
On the List Update Problem with Advice

Joan Boyara, Shahin Kamalib, Kim S. Larsena, Alejandro López-Ortizc

aUniversity of Southern Denmark, Department of Mathematics and Computer Science,
Campusvej 55, 5230 Odense M, Denmark,

{joan,kslarsen}@imada.sdu.dk
bMassachusetts Institute of Technology, Computer Science and Artificial Intelligence

Laboratory, 32 Vassar Street, Cambridge, MA 02139, U.S.A.,
skamali@mit.edu

cUniversity of Waterloo, School of Computer Science, 200 University Avenue West,
Waterloo, ON N2L 3G1, Canada,

alopez-o@cs.uwaterloo.ca

Abstract

We study the online list update problem under the advice model of compu-
tation. Under this model, an online algorithm receives partial information
about the unknown parts of the input in the form of some bits of advice
generated by a benevolent offline oracle. We show that advice of linear size
is required and sufficient for a deterministic algorithm to achieve an opti-
mal solution or even a competitive ratio better than 15/14. On the other
hand, we show that surprisingly two bits of advice are sufficient to break
the lower bound of 2 on the competitive ratio of deterministic online algo-
rithms and achieve a deterministic algorithm with a competitive ratio of 1.6̄.
In this upper-bound argument, the bits of advice determine the algorithm
with smaller cost among three classical online algorithms, Timestamp and
two members of the Mtf2 family of algorithms. We also show that Mtf2
algorithms are 2.5-competitive.

Keywords:
List Update, Advice Complexity, Competitive Analysis, Online Algorithms

1. Introduction

List update is a well-studied problem in the context of online algorithms.
The input is a sequence of requests to items of a list; the requests appear
in a sequential and online manner, i.e., while serving a request an algorithm

Preprint submitted to Information and Computation February 6, 2016



cannot look at the incoming requests. A request involves accessing an item
in the list.1 To access an item, an algorithm should linearly probe the list;
each probe has a cost of 1, and accessing an item in the ith position results
in a cost of i. The goal is to maintain the list in a way to minimize the
total cost. An algorithm can make a free exchange to move an accessed item
somewhere closer to the front of the list. Further, it can make any number
of paid exchanges, each having a cost of 1, to swap the positions of any two
consecutive items in the list.

Similar to other online problems, the standard method for comparing
online list update algorithms is competitive analysis. The competitive ratio
of an online algorithm A is the maximum ratio between the cost of A for
serving any sequence and the cost of Opt for serving the same sequence.
Here, Opt is an optimal offline algorithm. It is known that, for a list of
length l, no deterministic online algorithm can achieve a competitive ratio
better than 2l/(l + 1) (reported in [22]); this converges to 2 for large lists.
There are 2-competitive algorithms (hence best possible online algorithms)
for the problem; these include Move-To-Front (Mtf) [30] and Timestamp [2].

Although competitive analysis has been accepted as the standard tool
for comparing online algorithms, there are objections to it. One relevant
objection is that assuming a total lack of information about the future is
unrealistic in many applications. This is particularly the case for the list
update problem when it is used as a method for compression [9]. In this
application, each character of a text is treated as an item in the list, and the
text as the input sequence which is parsed (revealed) in a sequential manner.
A compression algorithm can be devised from a list update algorithm A by
writing the access cost of A for serving each character in unary.2 Hence,
the size of the compressed file is roughly equal to the access cost of the list
update algorithm. In this application, it is possible to include some partial
information about the structure of the sequence (text) in the compressed file,
for example, which of three algorithms was used to do the compression. This
partial information could potentially be stored using very little space com-

1Similar to other works, we consider the static list update problem in which there is
no insertion or deletion.

2Encodings other than unary correspond to other cost models for list update, and,
naturally, encoding positions in binary would improve the compression [9]. The choice of
algorithm is also important and tests indicate that Timestamp may be a better algorithm
for this than Mtf [3]

2



pared to the subsequent savings in the size of the compressed file compared
with the original file, due to the availability of the partial information [24].

Advice complexity provides an alternative for the analysis of online prob-
lems. Under the advice model, the online algorithm is provided with some
bits of advice, generated by a benevolent offline oracle with infinite com-
putational power. This reduces the power of the adversary relative to the
online algorithm. Variant models are proposed and studied for the advice
complexity model [16, 17, 13, 12]. Here, we use a natural model from [13, 12]
that assumes advice bits are written once on a tape before the algorithm
starts, and the online algorithm can access the tape sequentially from the
beginning at any time. The advice complexity of an algorithm is then the
worst case number of bits read from the tape, as a function of the length
of the input. Since its introduction, many online problems have been stud-
ied under the advice model. These include classical online problems such as
paging [13, 21, 25], k-server [17, 12, 28, 20], bin packing [15, 7], and various
coloring problems [10, 18, 29].

1.1. Contribution

When studying an online problem under the advice model, the first ques-
tion to answer is how many bits of advice are required to achieve an optimal
solution. We show that advice of size Opt(σ) is sufficient to optimally serve
a sequence σ, where Opt(σ) is the cost of an optimal offline algorithm for
serving σ, and it is linear in the length of the sequence, assuming that the
length of the list is a constant. We further show that advice of linear size is
required to achieve a deterministic algorithm with a competitive ratio better
than 15/14.

Another important question is how many bits of advice are required to
break the lower bound on the competitive ratio of any deterministic algo-
rithm. We answer this question by introducing a deterministic algorithm
that receives two bits of advice and achieves a competitive ratio of at most
1.6̄. The advice bit for a sequence σ simply indicates the best option be-
tween three online algorithms for serving σ. These three algorithms are
Timestamp, MTF-Odd (MtfO) and MTF-Even (MtfE). Timestamp in-
serts an accessed item x in front of the first item y (from the front of the list)
that precedes x in the list and was accessed at most once since the last access
to x. If there is no such item y or x is accessed for the first time, no items
are moved. MtfO (resp. MtfE) moves a requested item x to the front on
every odd (resp. even) request to x.

3



Our results indicate that if we dismiss Timestamp and take the better
algorithm between MtfO and MtfE, the competitive ratio of the resulting
algorithm is no better than 1.75. We also study the competitiveness of MtfE
and MtfO, and more generally any algorithm that belongs to the family of
Move-To-Front-Every-Other-Access (also known as Mtf2 algorithms). We
show that these algorithms have competitive ratios of 2.5.

2. Optimal solution

In this section, we provide upper and lower bounds on the number of
advice bits required to optimally serve a sequence. We start with an upper
bound:

Theorem 2.1. Under the advice model, Opt(σ) − n bits of advice are suf-
ficient to achieve an optimal solution for any sequence σ of length n, where
Opt(σ) is the cost of an optimal algorithm for serving σ.

Proof. It is known that there is an optimal algorithm that moves items using
only a family of paid exchanges called subset transfer [26]. In a subset trans-
fer, before serving a request to an item x, a subset S of items preceding x in
the list is moved (using paid exchanges) to just after x in the list, so that the
relative order of items in S among themselves remains unchanged. Consider
an optimal algorithm Opt which only moves items via subset transfer. Be-
fore a request to x at index i, an online algorithm can read i−1 bits from the
advice tape, indicating (bit vector style) the subset which should be moved
behind x. Provided with this, the algorithm can always maintain the same
list as Opt. The total number of bits read by the algorithm will be at most
Opt(σ)− n.

The above theorem implies that for lists of constant size, advice of linear
size is sufficient to optimally serve a sequence. We show that advice of linear
size is also required to achieve any competitive ratio smaller than 15/14.

In order to prove this lower bound, we first define a large set of possible
sequences, defined from bit strings, where an online algorithm with a good
competitive ratio must make the right decision many times. This ends up
essentially being a ‘guess’, for every fifth request, as to what the next request
will be. Thus, a lookahead of 1 (being able to see the next request before
making a decision about the current one, the ‘weak lookahead’ as defined
in [1]), would be sufficient to perform optimally on these particular sequences.

4



Less than linear advice leaves some sequences where the algorithm does not
‘guess’ well enough.

Consider instances of the list update problem on a list of two items x and
y which are defined as follows. Assume the list is ordered as [x, y] before the
first request. Also, to make our explanation easier, assume that the length
of the sequence, n, is divisible by 5. Consider an arbitrary bitstring B, of
size n/5, which we refer to as the defining bitstring. Let σ denote the list
update sequence defined from B in the following manner: For each bit in B,
there are five requests in σ, which we refer to as a round. We say that a
round in σ is of type 0 (resp. 1) if the bit associated with it in B is 0 (resp.
1). For a round of type 0, σ will contain the requests yyyxx, and for a round
of type 1, the requests yxxxx. For example, if B = 011 . . ., we will have
σ = 〈yyyxx, yxxxx, yxxxx, . . .〉.

Since the last two requests in a round are to the same item x, it makes
sense for an online algorithm to move x to the front after the first access.
This is formalized in the following lemma.

Lemma 2.2. For any online list update algorithm A serving a sequence σ
created from a defining bitstring, there is another algorithm whose cost is not
more than A’s cost for serving σ and that ends each round with the list in
the order [x, y].

Proof. Let Rt denote the first round such that the ordering of the list main-
tained by A is [y, x] at the end of the round. So, A incurs a cost of 4 for
the last two requests of the round (which are both to x) and a cost of 1 for
the first request of the next round (which is to y). This sums to a cost of 5
for these three requests. Consider an alternative algorithm A′ which moves
x to the front after the first access to x in Rt. The cost of A′ for the last two
requests of Rt is 3. Also, A′ incurs a cost of 2 to access the first request of
the next round. Hence, A′ incurs a cost of at most 5, equal to the cost of A
for these three requests. After the access to y in the second position of the
list, A′ can reestablish the same ordering A uses from that point (using at
most one free exchange). Consequently, the cost of A′ is not more than A.
Repeating this argument for all rounds completes the proof.

Provided with the above lemma, we can restrict our attention to algo-
rithms that maintain the ordering [x, y] at the end of each round. In what
follows, by an ‘online algorithm’ we mean an online algorithm with this prop-
erty.

5



Lemma 2.3. The cost of an optimal algorithm for serving a sequence of
length n, where the sequence is created from a defining bitstring, is at most
7n/5.

Proof. Since there are n/5 rounds, it is sufficient to show that there is an
algorithm which incurs a cost of at most 7 for each round. Consider an
algorithm that works as follows: For a round of type 0, the algorithm moves
y to the front after the first access to y. It also moves x to the front after the
first access to x. Hence, it incurs a cost 2+1+1+2+1 = 7. For a round of type
1, the algorithm does not move any item and incurs a cost of 2+1+1+1+1
= 6. In both cases, the list ordering is [x, y] at the end of the round and the
same argument can be repeated for the next rounds.

For a round of type 0 (with requests to yyyxx), if an online algorithm A
moves each of x and y to the front after the first accesses, it has cost 7. If
it does not move y immediately, it has cost at least 8. For a round of type 1
(i.e., a round of requests to yxxxx), if an algorithm does no rearrangement,
its cost will be 6; otherwise its cost is at least 7. To summarize, an online
algorithm should ‘guess’ the type of each round and act accordingly after
accessing the first request of the round. If the algorithm makes a wrong
guess, it incurs a ‘penalty’ of at least 1 unit. This relates our problem to the
binary string guessing problem, defined in [17, 11].

Definition 2.4 ([11]). The Binary String Guessing Problem with known
history (2-SGKH) is the following online problem. The input is a bitstring
of length m, and the bits are revealed one by one. For each bit bt, the online
algorithm A must guess if it is a 0 or a 1. After the algorithm has made a
guess, the value of bt is revealed to the algorithm.

Lemma 2.5 ([11]). On an input of length m, any deterministic algorithm
for 2-SGKH that is guaranteed to guess correctly on more than αm bits, for
1/2 ≤ α < 1, needs to read at least (1 + (1 − α) log(1 − α) + α logα)m bits
of advice.3

We reduce the 2-SGKH problem to the list update problem:

Theorem 2.6. On an input of size n, any algorithm for the list update
problem which achieves a competitive ratio of γ (1 < γ ≤ 15/14) needs to

3In this paper we use log n to denote log2(n).

6



read at least (1 + (7γ − 7) log(7γ − 7) + (8 − 7γ) log(8 − 7γ))/5 · n bits of
advice.

Proof. Consider the 2-SGKH problem for an arbitrary bitstring B. Given
an online algorithm A for the list update problem, define an algorithm for
2-SGKH as follows: Consider an instance σ of the list update problem on
a list of length 2 where σ has B as its defining bitstring, and run A to
serve σ. For the first request y in each round in σ, A should decide whether
to move it to the front or not. The algorithm for the 2-SGKH problem
guesses a bit as being 0 (resp. 1) if, after accessing the first item requested
in the round associated with the bit in B, A moves it to front (resp. keeps
it at its position). As mentioned earlier, for each incorrect guess A incurs
a penalty of at least 1 unit, i.e., A ≥ Opt+w, where w is the number of
wrong guesses for critical requests. Since A has a competitive ratio of γ,
we have A ≤ γOpt. Consequently, we have w ≤ (γ − 1)Opt(σ) and by
Lemma 2.3, w ≤ 7(γ − 1)/5 · n. This implies that if A has a competitive
ratio of γ, the 2-SGKH algorithm makes at most 7(γ − 1)/5 · n mistakes
for an input bitstring B of size n/5, i.e., at least n/5 − 7(γ − 1)/5 · n =
(8 − 7γ) · n/5 correct guesses. Define α = 8 − 7γ, and note that α is in the
range [1/2, 1) when γ is in the range stated in the lemma. By Lemma 2.5, at
least (1 + (1−α) log(1−α) +α logα)n/5 bits of advice are required by such
a 2-SGKH algorithm. Replacing α with 8− 7γ completes the proof.

Thus, to obtain a competitive ratio better than 15/14, a linear number
of bits of advice is required. For example, to achieve a competitive ratio of
1.01, at least 0.12n bits of advice are required. Theorems 2.1 and 2.6 imply
the following corollary.

Corollary 2.7. For any list of fixed length n, Θ(n) bits of advice are required
and sufficient to achieve an optimal solution for the list update problem. Also,
Θ(n) bits of advice are required and sufficient to achieve a 1-competitive
algorithm.

3. An algorithm with two bits of advice

In this section we show that two bits of advice are sufficient to break the
lower bound of 2 on the competitive ratio of deterministic algorithms and
achieve a deterministic online algorithm with a competitive ratio of 1.6̄. The
two bits of advice for a sequence σ indicate which of the three algorithms

7



Timestamp, MTF-Odd (MtfO) and MTF-Even (MtfE), have the lower
cost for serving σ. Recall that MtfO (resp. MtfE) moves a requested item
x to the front on every odd (resp. even) request to x. We prove the following
theorem:

Theorem 3.1. For any sequence σ, we have either Timestamp(σ) ≤ 1.6̄Opt(σ),
MtfO(σ) ≤ 1.6̄Opt(σ), or MtfE(σ) ≤ 1.6̄Opt(σ).

To prove the theorem, we show that for any sequence σ, Timestamp(σ)+
MtfO(σ) + MtfE(σ) ≤ 5Opt(σ). We note that all three algorithms have
the projective property, meaning that the relative order of any two items
only depends on the requests to those items and their initial order in the list
(and not on the requests to other items). MtfO (resp. MtfE) is projective
since in its list an item y precedes x if and only if the last odd (resp. even)
access to y is more recent than the last odd (resp. even) access to x. In the
lists maintained by Timestamp, item y precedes item x if and only if in the
projected sequence on x and y, y was requested twice after the second to last
request to x or the most recent request was to y and x has been requested
at most once. Hence, Timestamp also has the projective property.

Similar to most other work for the analysis of projective algorithms,4 we
consider the partial cost model, in which accessing an item in position i is
defined to have cost i − 1. We say an algorithm is cost-independent if its
decisions are independent of the cost it has paid for previous requests. The
cost of any cost-independent algorithm for serving a sequence of length n
decreases n units under the partial cost model when compared to the full
cost model. Hence, any upper bound for the competitive ratio of a cost-
independent algorithm under the partial cost model can be extended to the
full cost model.

To prove an upper bound on the competitive ratio of a projective algo-
rithm under the partial cost model, it is sufficient to prove that the claim
holds for lists of size 2. The reduction to lists of size two is done by applying
a factoring lemma, which holds for algorithms not using paid exchanges, en-
suring that the total cost of a projective algorithm A for serving a sequence
σ can be formulated as the sum of the costs of A for serving projected se-
quences of two items. A projected sequence of σ on two items x and y is a

4Almost all existing algorithms for the list update problem are projective; the only
exceptions are Transpose, Move-Fraction [30], and Split [22]; see [23] for a survey.

8



copy of σ in which all items except x and y are removed. We refer the reader
to [14, p. 16] for details on the factoring lemma. Since MtfO, MtfE, and
Timestamp do not use paid exchanges and since they are projective and
cost-independent, to prove Theorem 3.1, it suffices to prove the following
lemma:

Lemma 3.2. Under the partial cost model, for any sequence σxy of two items,
we have MtfO(σxy) + MtfE(σxy) + Timestamp(σxy) ≤ 5 ·Opt(σxy).

Before proving the above lemma, we study the aggregated cost of MtfO
and MtfE on certain subsequences of two items. One way to think of these
algorithms is to imagine they maintain a bit for each item. On each request,
the bit of the item is flipped; if it becomes ‘0’, the item is moved to the front.
Note that the bits of MtfO and MtfE are complements of each other.
Thus, we can think of them as one algorithm started on complementary bit
sequences. We say a list is in state [ab](i,j) if item a precedes b in the list and
the bits maintained for a and b are i and j (i, j ∈ {0, 1}), respectively. To
study the value of Opt(σxy), we consider an offline algorithm which uses a
free exchange to move an accessed item from the second position to the front
of the list if and only if the next request is to the same item. It is known
that this algorithm is optimal for lists of two items [26].

Lemma 3.3. Consider a subsequence of two items a and b of the form
〈(ba)2i〉, i.e., i repetitions of 〈baba〉. Assume the initial ordering is [ab]. The
cost of each of MtfO and MtfE for serving the subsequence is 3i (under
the partial cost model). Moreover, at the end of serving the subsequence, the
ordering of items in the list maintained by at least one of the algorithms is
[ab].

Proof. We refer to a repetition of baba as a round. We show that MtfO and
MtfE have a cost of 3 for serving each round. Assume the bits associated
with both items are ‘0’ before serving baba. The first request has a cost of 1
and b remains in the second position, the second request has cost 0, and the
remaining requests each have a cost of 1. In total, the cost of the algorithm
is 3. The other cases (when items have different bits) are handled similarly.
Table 1 includes a summary of all cases. As illustrated in the table, if the bits
maintained for a and b before serving baba are (0, 0), (0,1), or (1,1), the list
order will be [ab] after serving the round. Since both a and b are requested
twice, the bits will be also the same after serving baba. Hence, in these three

9



Bits for (a, b) Cost for 〈baba〉 Orders before accessing items Final order

(0, 0) 1 + 0 + 1 + 1 = 3 [ab ] [a b] [ab ] [ba ] [ab]

(0, 1) 1 + 1 + 0 + 1 = 3 [ab ] [ba ] [b a] [ba ] [ab]

(1, 0) 1 + 0 + 1 + 1 = 3 [ab ] [a b] [ab ] [ba ] [ba]

(1, 1) 1 + 1 + 1 + 0 = 3 [ab ] [ba ] [ab ] [a b] [ab]

Table 1: Assuming the initial ordering of items is [ab], the cost of a both MtfO and MtfE
for serving subsequence 〈baba〉 is 3 (under the partial cost model). The final ordering of
the items will be [ab] in three of the cases.

cases, the same argument can be repeated to conclude that the list order will
be [ab] at the end of serving (ba)2i. Since the bits maintained for the items
are complements in MtfE and MtfO, at least one of them starts with bits
(0, 0), (0, 1), or (1, 1) for a and b; consequently, at least one algorithm ends
up with state [ab] at the end.

Lemma 3.4. Consider a subsequence of two items a and b which has the
form 〈baa〉. The total cost that MtfE and MtfO incur together for serving
this subsequence is at most 4 (under the partial cost model).

Proof. If the initial order of a and b is [ba], the first request has no cost, and
each algorithm incurs a total cost of at most 2 for the other two requests of
the sequence. Hence, the aggregated cost of the two algorithms is 4. Next,
assume the initial order is [ab]. Assume the bits maintained by one of the
algorithms for a and b are (1,0), respectively. As illustrated in Table 2, this
algorithm incurs a cost of 1 for serving baa; the other algorithm incurs a cost
of 3. In total, the algorithms incur a cost of 4. In the other case, when bits
maintained for a and b are both ‘0’ in one algorithm (consequently, both are
‘1’ in the other algorithm), the total cost of the algorithms for serving 〈baa〉
is 3.

Using Lemmas 3.3 and 3.4, we are ready to prove Lemma 3.2:

Proof of Lemma 3.2, and consequently Theorem 3.1. Consider a sequence σxy
of two items x and y. We use the phase partitioning technique as introduced
in [4], even using the same partitioning, though later considering more sub-
cases. We partition σxy into phases which are defined inductively as follows.
Assume we have defined phases up until, but not including, the tth request

10



Initial order Bits for (a, b) Cost for Orders before Bits and Costs Total cost
〈baa〉 accessing items (other algorithm) (both algs.)

[ab] (0,0) 1 + 0 + 0 = 1 [ab ] [a b] [a b] (1, 1)→ 2 1 + 2 = 3

[ab] (0,1) 1 + 1 + 1 = 3 [ab ] [ba ] [ba ] (1, 0)→ 1 3 + 1 = 4

[ab] (1,0) 1 + 0 + 0 = 1 [ab ] [a b] [a b] (0, 1)→ 3 1 + 3 = 4

[ab] (1,1) 1 + 1 + 0 = 2 [ab ] [ba ] [a b] (0, 0)→ 1 2 + 1 = 3
[ba] (0,0) (0,1) ≤ 0 + 1 + 1 = 2 - ≤ 2 2 + 2 = 4

(1,0) (1,1)

Table 2: The total cost of MtfO and MtfE for serving a sequence 〈baa〉 is at most 4
(under the partial cost model). Note that the bits maintained by these algorithms for each
item are complements of each other.

(t ≥ 1) and the relative order of the two items is [xy] before the tth request.
Then the next phase is of type 1 and is of one of the following forms (j ≥ 0
and k ≥ 1):

(a) xjyy (b) xj(yx)kyy (c) xj(yx)kx

In case the relative order of the items is [yx] before the tth request, the phase
has type 2 and its form is exactly the same as above with x and y inter-
changed. Note that, after two consecutive requests to an item, Timestamp,
MtfO and MtfE all have that item in the front of the list. So, after serving
each phase, the relative order of items is the same for all three algorithms.
This implies that σxy is partitioned in the same way for all three algorithms.
To prove the lemma, we show that its statement holds for every phase.

Table 3 shows the costs incurred by all three algorithms as well as Opt
for each phase. Note that phases of the form (b) and (c) are divided into
two cases, depending on whether k is even or odd. We discuss the different
phases of type 1 separately. Similar analyses, with x and y interchanged,
apply to the phases of type 2. Note that before serving a phase of type 1,
the list is ordered as [xy] and the first j requests to x have no cost.

Consider phases of form (a), xjyy. MtfO and MtfE incur a total cost
of 3 for serving yy (one of them moves y to the front after the first request,
while the other keeps it in the second position). Timestamp incurs a cost
of 2 for serving yy (it does not move it to the front after the first request).
So, in total, the three algorithms incur an aggregated cost of 5. On the other
hand, Opt incurs a cost of 1 for the phase. So, the ratio between the sum
of the costs of the algorithms and the cost of Opt is 5.

Next, consider phases of the form (b). Timestamp incurs a cost of 2k

11



Phase AlgMin AlgMax Timestamp
Sum (AlgMin +

Opt’ Sum
Opt′AlgMax + Timestamp)

xjyy 1 2 2 5 1 5
xj(yx)2iyy ≤ 3i+ 1 ≤ 3i+ 2 2 · 2i = 4i ≤ 10i+ 3 2i+ 1 < 5

xj(yx)2i−2yxyy ≤ 3(i− 1) + 1 ≤ 3(i− 1) + 1 2(2i− 1) ≤ 6(i− 1) + 2 + 4 2i < 5
+AlgMin(〈xyy〉) +AlgMax(〈xyy〉) = 4i− 2 +(4i− 2) = 10i− 2

xj(yx)2ix ≤ 3i ≤ 3i+ 1 2 · 2i− 1 ≤ (6i+ 1) + (4i− 1) 2i ≤ 5
= 4i− 1 = 10i

xj(yx)2i−2yxx ≤ 3(i− 1) ≤ 3(i− 1) 2 · (2i− 1)− 1 ≤ 6(i− 1) + 4 2i− 1 ≤ 5
+AlgMin(〈yxx〉) +AlgMax(〈yxx〉) = 4i− 3 +(4i− 3) = 10i− 5

Table 3: For use in the proof of Lemma 3.2, we list the costs of MtfO, MtfE, and
Timestamp for a phase of type 1 (the phase has type 1, i.e., the initial ordering of items
is xy). The ratio between the aggregated cost of algorithms and the cost of Opt for each
phase is at most 5. AlgMin (resp. AlgMax) is the algorithm among MtfO and MtfE,
which incurs less (resp. more) cost for the phase. Note that the costs are under the partial
cost model.

for serving the phase; it incurs a cost of 1 for all requests in (yx)2i except the
very first request to x, and a cost of 1 for serving the second to last request
to y. Assume k is even and we have k = 2i for some i ≥ 1, so the phase looks
like xj(yx)2iyy. By Lemma 3.3, the cost incurred by MtfO and MtfE is 3i
for serving (yx)2i. We show that for the remaining two requests to y, MtfO
and MtfE incur an aggregated cost of at most 3. If the list maintained
by any of the algorithms is ordered as [yx] before serving yy, that algorithm
incurs a cost of 0 while the other algorithm incurs a cost of at most 2 for these
requests; in total, the cost of both algorithms for serving yy will be at most
2. If the lists of both algorithms are ordered as [xy], one of the algorithms
incurs a cost of 1 and the other incurs a cost of 2 (depending on the bit they
keep for y). In conclusion, MtfO and MtfE incur a total cost of at most
6i+3. Timestamp incurs a cost of 2k = 4i, while Opt incurs a cost of 2i+1
for the phase. To conclude, the aggregated cost of all algorithms is at most
10i+ 3 compared to 2i+ 1 for Opt, and the ratio between them is less than
5.

Next, assume k is odd and we have k = 2i − 1, i.e., the phase has the
form xj(yx)2i−2yxyy. The total cost of MtfO and MtfE for (yx)2i−2 is
2(3(i − 1)) (Lemma 3.3), the total cost for the next request to y is at most
2, and the total cost for subsequent xyy is at most 4 (Lemma 3.4). In total,
MtfO and MtfE incur a cost of at most 6i for the phase. On the other
hand, Timestamp incurs a cost of 4i− 2 for the phase. The aggregated cost
of the three algorithms is at most 10i− 2 for the phase, while Opt incurs a
cost of 2i. So, the ratio between sum of the costs of the algorithms and Opt

12



is less than 5.
Next, consider phases of type 1 and form (c). Timestamp incurs a cost

of 2k−1 in this case. Assume k is even, i.e., the phase has the form xj(yx)2ix.
By Lemma 3.3, MtfO and MtfE each incur a total cost of 3i for (yx)2i.
Moreover, after this, the list maintained for at least one of the algorithms is
ordered as [xy]. Hence, the aggregated cost of algorithms for the next request
to x is at most 1. Consequently, the total cost of MtfE and MtfO is at
most 6i+ 1 for the round. Adding the cost 2k − 1 = 4i− 1 of Timestamp,
the total cost of all three algorithms is at most 10i. On the other hand, Opt
incurs a cost of 2i for the phase. So, the ratio between the aggregated cost
of all three algorithms and the cost of Opt is at most 5. Finally, assume k
is odd, i.e., the phase has form xj(yx)2i−2yxx. By Lemma 3.3, MtfO and
MtfE together incur a total cost of 2(3(i−1)) for xj(yx)2i−2. By Lemma 3.4,
they incur a total cost of at most 4 for yxx. In total, they incur a cost of
at most 6(i− 1) + 4 for the phase. Timestamp incurs a cost of 4i− 3; this
sums up to 10i−5 for all three algorithms. In this case, Opt incurs a cost of
2i− 1. Hence, the ratio between the sum of the costs of all three algorithms
and Opt is at most 5.

In fact, the upper bound provided in Theorem 3 for the competitive ratio
of the best algorithm among Timestamp, MtfO and MtfE is tight under
the partial cost model. To show this, we make use of the following lemma.

Lemma 3.5. Consider a sequence σα =
〈
x(yxxx yxxx)k

〉
, i.e., a single

request to x, followed by k repetitions of (yxxx yxxx). Assume the list
is initially ordered as [xy]. We have MtfO(σ) = MtfE(σ) = 4k while
Opt(σ) = 2k (under the partial cost model).

Proof. We refer to each repetition of (yxxx yxxx) as a round. Initially, the
bits maintained by MtfO (resp. MtfE) for x, y are (1, 1) (resp. (0,0)). After
the first request to x, the bits of MtfO (resp. MtfE) change to (0, 1) (resp.
(1,0)) for x, y. MtfO incurs a cost of 3 for the first half of each round; it
incurs a cost of 1 for all requests except the last request to x. MtfE incurs a
cost of 1 for serving the first half of a round; it only incurs a cost of 1 on the
first request y. After serving the first half, the list for each algorithm will be
ordered as [xy] and the bits maintained by MtfO (resp. MtfE) for x, y will
be (1, 0) (resp. (0,1)). Using a symmetric argument, the costs of MtfO and
MtfE for the second half of a round are respectively 1 and 3. In total, both
MtfO and MtfE incur a cost of 4 for each round. After serving the round,

13



the list maintained by both algorithms will be ordered as [xy] and the bits
associated with the items will be the same as at the start of the first round.
Thus, MtfO and MtfE each have a total cost of 4k on σα. A summary of
actions and costs of MtfO and MtfE can be stated as follows (the numbers
below the arrows indicate the costs of requests on top, and the numbers on
top of x and y indicate their bits):

[
0
x
1
y]

y−→
1

[
0
y
0
x]

x−→
1

[
0
y
1
x]

x−→
1

[
0
x
0
y]

x−→
0

[
1
x
0
y]

y−→
1

[
1
x
1
y]

x−→
0

[
0
x
1
y]

x−→
0

[
1
x
1
y]

x−→
0

[
0
x
1
y]

[
1
x
0
y]

y−→
1

[
1
x
1
y]

x−→
0

[
0
x
1
y]

x−→
0

[
1
x
1
y]

x−→
0

[
0
x
1
y]

y−→
1

[
0
y
0
x]

x−→
1

[
0
y
1
x]

x−→
1

[
0
x
0
y]

x−→
0

[
1
x
0
y]

An optimal algorithm Opt never changes the ordering of the list and has
a cost of 2 for the whole round, giving a cost of 2k for σα.

Theorem 3.6. There are sequences for which the costs of all of Timestamp,
MtfE, and MtfO are 1.6̄ times that of Opt (under the partial cost model).

Proof. Consider a sequence σ = σασβ where σα = x(yxxx yxxx)kα and
σβ = (yyxx)kβ . Here, kα is an arbitrary large integer and kβ = 2kα. By
Lemma 3.5, we have MtfO(σα) = MtfE(σα) = 4kα while Opt(σα) = 2kα.
We have Timestamp(σα) = 2kα, because it does not move y from the second
position.

Next, we study the cost of MtfO and MtfE for serving σβ. Note that
after serving σα, the lists maintained by these algorithms is ordered as [xy]
and the bits associated with x and y are respectively (0, 1) for MtfO and
(1, 0) for MtfE (see the proof of Lemma 3.5). We show that for each round
yyxx of σβ, the cost of each of these two algorithms is 3. On the first request
to y, MtfO moves it to the front (since the bit maintained for y is 1); so it
incurs a cost of 1 for the first requests to y. On the first request to x, MtfO
keeps x in the second position; hence it incurs a cost of 2 for the requests
to x. In total, it has a cost of 3 for the round. With a similar argument,
MtfE incurs a cost of 2 for the requests to y and a cost of 1 for the requests
to x and a total cost of 3. The list order and bits maintained for the items
will be the same at the end of the round as at the start. Hence, the same
argument can be extended to other rounds to conclude that the cost of both
MtfE and MtfO for serving σβ is 3kβ. On the other hand, Timestamp
incurs a cost of 4 on each round as it moves items to the front on the second
consecutive request to them; hence, the cost of Timestamp for serving σβ is

14



4kβ. An algorithm that moves items in front on the first of two consecutive
requests to them will incur a cost of 2 on each round; hence the cost of Opt
for serving σβ is at most 2kβ.

To summarize, the cost of each of MtfO and MtfE for serving σ is
4kα + 3kβ = 10kα while the cost of Timestamp is 2kα + 4kβ = 10kα, and the
cost of Opt is 2kα + 2kβ = 6kα. As a consequence, all three algorithms have
a cost which is 10/6 = 1.6̄ times that of Opt.

Before continuing with lower bounds, we compare the the results of
Theorem 3.1 with the randomized algorithm COMB [4], which chooses to
use BIT [27] with probability 4/5 and Timestamp with probability 1/5.
BIT is the randomized algorithm which, for each item in the list, initially
chooses randomly and independently with probability 1/2 whether that item
should be moved to the front on odd or even accesses to it. BIT is 1.75-
competitive [27]. COMB achieves a competitive ratio of 1.6, so for any
request sequence I, either Timestamp must achieve a performance ratio of
1.6 compared to Opt, or there must be some setting of the randomized bits
for BIT which achieves a ratio of 1.6. This immediately gives an online algo-
rithm with advice achieving the ratio 1.6 and using `+ 1 bits of advice, one
bit to specify Timestamp or BIT and ` bits for BIT.

The phase partitioning in the proof of Theorem 3.1 uses more subcases
than the proof for COMB, since it cannot assume independence of the times
when x and y are moved to the front. It might be tempting to try to obtain
an online algorithm with advice which achieves the ratio 1.6, as COMB
does. The idea would be to create a randomized algorithm which uses MtfE
and MtfO each with probability 2/5 and Timestamp with probability 1/5,
and then change that to an algorithm using advice instead. The proof of
Theorem 3.6 shows that this does not work, at least in the partial cost model.
Consider the sequence σα. Since both MtfE and MtfO have cost 4kα, and
Timestamp and Opt both have cost 2kα, the performance ratio one achieves
with this weighting is 1.8.

On the other hand, note that MtfE and MtfO are equivalent to BIT
in the cases where all the random bits are identical, either all zero or all
one. Thus, using Theorem 3.1, one obtains a randomized algorithm with less
randomness than COMB (choosing with equal probabilities between MtfE,
MtfO, and Timestamp) with a competitive ratio of 1.6̄. In addition, by
Theorem 3.11 below, if only one bit of randomness is used for BIT, to decide
whether MtfE or MtfO is used, the resulting algorithm is 2-competitive.

15



The lower bound proven on the competitiveness of this algorithm using only
one bit of advice is 1.75.

It is clear in general that a c-competitive randomized algorithm using
b(n) random bits for sequences of length n automatically gives a c-competitive
algorithm with advice using b(n) bits of advice. Advice can be more powerful,
though. It was shown in [12] that for minimization problems, for all ε > 0,
the existence of a c-competitive randomized algorithm implies the existence
of a (1 + ε)c-competitive algorithm using at most dlog ne + 2dlogdlog nee +

log
(
b log(m(n)
log(1+ε)

c
)

+ 1 bits of advice, where m(n) is the number of possible

inputs of length n.
The lower bound from Theorem 3.6 cannot easily be extended to the

full cost model. In what follows, we provide, for the full cost model, a
lower bound of 1.6 for the competitive ratio of the best algorithm among
Timestamp, MtfE, and MtfO. We start with the following lemma:

Lemma 3.7. Consider a list of l items which is initially ordered as [a1, a2, . . . , al].
Consider the following sequence of requests with an m-fold repetition:

σβ =
〈
(a1, a2, ..., al, a

2
1, a

2
2, ..., a

2
l , al, al−1, ..., a1, a

2
l , a

2
l−1, ..., a

2
1)
m
〉
.

Then for large l, we have MtfO(σβ) = MtfE(σβ) = m · (3.5l2 +o(l2)) while
Timestamp(σβ) = m · (2l2 + o(l2)) (under the full cost model).

Proof. Define a phase to be a subsequence of requests which forms one of
the m repetitions in σβ. We calculate the costs of the algorithms for each
phase. Note that each phase contains an even number of requests to each
item. Also, if i < j, so item ai precedes item aj in the initial ordering of
the list, then, in each phase, ai is requested twice after the last request to
aj. Each algorithm moves ai in front of aj on the first or second of these
requests. Thus, the state of the list maintained by all algorithms is the same
as with the initial ordering after serving a phase.

Each of the three algorithms incurs a cost of l(l+1)/2 for serving a1, a2, . . . , al
at the beginning of a phase. MtfO moves items to the front, reversing the
list, but MtfE and Timestamp do not move the items. For serving the
subsequent requests to a21, a

2
2, ..., a

2
l , MtfO incurs a cost of 2l2 since it does

not move items to the front on the first of the two consecutive requests to an
item, but on the second request. MtfE and Timestamp move to the front
at the first of the consecutive requests and incur a cost of l(l + 1)/2 + l (the
second request is to front of the list). At this point, for all three algorithms,

16



the list is in the reverse of the initial ordering since for i < j there have been
two consecutive requests to aj after the last request to ai. Also, the bits
maintained by MtfE and MtfO are flipped compared to the beginning of
the phase (since there have been three requests to each item). Thus, for the
second half of the list, MtfE and MtfO reverse roles. For the next requests
to al, al−1, . . . , a1, only MtfE reverses the list, and each of the three algo-
rithms incurs a cost of l(l + 1)/2. Consequently, for the remaining requests
to a2l , a

2
l−1, . . . , a

2
1, MtfE incurs a cost of 2l2, while MtfO and Timestamp

each incur a cost of l(l + 1)/2 + 2l.
To summarize, the costs of both MtfO and MtfE for each phase is

3.5l2+o(l2), while the cost of Timestamp is 2l2+o(l2). The actions and costs
of the algorithms can be summarized as following (as before, the numbers
below arrows indicate the cost for serving the sequence on top, and the
numbers on top of items indicate the bits maintained by MtfO and MtfE).
The three lines correspond to MtfE, MtfO, and Timestamp, respectively.

[
0
a1 . . .

0
al]

a1...al−−−−−−−→
l2/2+o(l2)

[
1
a1 . . .

1
al]

a2
1...a

2
l−−−−−−−→

l2/2+o(l2)
[
1
al . . .

1
a1]

al...a1−−−−−−−→
l2/2+o(l2)

[
0
a1 . . .

0
al]

a2
l ...a

2
1−−−−−−→

2l2+o(l2)
[
0
a1 . . .

0
al]

[
1
a1 . . .

1
al]

a1...al−−−−−−−→
l2/2+o(l2)

[
0
al . . .

0
a1]

a2
1...a

2
l−−−−−−→

2l2+o(l2)
[
0
al . . .

0
a1]

al...a1−−−−−−−→
l2/2+o(l2)

[
1
al . . .

1
a1]

a2
l ...a

2
1−−−−−−−→

l2/2+o(l2)
[
1
a1 . . .

1
al]

[a1 . . . al]
a1...al−−−−−−−→

l2/2+o(l2)
[a1 . . . al]

a2
1...a

2
l−−−−−−−→

l2/2+o(l2)
[al . . . a1]

al...a1−−−−−−−→
l2/2+o(l2)

[al . . . a1]
a2
l ...a

2
1−−−−−−−→

l2/2+o(l2)
[a1 . . . al]

The sequence σβ of the above lemma shows that using one bit of advice to
decide between using MtfE and MtfO gives a competitive ratio of at least
1.75, but Timestamp serves σβ optimally. Next, we introduce sequences
for which Timestamp performs significantly worse than both MtfO and
MtfE.

Lemma 3.8. Consider a list of l items which is initially ordered as [a1, a2, . . . , al].
Consider the following sequence of requests:

σγ =
〈
(a3l , a

3
2, ..., a

3
1)

2s
〉
.

Assuming that l is sufficiently large, we have MtfO(σγ) = MtfE(σγ) =
s(3l2 + o(l2)), while Timestamp(σγ) = s(4l2 + o(l2)) and Opt(σγ) = s(2l2 +
o(l2)) (under the full cost model).

17



Proof. Define a phase to be two consecutive repetitions of the subsequence
in parentheses. We calculate the costs of the algorithms for each phase. Note
that there are an even number of requests in each phase, and for i < j, there
are (actually more than) two consecutive requests to ai after the last request
to aj. So the list orderings and bits maintained by MtfO and MtfE are
the same for each algorithm before and after serving each phase. Similarly,
after serving the first half of a phase (the subsequence in parentheses), the
lists of all three algorithms are the same as the initial ordering.

An optimal algorithm applies the Mtf strategy and incurs a cost of
2l2 + 4l. More precisely, for serving each half of the phase, it incurs a cost of
l2 for the first of three consecutive requests to each item, and a total cost of
2l for the second and third requests. Timestamp moves items to the front
on the second of three consecutive requests. In each half of a phase, it incurs
a total cost of 2l2 for the first two requests to items and a cost of l for the
third requests. In total, it incurs a cost of 4l2 + 2l for each phase. For the
first half of the phase, MtfO moves items to front on the first request to
each item, while MtfE does so on the second requests. Hence, MtfO and
MtfE respectively incur a cost of l2 + 2l and 2l2 + l for the first half. For
the second half, the bits maintained by the algorithms are flipped, while the
list ordering is the same as the initial ordering. Hence, MtfO and MtfE
respectively incur a cost of 2l2 + l and l2 + 2l for the second half. In total
the costs of each of MtfO and MtfE for each phase is 3l2 + 3l. Since
the cost of all algorithms are the same for all phases, the statement of the
lemma follows. The actions and costs of the algorithms for each phase can
be summarized as follows:

MtfE :[
0
a1 . . .

0
al]

a3l ...a
3
1−−−−−→

2l2+o(l2)
[
1
a1 . . .

1
al]

a3l ...a
3
1−−−−→

l2+o(l2)
[
0
a1 . . .

0
al]

MtfO :[
1
a1 . . .

1
al]

a3l ...a
3
1−−−−→

l2+o(l2)
[
0
a1 . . .

0
al]

a3l ...a
3
1−−−−−→

2l2+o(l2)
[
1
a1 . . .

1
al]

Timestamp :[a1 . . . al]
a3l ...a

3
1−−−−−→

2l2+o(l2)
[a1 . . . al]

a3l ...a
3
1−−−−−→

2l2+o(l2)
[a1 . . . al]

Opt :[a1 . . . al]
a3l ...a

3
1−−−−→

l2+o(l2)
[a1 . . . al]

a3l ...a
3
1−−−−→

l2+o(l2)

We use the above two lemmas to prove the following theorem. We remark

18



that for the partial cost model, a stronger result is proven in [6], which
establishes that 1.6 is a lower bound for any projective algorithm.

Theorem 3.9. The competitive ratio of the best algorithm among MtfE,
MtfO, and Timestamp is at least 1.6 under the full cost model.

Proof. Consider the sequence σ = σβσγ, i.e., the concatenation of the se-
quences σβ and σγ as defined in Lemmas 3.7 and 3.8. Recall that these
sequences consist of m and s phases, respectively. In defining σ, consider
values of s which are multiples of 3, and let m = 2s/3.

Assume the initial ordering is also the same as the one stated in the
lemmas, and recall that the state of the algorithms (list ordering and bits of
MtfO and MtfE) are the same at the end of serving σβ. The costs of each
of MtfE and MtfO for serving σβ is 3.5l2m + o(l2m) = 7

3
l2s + o(l2s) (by

Lemma 3.7), while they incur a cost of 3l2s+o(l2s) for σγ (by Lemma 3.8). In
total, each of these two algorithms incurs a cost of 16

3
l2s+o(l2s) for σ. On the

other hand, Timestamp incurs a cost of 2l2m+o(l2m) = 4
3
l2s+o(l2s) for σβ

and a cost of 4l2s+o(l2s) for σγ. In total, its cost for σ is 16
3
l2s+o(l2s). Note

that all three algorithms have the same costs for serving σ. The cost of Opt
for serving σβ is at most 2l2m + o(l2m) = 4

3
l2s + o(l2s) (by Lemma 3.7)),

while it has a cost of 2l2s + o(l2s) for serving σγ. In total, the cost of
Opt is 10

3
l2s + o(l2s). Comparing this with the cost of 16

3
l2s + o(l2s) of the

three algorithms, we conclude that the minimum competitive ratio is at least
1.6.

Thus, the competitive ratio of the best of the three algorithms, MtfO,
MtfE, and Timestamp, is at least 1.6 and at most 1.6̄. We concluded after
Lemma 3.7 that the competitive ratio of the better of MtfO and MtfE is at
least 1.75. Here, we show that the competitive ratio of the better algorithm
among MtfO and MtfE is at most 2, using the potential function method.

Lemma 3.10. For any sequence σ of length n, we have

MtfO(σ) + MtfE(σ) ≤ 4Opt(σ).

Proof. Consider an algorithm A ∈ {MtfO,MtfE}. At any time t (i.e.,
before serving the tth request), we say a pair (a, b) of items forms an inversion
if a appears before b in the list maintained by A while b appears before a in
the list maintained by Opt. We define the weight of an inversion (a, b) to
be 1, if the bit maintained by A for b is 1, and 2 otherwise. Intuitively, the

19



weight of an inversion is the number of accesses to the latter of the two items
in A’s list before the item is moved to the front and the inversion disappears.

We define the potential, Φt, at each time t to be the total weight of
the inversions in the list maintained by MtfO plus the total weight of the
inversions in the list maintained by MtfE.

We consider the events that involve costs and change the potential func-
tion. An online event is the processing of a request by both MtfO and
MtfE. An offline event is Opt making a paid exchange. The latter is
not directly associated with a request, and we define the cost of MtfO and
MtfE in connection with this event to be zero, but there may be a change
in the potential function.

For an event at time t, we define the amortized cost at to be the to-
tal cost paid by MtfO and MtfE together for processing the request
(if any), plus the increase in potential due to that processing, i.e., at =
MtfOt +MtfEt +Φt − Φt−1. So the total cost of MtfO and MtfE for
serving a sequence σ is

∑
t at− (Φlast−Φ0). The maximum possible value of

Φlast − Φ0 is independent of the length of the sequence. Hence, to prove the
competitiveness of MtfO and MtfE together, it is enough to bound the
amortized cost relative to Opt’s cost. Let Optt be the cost paid by Opt at
event t. To prove the lemma, it suffices to show that for each event, we have
at ≤ 4Optt.

Note that one may assume that Opt only does paid exchanges, no free
ones [26]. Consider MtfO and MtfE for an online event. Let A be the
algorithm that moves y to the front, while A′ is the other algorithm, i.e.,
the one that keeps it at its current position. Assume A accesses y at index
k while A′ finds it at index k′. Also, let j denote the index of y in the list
maintained by Opt.

We first show that the contribution by A to the amortized cost is at most
k − (k − j) + 2j = 3j. The first term (k) is the access cost for A. Before
moving y to front, there are at least k − j inversions with y for A involving
items which occur before y, each having a weight of 1 (since the bit of y in
A has been 1 as it moves y to front). All these inversions are removed after
moving y to front. This gives the second term in the amortized cost, i.e.,
−(k−j). Moving y to the front creates at most j new inversions, each having
a weight of at most 2, which results in a total increase of 2j in the potential.
Next, we show that the contribution by A′ to the amortized cost is at most
k′ − (k′ − j) = j. This is because, after accessing y at index k′, there are
at least k′ − j inversions with y for A′ involving items which occur before

20



y. Since A′ does not move y to the front, the bit of y was 0, i.e., all these
inversions had weight 2. After the access, the bit of y becomes 1 and the
weights of these inversions decreases 1 unit. To summarize, the amortized
cost at is at most 3j + j = 4j. Since Opt accesses y at index j, we have
Optj = j and consequently at ≤ 4Optt.

Next, consider an offline event where Opt makes a paid exchange. In
doing so, it incurs a cost of 1 and Optt = 1. This single exchange might
create an inversion in the list of MtfO and an inversion in the list of MtfE.
Each of these inversions have a weight of at most 2. So, the total increase in
the potential is at most 4, i.e., at ≤ 4. Consequently, at ≤ 4Optt.

The above lemma implies that the better algorithm between MtfO and
MtfE has a competitive ratio of at most 2. By Lemma 3.7, such an algorithm
has a competitive ratio of at least 1.75.

Theorem 3.11. The competitive ratio of the better algorithm between MtfO
and MtfE is at least 1.75 and at most 2.

4. Analysis of Move-To-Front-Every-Other-Access

In the previous sections, we have used MtfE and MtfO to devise al-
gorithms with better competitive ratios. These algorithms are Move-To-
Front-Every-Other-Access algorithms (also called Mtf2 algorithms). In this
section, we study the competitive ratio of these algorithms. In [14, Exercise
1.5], it is stated that Mtf2 is 2-competitive (throughout, by ‘Mtf2’, we
mean ‘an algorithm that belongs to the family of Mtf2 algorithms’). The
same statement is repeated in [8, 23]. It was first observed in [19] that Mtf2
is in fact not 2-competitive. There, the author proves a lower bound of 7/3
for the competitive ratio of Mtf2, and claims that an upper bound of 2.5
can be achieved. Here, we show that the competitive ratio of Mtf2 is 2.5,
and it is tight.

Lemma 4.1. The competitive ratio of Move-To-Front-Every-Other-Access
algorithms is at least 2.5 (under both partial and full cost models).

Proof. We prove the lemma for MtfO and later extend it to other Move-
To-Front-Every-Other-Access algorithms.

Consider a list of l items, initially ordered as [a1, a2, . . . , al]. Consider the
following sequence of requests:

σδ =
〈
(a1, a2, ..., al, a

3
1, a

3
2, ..., a

3
l , al, al−1, ..., a1, a

3
l , a

3
l−1, ..., a

3
1)
m
〉
.

21



We show that asymptotically, the cost of MtfO is 2.5 times the cost of Opt.
Similar to our other lower bound proofs, we define a phase as a subsequence
of requests which forms one of the m repetitions in σδ. Note that each phase
contains an even number of requests to each item. Also, if i < j, meaning
that item ai precedes item aj in the initial ordering of the list, then, in each
phase, ai is requested three times after the last request to aj. MtfO moves
ai in front of aj due to these requests. Thus, the state of the list maintained
by the algorithm is the same as the initial ordering after serving a phase.

Both MtfO and Opt incur a cost of l(l+1)/2 for serving a1, a2, . . . , al at
the beginning of a phase. MtfO moves items to the front and reverses the
list, but Opt does not move the items. For serving the subsequent requests
to a31, a

3
2, ..., a

3
l , MtfO incurs a cost of 2l2+l since it moves items to the front

on the second of the three consecutive requests to an item. Opt moves to the
front at the first of the consecutive requests and incurs a cost of l(l+1)/2+2l
(the second and third requests are to the front of the list). At this point, for
both algorithms, the list is in the reverse of the initial ordering, while the
bits maintained by MtfO are the same as in the beginning of the phase,
since there have been four requests to each item, i.e., they are all 1.

For the next requests to al, al−1, . . . , a1, MtfO reverses the list and incurs
a cost of l(l + 1)/2. Opt has the same cost and does not move the items.
Consequently, for the remaining requests to a3l , a

3
l−1, . . . , a

3
1, MtfO incurs a

cost of 2l2 + l, while Opt incurs a cost of l(l + 1)/2 + 2l.
To summarize, in each phase, the cost of MtfO is 5l2 + o(l2), while the

cost of Opt is 2l2 + o(l2). The actions and costs of the algorithms can be
summarized as follows.

MtfO :

[
1
a1 . . .

1
al]

a1...al−−−−−−−→
l2/2+o(l2)

[
0
al . . .

0
a1]

a3
1...a

3
l−−−−−−→

2l2+o(l2)
[
1
al . . .

1
a1]

al...a1−−−−−−−→
l2/2+o(l2)

[
0
a1 . . .

0
al]

a3
l ...a

3
1−−−−−−→

2l2+o(l2)
[
1
a1 . . .

1
al]

Opt :

[a1 . . . al]
a1...al−−−−−−−→

l2/2+o(l2)
[a1 . . . al]

a3
1...a

3
l−−−−−−−→

l2/2+o(l2)
[al . . . a1]

al...a1−−−−−−−→
l2/2+o(l2)

[al . . . a1]
a3
l ...a

3
1−−−−−−−→

l2/2+o(l2)
[a1 . . . al]

We can extend the above lower bound to show that MtfE is at least
2.5-competitive. In doing so, consider the sequence 〈(a1, a2, . . . , al)σδ〉. Note
that after serving the subsequence in parentheses, all bits maintained by
MtfE become 1, and the same analysis as above holds for serving σδ. More

22



generally, for any initial setting of the bits maintained by a Move-To-Front-
Every-Other-Access algorithm, we can start a sequence with a single request
to each item having bit 0. After this subsequence, all bits are 1 and we
can continue the sequence with σδ to prove a lower bound of 2.5 for the
competitive ratio of these algorithms. The starting subsequence adds an
extra term of at most l2/2+o(l2) to the costs of both Opt and the algorithm.
This extra term can be ignored for sufficiently long sequences, i.e., when the
value of m is asymptotically larger than l.

As mentioned earlier, an upper bound of 2.5 for the competitive ratio of
Mtf2 was claimed earlier [19]. Here we include the proof for completeness
since it does not appear to have ever been published.

Lemma 4.2. The competitive ratio of any algorithm A which belongs to the
Move-To-Front-Every-Other-Access family of algorithms is at most 2.5.

Proof. We prove the statement for the partial cost model. Since A has the
projective property and is cost-independent, the upper bound argument ex-
tends to the full cost model. Consider a sequence σxy of two items x and
y. As before, we use the phase partitioning technique and partition σxy into
phases as in the proof of Lemma 3.2. Recall that a phase ends with two con-
secutive requests to the same item in σxy. A phase has type 1 (respectively 2)
if the relative order of x and y is [xy] (respectively [yx]) at the beginning of
the phase. Recall that a phase of type 1 has one of the following three forms
(j ≥ 0 and k ≥ 1):

(a) xjyy (b) xj(yx)kyy (c) xj(yx)kx

A phase of type 2 has exactly the same form as above with x and y inter-
changed. To prove the lemma, we show that its statement holds for every
two consecutive phases. First, we consider each phase separately and show
that the cost of Mtf2 is at most 2 times that of Opt for all phases except
a specific phase type that we call a critical phase. Table 4 shows the costs
incurred by Mtf2 and Opt for each phase. Note that phases of the form
(b) and (c) are divided into two and three cases, respectively. The last row
in the table corresponds to a critical phase. We discuss the different phases
of type 1 separately. Similar analyses, with x and y interchanged, apply to
the phases of type 2.

Note that before serving a phase of type 1, the list is ordered as [xy] and
the first j requests to x have no cost. Consider phases of the form (a), xjyy.

23



Mtf2 incurs a total cost of at most 2 for serving yy and Opt incurs a cost
of 1. So, the ratio between the costs of Mtf2 and Opt is at most 2.

Next, consider phases of the form (b) with k = 2i (i is a positive integer).
By Lemma 3.3, the cost incurred by Mtf2 is at most 3i for serving (yx)2i.
For the remaining two requests to y, Mtf2 incurs a cost of at most 2. In
total, the cost of Mtf2 is at most 3i + 2 compared to 2i + 1 for Opt, and
the ratio between them is less than 2.

Next, assume k is odd and k = 2i − 1, i.e., the phase has the form
xj(yx)2i−2yxyy. The total cost of Mtf2 for (yx)2i−2 is at most 3(i − 1)
(Lemma 3.3), and its cost for the next requests to yxyy is at most 4. In
total, it incurs a cost of at most 3i+ 1 for the phase, which is no more than
twice the cost 2i of Opt.

Next, consider phases of the form (c). Assume k is even, i.e., the phase
has the form xj(yx)2ix. By Lemma 3.3, Mtf2 incurs a cost of at most 3i
for (yx)2i and a cost of at most 1 for the single request to x. The cost of
the algorithm will be 3i + 1 compared to 2i of Opt, and the ratio between
them is no more than 2. Next, assume k is odd, i.e., the phase has the form
xj(yx)2iyxx or xjyxx (as before, i is a positive integer). In the first case, by
Lemma 3.3, Mtf2 incurs a cost of 3i for xj(yx)2i and a cost of at most 3 for
yxx. This sums to 3i+ 3 while Opt incurs a cost of 2i+ 1; the ratio between
these two is no more than 2. If the phase has the form xjyxx, we refer to it
as a critical phase. The cost of Mtf2 for such a phase can be as large as 3
while Opt incurs a cost of 1. However, we show that the cost of Mtf2 in
two consecutive phases is no more than twice the cost of Opt.

Consider two consecutive phases in σxy. If none of the phases are critical,
the cost of Mtf2 is at most twice that of Opt in both phases and we are
done. Assume one of the phases is critical while the other phase is not.
Let Opt1 and Opt2 denote the cost of Opt for the critical and non-critical
phases, respectively. We have Opt1 ≤ Opt2 because Opt incurs a cost of 1
for critical phases and a cost of at least 1 for other phases (see Table 4). The
cost of Mtf2 for serving the two phases is at most 3Opt1 +2Opt2 which
is no more than 2.5(Opt1 +Opt2) (since Opt1 ≤ Opt2). This implies
that the cost of Mtf2 is no more than 2.5 more than that of Opt for the
two phases. Finally, assume both phases are critical. Thus, they form a
subsequence (xjyxx)(xj

′
yxx) in σxy. Mtf2 moves y to the front for exactly

one of the two requests to y. Thus, it incurs a cost of 1 for one of the phases
and a cost of at most 3 for the other phase. In total, its cost is no more than
4, while Opt incurs a cost of 2 for the two phases.

24



Phase Mtf2 Opt’ ratio
xjyy ≤ 2 1 ≤ 2

xj(yx)2iyy ≤ 3i+ 2 2i+ 1 < 2
xj(yx)2i−2yxyy ≤ 3(i− 1) + 4 2i ≤ 2
xj(yx)2ix ≤ 3i+ 1 2i ≤ 2
xj(yx)2iyxx ≤ 3i+ 3 2i+ 1 ≤ 2
xjyxx 3 1 3

Table 4: The costs of Mtf2 and Opt for a phase of type 1 (i.e., the initial ordering of
items is xy). The ratio between the cost of Mtf2 and Opt for each phase, except the
critical phase (the last row), is at most 2.

From Lemmas 4.1 and 4.2, we conclude the following theorem:

Theorem 4.3. The competitive ratio of Move-To-Front-Every-Other-Access
algorithms is 2.5.

5. Concluding remarks

It is generally assumed that the offline oracle that generates advice bits
has unbounded computational power. We used this assumption when we
showed that Opt(σ) bits are sufficient to achieve an optimal solution in
Section 2. However, for the algorithm introduced in Section 3, the advice
bits can be generated in polynomial time. Table 5 provides a summary of
the provided bounds for the competitive ratio of different algorithms.

The offline version of the list update problem is known to be NP-hard [5].
In this sense, our algorithm can be seen as a linear-time approximation algo-
rithm with an approximation ratio of at most 1.6̄; this is, to the best of our
knowledge, the best deterministic offline algorithm for the problem. As men-
tioned earlier, the randomized algorithm COMB [4], which is 1.6-competitive,
implies the existence of an online algorithm achieving a competitive ratio of
at most 1.6 when provided a linear (in the length of the list) number of ad-
vice bits. However, from a practical point of view, it is not clear how an
offline oracle can smartly generate such bits of advice. Moreover, our results
(Theorem 4.3) indicate that, regardless of how the initial bits are generated,
algorithm Bit has a competitive ratio of 2.5 against adaptive adversaries.
This follows since an adaptive adversary can learn the original random bits
from the behavior of Bit by requesting all items once, and then give requests
to change 0-bits to 1-bits. This initial subsequence has constant length (pro-
portional to the length of the list). After this, with a renaming of items based

25



Algorithm
Lower Bound Upper Bound

partial cost model full cost model (both models)

Best of MtfO, MtfE, and Timestamp 1.6̄ 1.6 1.6̄
(Theorem 3.6) (Theorem 3.9 (Theorem 3.1)

Better of MtfO and MtfE 2 1.75 2
(Lemma 3.5) (Lemma 3.7) (Lemma 3.10)

Mtf2 (MtfO, MtfE, etc.) 2.5 2.5 2.5
(Lemma 4.1) (Lemma 4.1) (Lemma 4.2)

Table 5: Summary of proved lower and upper bounds for the competitive ratio of different
algorithms.

on their current order in the list, the adversary can treat Bit as MtfO and
give σδ from the proof of Lemma 4.1.

We proved that the competitive ratio of the best algorithm among MtfE,
MtfO, and Timestamp is at least 1.6 and at most 1.6̄. Similarly, for the
better algorithm between MtfE and MtfO the competitive ratio is between
1.75 and 2. It would be interesting to close these gaps.

Acknowledgements

The authors would like to thank the referees for inquisitive and construc-
tive comments. The first and third authors were supported in part by the
Villum Foundation and the Danish Council for Independent Research, Nat-
ural Sciences.

References

[1] Albers, S., 1998. A competitive analysis of the list update problem with
lookahead. Theoret. Comput. Sci. 197 (1–2), 95–109.

[2] Albers, S., 1998. Improved randomized on-line algorithms for the list
update problem. SIAM J. Comput. 27 (3), 682–693.

[3] Albers, S., Mitzenmacher, M., 1998. Average case analyses of list update
algorithms, with applications to data compression. Algorithmica 21 (3),
312–329.

26



[4] Albers, S., von Stengel, B., Werchner, R., 1995. A combined BIT and
TIMESTAMP algorithm for the list update problem. Inform. Process.
Lett. 56, 135–139.

[5] Ambühl, C., 2000. Offline list update is NP-hard. In: Proc. 8th European
Symp. on Algorithms (ESA). Vol. 1879 of Lecture Notes in Comput. Sci.,
Springer. pp. 42–51.

[6] Ambühl, C., Gärtner, B., von Stengel, B., 2013. Optimal lower bounds
for projective list update algorithms. ACM Trans. Algorithms 9 (4),
Article No. 31.

[7] Angelopoulos, S., Dürr, C., Kamali, S., Renault, M. P., Rosén, A., 2015.
Online bin packing with advice of small size. In: Proc. 14th Algorithms
and Data Structures Symp. (WADS). Vol. 9214 of Lecture Notes in
Comput. Sci., Springer. pp. 40–53.

[8] Bachrach, R., El-Yaniv, R., Reinstadtler, M., 2002. On the competitive
theory and practice of online list accessing algorithms. Algorithmica
32 (2), 201–245.

[9] Bentley, J. L., Sleator, D., Tarjan, R. E., Wei, V. K., 1986. A locally
adaptive data compression scheme. Commun. ACM 29 (4), 320–330.

[10] Bianchi, M. P., Böckenhauer, H.-J., Hromkovič, J., Keller, L., 2012.
Online coloring of bipartite graphs with and without advice. In: Proc.
18th Computing and Combinatorics Conf. (COCOON). Vol. 7434 of
Lecture Notes in Comput. Sci., Springer. pp. 519–530.

[11] Böckenhauer, H.-J., Hromkovič, J., Komm, D., Krug, S., Smula, J.,
Sprock, A., 2013. The string guessing problem as a method to prove
lower bounds on the advice complexity. In: Proc. 19th Computing and
Combinatorics Conf. (COCOON). Vol. 7936 of Lecture Notes in Com-
put. Sci., Springer. pp. 493–505.

[12] Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., 2011. On the
advice complexity of the k-server problem. In: Proc. 38th International
Colloquium on Automata, Languages, and Programming (ICALP). Vol.
6755 of Lecture Notes in Comput. Sci., Springer. pp. 207–218.

27



[13] Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.,
2009. On the advice complexity of online problems. In: Proc. 20th In-
ternational Symp. on Algorithms and Computation (ISAAC). Vol. 5878
of Lecture Notes in Comput. Sci., Springer. pp. 331–340.

[14] Borodin, A., El-Yaniv, R., 1998. Online Computation and Competitive
Analysis. Cambridge University Press.

[15] Boyar, J., Kamali, S., Larsen, K. S., López-Ortiz, A., 2014. Online bin
packing with advice. In: Proc. 31st Symp. on Theoretical Aspects of
Computer Science (STACS). pp. 174–186.

[16] Dobrev, S., Královič, R., Pardubská, D., 2008. How much information
about the future is needed? In: Proc. 34th International Conf. on Cur-
rent Trends in Theory and Practice of Computer Science (SOFSEM).
Vol. 4910 of Lecture Notes in Comput. Sci., Springer. pp. 247–258.

[17] Emek, Y., Fraigniaud, P., Korman, A., Rosén, A., 2011. Online compu-
tation with advice. Theoret. Comput. Sci. 412 (24), 2642 – 2656.

[18] Forǐsek, M., Keller, L., Steinová, M., 2012. Advice complexity of online
coloring for paths. In: Proc. 6th International Conf. on Language and
Automata Theory and Applications (LATA). Vol. 7183 of Lecture Notes
in Comput. Sci., Springer. pp. 228–239.

[19] Grüne, A., 2003. Mtf2 is not 2-competitive, unpublished manuscript.

[20] Gupta, S., Kamali, S., López-Ortiz, A., 2013. On advice complexity of
the k-server problem under sparse metrics. In: Proc. 20th International
Colloquium on Structural Information and Communication Complexity
(SIROCCO). pp. 55–67.

[21] Hromkovič, J., Královič, R., Královič, R., 2010. Information complexity
of online problems. In: Proc. 35th Symp. on Mathematical Foundations
of Computer Science (MFCS). Vol. 6281 of Lecture Notes in Comput.
Sci., Springer. pp. 24–36.

[22] Irani, S., 1991. Two results on the list update problem. Inform. Process.
Lett. 38, 301–306.

28



[23] Kamali, S., López-Ortiz, A., 2013. A survey of algorithms and mod-
els for list update. In: Space-Efficient Data Structures, Streams, and
Algorithms. Vol. 8066 of Lecture Notes in Comput. Sci., Springer. pp.
251–266.

[24] Kamali, S., López-Ortiz, A., 2014. Better compression through better
list update algorithms. In: Proc. 23rd Data Compression Conf. (DCC).
pp. 372–381.

[25] Komm, D., Královič, R., 2011. Advice complexity and barely random
algorithms. RAIRO Inform. Theor. Appl. 45 (2), 249–267.

[26] Reingold, N., Westbrook, J., 1996. Off-line algorithms for the list update
problem. Inform. Process. Lett. 60 (2), 75–80.

[27] Reingold, N., Westbrook, J., Sleator, D. D., 1994. Randomized compet-
itive algorithms for the list update problem. Algorithmica 11, 15–32.

[28] Renault, M. P., Rosén, A., 2011. On online algorithms with advice for
the k-server problem. In: Proc. 9th International Workshop in Approx-
imation and Online Algorithms (WAOA). Vol. 7164 of Lecture Notes in
Comput. Sci., Springer. pp. 198–210.

[29] Seibert, S., Sprock, A., Unger, W., 2013. Advice complexity of the on-
line coloring problem. In: Proc. 8th International Conf. on Algorithms
and Complexity (CIAC). Vol. 7878 of Lecture Notes in Comput. Sci.,
Springer. pp. 345–357.

[30] Sleator, D., Tarjan, R. E., 1985. Amortized efficiency of list update and
paging rules. Commun. ACM 28, 202–208.

29


	Introduction
	Contribution

	Optimal solution
	An algorithm with two bits of advice
	Analysis of Move-To-Front-Every-Other-Access
	Concluding remarks

