmin and εmax in Algorithm 2 must be small enough so that no more
than two of any of the items given in the algorithm can fit together in a bin.
No other restriction is necessary.

We claim that each extra bin used by the bin packing algorithm, but not
by Opt, results in at most four mistakes made by the derived algorithm on
the given instance of the Binary Separation Problem. Consider an extra bin in
the final packing of A. This bin is opened by a large item which is incorrectly
guessed as being small (bins which are opened by small items also appear in
Opt’s packing). Note that large items do not fit in the same bins as comple-
ments of small items. The extra bin has enough space for another large item.
Moreover, there are at most two small items which are incorrectly guessed as
being large and placed in the space dedicated to the large items of the extra
bin. Hence, there is an overhead of at least one for four mistakes. To summa-
rize, A has to decide if a given item is small or large and performs accordingly,
and it pays a cost of at least 1/4 for each incorrect decision. If A opens at
most n+ r(n)/4 bins, the algorithm derived from A for the Binary Separation
Problem makes at most r(n) mistakes. ⊓⊔

Theorem 6 Consider the online bin packing problem on sequences of length n.
To achieve a competitive ratio of c (1 < c < 9/8), an online algorithm needs
to receive at least (n(1+ (4c− 4) log(4c− 4)+ (5− 4c) log(5− 4c))− (⌈log(n+
1)⌉+ 2⌈log(⌈log(n+ 1)⌉+ 1)⌉+ 1))/2 bits of advice.
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Proof Consider a bin packing algorithm A that receives b(n) bits of advice and
achieves a competitive ratio of c. This algorithm opens at most (c−1)Opt(σ)
bins more than Opt, so when Opt(σ) = n/2, it opens at most (c−1)n/2 more
bins. By Lemma 11, the existence of such an algorithm implies that there is
an algorithm A that solves the Binary Separation Problem on sequences of
length n/2 with b bits of advice and makes at most 2(c − 1)n errors. By
Lemma 10, this implies that there is an algorithm B that solves the Binary
String Guessing Problem on sequences of length n/2 with b bits of advice
and makes at most 2(c − 1)n mistakes, i.e., it correctly guesses the other
n/2− 2(c− 1)n = (5− 4c)n/2 items. Let α = 5− 4c, and note that α is in the
range [1/2, 1) when c is in the range (1, 9/8]. Lemma 9 implies that in order to
correctly guess more than αn/2 of the items in the binary sequence, we must
have b(n) larger than or equal to ((1+(1−α) log(1−α)+α logα)n− e(n))/2.
Replacing α with 5− 4c completes the proof. ⊓⊔

Thus, to obtain a competitive ratio strictly better than 9/8, a linear number
of bits of advice is required. For example, to achieve a competitive ratio of
17/16, at least 0.188n bits of advice are required asymptotically.

Corollary 1 Consider the bin packing problem of packing sequences of length
n. To achieve a competitive ratio of 9/8 − δ, in which δ is a small, but fixed
positive number, an online algorithm needs to receive Ω(n) bits of advice.

6 Concluding Remarks

We conjecture that a sublinear number of bits of advice is enough to achieve
competitive ratios smaller than 4/3. Note that our results imply that we cannot
hope for ratios smaller than 9/8 with sublinear advice.

The lower bound presented here does not give a result better than half a
bit per item asymptotically, regardless of how close to a competitive ratio of
1 we wish to obtain. It would be interesting to strengthen this result.

References

1. Albers, S., Hellwig, M.: Semi-online scheduling revisited. Theoretical Computer Science
443, 1–9 (2012)
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