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Abstract

Chromatic trees were defined in [8] by Nurmi and Soisalon-Soininen,
as a new type of binary search tree for databases. The aim is to
improve runtime performance by allowing a greater degree of con-
currency, which, in turn, is obtained by uncoupling updating from
rebalancing. This also allows rebalancing to be postponed completely
or partially until after peak working hours.

The advantages of the proposal of Nurmi and Soisalon-Soininen are
quite significant, but there are definite problems with it. First, they
give no explicit upper bound on the complexity of their algorithm.
Second, some of their rebalancing operations can be applied many
more times than necessary. Third, some of their operations, when
removing one problem, create another.

We define a new set of rebalancing operations which we prove
give rise to at most ⌊log2(N + 1)⌋ − 1 rebalancing operations per
insertion and at most ⌊log2(N + 1)⌋ − 2 rebalancing operations per
deletion, where N is the maximum size the tree could ever have, given
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its initial size and the number of insertions performed. Most of these
rebalancing operations, in fact, do no restructuring; they simply move
weights around. The number of operations which actually change the
structure of the tree is at most one per update.

1 Introduction

In [8], Nurmi and Soisalon-Soininen considered the problem of fast execution
of updates in relations which are laid out as dictionaries in a concurrent
environment. A dictionary is a data structure which supports the operations
search, insert, and delete. Since both insertion and deletion modify the data
structure, they are called the updating operations. For an implementation
of a dictionary, Nurmi and Soisalon-Soininen propose a new type of binary
search tree, which they call a chromatic tree.

One standard implementation of a dictionary is as a red-black tree [4], which
is a type of balanced binary search tree. However, often when a data structure
is accessed and updated by different processes in a concurrent environment,
parts of the structure have to be locked while data items are changed or
deleted. In the case of red-black trees of size n, an update requires locking
O(log2(n)) nodes, though not necessarily simultaneously [4], in order to re-
balance the tree. No other users can access the subtree below a node which
is locked. Since the root is often one of the nodes locked, this greatly limits
the amount of concurrency possible.

This leads Nurmi and Soisalon-Soininen to consider a very interesting idea for
making the concurrent use of binary search trees more efficient: uncouple the
updating (insertion and deletion) from the rebalancing operations, so that
updating becomes much faster. The rebalancing can then be done by a back-
ground process, or it can be delayed until after peak working hours. Nurmi
and Soisalon-Soininen call this new data structure a chromatic tree. Another
important property of this data structure is that each of the updating and
rebalancing operations can be performed by locking only a small, constant
number of nodes, so considerable parallelism is possible. In [8], one locking
scheme is described in great detail. Other possibilities that help avoid some
of the locking are described in [6].
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The idea of uncoupling the updating from the rebalancing operations was
first proposed in [4], and has been studied in connection with AVL trees [1]
in [5, 9]. This idea has also been studied, to some extend, in connection with
B-trees [2]. A summary of this, along with references, can be found in [6].

A completely different approach to the problem of implementing dictionaries
in a concurrent environment is proposed by Pugh in [11]. The idea is to use
skip lists [10], a probabilistic data structure, which is fundamentally differ-
ent from the standard balanced binary search tree approaches. There is no
guarantee that a skip list is balanced or even that it will become balanced
at some point after updating has stopped. However, this data structure ex-
hibits a very fine average performance. In addition, when using skip lists,
the risk of a very bad performance for any particular search is really quite
insignificant. The main disadvantage in using skip lists is that each element
uses a variable amount of space. This is a problem in main memory, and
even more serious in designing an efficient storage plan for secondary mem-
ory. Though the data structure is definitely intended for main memory use,
reasonable performance is required if the data structure, or parts of it, must
be placed (temporarily) on secondary storage. One can, of course, allocate
maximum space for all elements, but then thirty-two extra words have to
be allocated per element (using the constants suggested by Pugh). In [11],
Pugh conjectured

It might be possible to design concurrent balanced tree algorithms
that allowed O(n) busy writers with high efficiency, but the com-
plexity of such algorithms probably would make their implemen-
tation prohibitive.

We believe that in this paper, a preliminary version of which appeared in [3],
we prove that conjecture false. Our operations have been implemented by
Malmi [7], though only for use in a sequential algorithm.

In this paper, we consider chromatic trees and propose a new set of re-
balancing operations which leads to significantly more efficient rebalancing.
Suppose the original search tree, T , has |T | nodes before k insertions and s

deletions are performed. Then N = |T |+ 2k is the best bound one can give
on the maximum number of nodes the tree ever has, since each insertion cre-
ates two new nodes (see below). In [8], it is shown that if their rebalancing
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operations are applied, then the tree will eventually become balanced. In
contrast, with these new operations, the tree will become rebalanced after at
most k(⌊log2(N+1)⌋−1)+s(⌊log2(N+1)⌋−2) = (k+s)(⌊log2(N+1)⌋−1)−s,
rebalancing operations which is O(log2(N)) for each update. In any balanced
binary search tree with N nodes, a single insertion or deletion would require
Θ(log2(N)) steps in the worst case simply to access the item, so the rebal-
ancing is also efficient. Most of these rebalancing operations, however, do
no restructuring; they simply move weights around. The total number of
operations which actually change the structure of the tree is at most equal
to the number of updates. Since it is only when the actual structure of the
tree is being changed that a user who is searching in the tree should be pre-
vented from accessing certain nodes, this should allow a considerable degree
of concurrency.

2 Chromatic Trees

The definition used in [8] for a chromatic tree is a modification of the defini-
tion in [4] for red-black trees. In this section, we give both of those definitions.
The binary search trees considered are leaf-oriented binary search trees, so
the keys are stored in the leaves and the internal nodes only contain routers

which guide the search through the tree. The router stored in a node v is
greater than or equal to any key in the left subtree and less than any key
in the right subtree. The routers are not necessarily keys which are present
in the tree, since we do not want to update routers when a deletion occurs.
The tree is a full binary tree, so each node has either zero or two children.

Each edge e in the tree has an associated nonnegative integer weight w(e).
If w(e) = 0, we call the edge red; if w(e) = 1, we say the edge is black; and if
w(e) > 1, we say the edge is overweighted. The weight of a path is the sum
of the weights on its edges, and the weighted level of a node is the weight of
the path from the root to that node. The weighted level of the root is zero.

Definition 2.1 A full binary search tree T with the following balance con-
ditions is a red-black tree:

B1: The parent edges of T ’s leaves are black.
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B2: All leaves of T have the same weighted level.

B3: No path from T ’s root to a leaf contains two consecutive red edges.

B4: T has only red and black edges. ✷

The definition of a chromatic tree is merely a relaxation of the balance con-
ditions.

Definition 2.2 A full binary search tree T with the following conditions is
a chromatic tree.

C1: The parent edges of T ’s leaves are not red.

C2: All leaves of T have the same weighted level. ✷

Insertion and deletion are the updates allowed in chromatic trees (and dictio-
naries in general). As for search trees in general, the operations are carried
out by first searching for the element to be deleted or for the right place to
insert a new element, after which the actual operation is performed. How
this is done can be seen in the appendix. The lower case letters are names
for the edges, and the upper case letters are names for the nodes. The other
labels are weights. We do not list symmetric cases.

In ordinary balanced search trees, rebalancing is performed at the time the
update occurs, moving from the leaf in question towards the root or in the
opposite direction. In a chromatic tree, the data structure is left as it is after
an update and rebalancing is taken care of later by other processes. The
advantages of this are faster updates and more parallelism in the rebalancing
process.

The maximum depth of any node in a red-black tree is O(log2(n)), but a
chromatic tree could be very unbalanced. We follow [8] in assuming that
initially the search tree is a red-black tree, and then a series of search, insert,
and delete operations occur. These operations may be interspersed with
rebalancing operations. The rebalancing operations may also occur after
all of the search and update operations have been completed; our results
are independent of the order in which the operations occur. In any case,
the search tree is always a chromatic tree, and after enough rebalancing
operations, it should again be a red-black tree.
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A chromatic tree can have two types of problems which prevent it from
being a red-black tree. First, it could have two consecutive red edges on
some root-to-leaf path; we call this a red-red conflict. Second, there could be
some overweighted edges; we call the sum

∑
e max(0, w(e)−1) the amount of

overweight in the tree. These two problems are easily identified when they
are created (for this purpose, it is necessary for each node to have a parent
pointer, in addition to the left and right child pointers). When a problem
is identified, a pointer to the top-most node involved is placed in a queue
for the rebalancing processes. We will ignore the problem of maintaining
this queue in a concurrent environment and ask the question: “How many
rebalancing operations are necessary?”

The proposal in [8] is quite successful in uncoupling the updating from the
rebalancing operations and in making the updates themselves fast. The
problem is that if the tree is large and is updated extensively, the number
of rebalancing operations that might be applied before the tree is red-black
again could be very large. The only bound they give on this number of
operations is that it will be finite, but using their proof of termination, one
can prove a specific finite bound of O(sN2), where s is the number of deletions
and N is the maximum size the tree could ever have. It seems hard to obtain
a better bound because their operations, when removing overweight, can
create new red-red conflicts.

3 New Rebalancing Operations

The new rebalancing operations are shown in the appendix. The seven weight
decreasing operations are referred to as (w1) through (w7). The order in
which operations are applied is unrestricted, except that an operation cannot
be applied if the conditions shown are not met. When an operation which
alters the actual structure of the tree occurs, all of the nodes being changed
must be locked. With the other operations, the weights being changed must
be locked, but users searching in the tree could still access (pass through)
those nodes.

The rebalancing operations alter chromatic search trees in a well-defined way.
It is clear how the subtrees not shown should be attached, since there are the
same number of places for subtrees before and after any given operation, and
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the order of the subtrees must be preserved in a search tree. For example,
consider the sixth weight decreasing operation. The subtree which was below
edge b should remain below edge b, and the subtree below edge e should
remain below edge e. In addition, the left subtree below edge d should
become the right subtree of the new edge c, and the right subtree below edge
d should become the left subtree below the new edge d.

It is also easy to update the routers in the nodes involved in an operation.
When an insertion occurs, the router in the new internal node should be given
the value of the key in its left child. (Insertions will only be made to the right
of an existing leaf, when the new key is the largest in the tree, or when the
new key is less than or equal to a key which has been deleted, even though
routers to it have not. Thus there will be no problem with other routers.)
When a deletion occurs, no routers need to be updated. Consider the nodes
involved in any of the rebalancing operations and the routers in these nodes.
We can use the same routers after the operation, since there are the same
number of nodes before and after the operation, and since the same subtrees
are present below where the operation occurs. Before the operation occurs,
an in-order traversal of the nodes in the section of the tree to be modified
gives an ordered list of these routers. This ordered list of routers can simply
be written onto the nodes of the modified section using an in-order traversal.

Note that, even though this is not shown in the appendix, all operations,
except the first four weight decreasing operations, are applicable when the
edge a is not present because the operation is occurring at the root. In this
case, there is obviously no need to adjust weight w1. In practice, operations
(w1) and (w7) would obviously be altered to allow the shifting of more than
one unit of overweight at a time. However, this would not improve the worst
case analysis.

In order to discuss these operations, we need the following definitions.

Suppose that e is an edge from a parent u to a child v and that e′ is an edge
from the same parent u to another child v′. Then we call e′ the sibling edge

of e. We use the terms parent edge and parent node to refer to the edge or
node immediately above another edge or node.

We will now briefly describe a situation in which the operations from [8] can
be applied many more times than is necessary if the order chosen turns out
to be unlucky. Consider the red-balancing operations. Nurmi and Soisalon-
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Soininen have similar operations, but they do not require that w1 be at
least one. One can show that, with their original operations, Ω(k2) red-
balancing operations can occur, regardless of the original size of the tree.
To see this, consider k insertions, each one inserting a new smallest element
into the search tree. This will create a sequence of k red edges and k − 1
red-red conflicts. Now start applying the first red-balancing operation to
the left-most red-red conflict. The same bottom edge will take part in k − 1
operations. Then, below the final sibling to that edge, there will be a sequence
of k−2 red edges in a string going to the left. The bottom red edge in the left-
most red-red conflict will now take part in k − 3 red-balancing operations.
Continuing like this, a total of Ω(k2) operations will occur. This is fairly
serious since the red-balancing operations are among those which change the
actual structure of the tree and thus necessitate locks which prevent users who
are simply searching in the tree from accessing certain nodes. In contrast,
with our new operations, the number of these restructuring operations is
never more than the number of updates.

With the modifications we have made, applying one of the red-balancing
operations decreases the number of red-red conflicts in the tree. This greatly
limits the number of times they can be applied. Furthermore, as opposed to
the operations proposed in [8], none of our overweight handling operations
can increase the number of red-red conflicts. We avoid this by increasing
the number of distinct rebalancing operations allowed. In some cases, this
implies that we lock as many as four more nodes than they would have,
though often it would be the same number.

However, these modified operations significantly improve the worst-case num-
ber of rebalancing operations.

The following lemma shows that these operations are sufficient for rebalanc-
ing any chromatic tree, given that the process eventually terminates.

Lemma 3.1 Suppose the tree T is a chromatic tree, but is not a red-black
tree. Then at least one of the operations listed in the appendix can be
applied.

Proof Suppose T contains an overweight edge e. If e’s sibling edge, f , is
overweighted, then (w7) can be applied. If f has weight one, then (w5), (w6),
or the push operation can be applied. So, assume that f has weight zero.
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If none of the operations (w1), (w2), (w3), or (w4) can be applied, then at
least one of f ’s children must also have weight zero. Hence, if neither a push
nor a weight decreasing operation can be applied, there must be a red-red
conflict.

Suppose T contains a red-red conflict. Consider a red-red conflict which is
closest to the root. Let e1 be the bottom edge and e2 the top edge. The
parent of e2 cannot be red since otherwise there would be another red-red
conflict closer to the root. If neither of the red-balancing operations can be
applied, then the sibling of e2 must be red. Hence the blacking operation can
be applied.

Therefore, if a chromatic tree is not a red-black tree, there is always some
operation which can be applied. ✷

In the remainder of this paper, we prove bounds on the number of times
these operations can be applied. Thus, after a finite number of operations
applied in any order, a chromatic tree T will become a red-black tree.

4 Complexity

If some of the operations are done in parallel, they must involve edges and
nodes which are completely disjoint from each other. The effect will be ex-
actly the same as if they were done sequentially, in any order. Thus through-
out the proofs, we will assume that the operations are done sequentially.
At time 0, there is a red-black tree, at time 1 the first operation has just
occurred, at time 2 the second operation has just occurred, etc.

In order to bound the number of operations which can occur, it is useful to
follow red-red conflicts and units of overweight as they move around in the
tree due to various operations. In order to do so, we notice that each of the
rebalancing operations preserves the number of edges, and one can give a
one-to-one mapping from the edges before an operation to those after. Thus
one can talk about an edge e over time, even though its end points may
change during that time. In the appendix, the one-to-one correspondence
has been illustrated by the naming of the edges.

We define a fall from an edge e to be a path from e down to a leaf.
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Definition 4.1 A fall from an edge e at time t is a sequence of edges
e1, . . . , ek, k ≥ 1, in the tree at time t, such that e1 = e, ek is a leaf edge,
and for each 2 ≤ i ≤ k, ei is a child of ei−1. The weight of this fall is the
sum Σ1≤i≤kw(ei). ✷

Because of balance condition C2 of definition 2.2, all of the falls, from any
given edge e in a chromatic search tree, have the same weight. Clearly, if the
tree is red-black and an edge e has heavy falls, then there is a large subtree
below e. In a chromatic tree, however, an edge could have heavy falls because
many edges below it have been deleted and have caused edges to become
overweighted. In this case, e may not have a large subtree remaining. It will
be useful, though, to somehow count those edges below e which have been
deleted. Edges are inserted and deleted and we want to associate every edge
which has ever existed with edges currently in the tree.

Definition 4.2 Any edge in the tree at time t is associated with itself. When
a node is deleted, the two edges which disappear, and all of their associated
edges, will be associated with the edge which was the parent edge immedi-
ately before the deletion. ✷

Thus, every edge that was ever in the tree is associated with exactly one edge
which is currently in the tree.

Definition 4.3 Define an A-subtree (associated subtree) of an edge e at a
particular time t to be the set of all the edges associated with any of the edges
currently in the subtree below e together with the edges currently associated
with e. ✷

Lemma 4.4 If an edge e has falls of weight W at time t, then there are at
least 2W − 1 edges in the A-subtree of e at time t.

Proof The proof will be by induction on the time.

Base case:

We look at the situation at time 0. The A-subtree of e is simply e together
with its subtree.
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We will show that the subtree is large enough using induction on W . If
W = 1, everything is fine because there is at least one edge and 2W − 1 = 1.

Suppose W is greater than one. Consider any fall from e. As the tree is
red-black at time 0, all edges have weight zero or one. Among the edges on
this fall which have weight one, let g be the one which is closest to the root.
The edge g must have two children, f1 and f2. Then f1 and f2 both have falls
of weight W − 1. Let S1 be the subtree of f1 and S2 be the subtree of f2. By
the induction hypothesis, S1 and S2 each have at least 2W−1 − 1 edges. The
subtree of e contains the disjoint subtrees S1 and S2, along with the edge e,
so it contains at least (2W−1 − 1) + (2W−1 − 1) + 1 = 2W − 1 edges.

Induction step:

Assume that t ≥ 1 and consider the possible operations at time t individually.

Insertion: If e is one of the edges just added, then W = 1, and 2W − 1 = 1.
Since the A-subtree of e contains the edge e, it has enough edges. No other
falls change weight, and no A-subtrees decrease in size.

Deletion: Suppose that e is the parent edge from the deletion. At time
t− 1, a fall of weight W also existed, so a sufficiently large A-subtree existed
then. Everything that was in the A-subtree of e at time t − 1 is still there,
so the A-subtree is large enough. The argument is similar for edges above e.
For the remaining edges, there is nothing to show.

Other Operations: These operations preserve the properties of chromatic
trees, so any two falls from a particular edge have the same weight. They
can change the A-subtrees of some edges, but no A-subtrees of edges with
weight greater than one are altered. In addition, no edge with weight greater
than one has heavier falls after one of these operations than it did before.
Operations having these properties cannot make the lemma fail. To see this,
assume to the contrary that it fails at time t. Among those edges which no
longer have large enough A-subtrees, choose an edge e which is furthest from
the root of the tree. As argued above, e can only have weight zero or one.
Consider one of the falls from e. This fall must have weight greater than
one, or there is no problem, so the edge must have two children, say f1 and
f2. Both of these children have falls of weight W − 1 or W , so, as they are
further from the root than e, they have A-subtrees of size at least 2W−1 − 1.
Since the A-subtree of e contains both of these A-subtrees and the edge e, it
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contains at least 2W − 1 edges, contradicting the assumption. Therefore, all
the A-subtrees are still large enough. ✷

Recall that N = |T | + 2k is the bound on the maximum number of nodes
the tree ever has. Let M = ⌊log2(N + 1)⌋ − 1. In the following theorem,
we prove that no edge can have falls of weight greater than M . In proofs to
come, this number will turn up frequently.

Theorem 4.5 If the falls from edge e have weight W at any time t ≥ 0,
then W ≤ M .

Proof Lemma 4.4 says that if e has falls of weight W , then the A-subtree of
e contains at least 2W − 1 edges. As T is chromatic, e’s sibling edge also has
falls of weight W , implying that the A-subtree of e’s sibling also contains at
least 2W − 1 edges. Thus, there must have been at least 2W+1 − 2 distinct
edges in the tree, though not necessarily all at the same time. The total
number of edges in T through time t is bounded by N − 1, so 2W+1 ≤ N +1,
from which the theorem follows. ✷

In the following sections, we look at the types of operations individually and
bound the number of times they can be applied. Theorem 4.5 is used to
bound the number of times the blacking operation and the push operation
can be applied. The other operations are much easier to handle; the theorem
is unnecessary for bounding the number of times they are applied.

5 Red-Red Conflicts

The only operation which increases the number of red-red conflicts is the
insertion; each insertion increases this total by at most one. The edge above
the top edge in the red-red conflict will be called the parent edge.

The blacking operation is only applied when at least one of the child edges
is involved in a red-red conflict. That red-red conflict is eliminated, but the
operation could create another red-red conflict involving the parent edge.
If only one of the child edges was involved in a red-red conflict before the
operation, but a new red-red conflict was created, one can identify the new
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red-red conflict with the old one. If both child edges were involved in red-red
conflicts, if a new red-red conflict was created, one can identify the new red-
red conflict with the old one the left child edge was involved in. With each
of the other operations which move the location of a red-red conflict in the
process of rebalancing, one can always identify the new red-red conflict with
a previous one; the lower edge in each new red-red conflict was also involved
in a previous red-red conflict. Thus, one can follow the progress of a red-red
conflict.

Lemma 5.1 No red-red conflict can be involved in more thanM−1 blacking
operations.

Proof Suppose a particular red-red conflict is involved in blacking operations
at times t1, t2, . . . , tr, where ti < ti+1 for 1 ≤ i ≤ r − 1. Let ei be the lower
edge of the red-red conflict at time ti − 1, let fi be the higher edge, and let
gi be the parent edge for the blacking operation. At time ti, the edge fi has
just been made black and the edge gi has just been made red (though, if
i = r, then gi may not have been made red). If i 6= r, then gi becomes the
lower edge of the red-red conflict. Clearly, falls from g1 will have weight W
for some W ≥ 2, as the weight of g1 is at least one at time t1−1 and as there
will always be a leaf edge of weight at least one somewhere under e1.

It follows from the above that gi is ei+1, since it becomes the lower edge
of the red-red conflict. We show that the weights of falls from ei+1 do not
change from time ti through time ti+1 − 1. Notice that all of the operations
preserve the weights of falls beginning above or below the location where
the operation takes place; this is necessary, of course, in order to maintain
condition C2 of definition 2.2. This means that for the weight of the falls
from ei+1 to change, ei+1 has to be involved in the operation which causes
the weight change. We now discuss the different operations.

The operation in question cannot be the blacking operation as, by assump-
tion, this red-red conflict is not involved in a blacking operation (again) until
time ti+1. An insertion cannot involve a red-red conflict. Any red-red conflict
involved in a deletion operation, (w1), (w2), (w7), or a push would disap-
pear, which, by assumption, it does not. For the operations (w5) and (w6),
ei+1 could only be the top edge, a, which clearly does not have the weight
of its falls changed. For the operations (w3) and (w4), ei+1 could only be
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the edge b, but then the red-red conflict would disappear. Finally, for the
red-balancing operations, ei+1 can only be the edge b, but this is impossible,
since the red-red conflict would disappear.

We have proved that the weight of falls from ei+1 remains the same from time
ti through time ti+1 − 1. At time ti+1, the blacking operation has occurred,
so the weight of fi+1 has changed from zero to one. Thus, the weight of falls
from gi+1, which is also ei+2, is exactly one more than the weight of falls from
ei+1.

By induction, it follows that at time tr, the weight of falls from fr is at least
W + r − 1 which is at least r + 1, as W ≥ 2. By theorem 4.5, we find that
r ≤ M − 1. ✷

Because the blacking operation can only be used when there is a red-red
conflict, we obtain the following:

Corollary 5.2 At most k(M − 1) blacking operations can occur. ✷

It is easy to bound the number of times the red-handling operations can be
applied:

Lemma 5.3 At most k red-balancing operations can occur.

Proof Each red-balancing operation removes a red-red conflict. As only
the insertion operation increases the number of red-red conflicts, and it can
increase this number by at most one, it follows that the number of red-
balancing operations is bounded by the number of insertions. ✷

6 Overweight

The only operation which can increase the total amount of overweight in the
tree is the deletion, and each deletion increases this overweight by at most
one. Each of the weight decreasing operations decreases the total amount
of overweight in the tree. The push operation decreases the overweight of
some edge, but not necessarily the total amount of overweight (when w1 = 0,
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the total amount of overweight in the tree is decreased). In the following,
we only refer to the push operation as a push if it fails to decrease the total
amount of overweight in the tree. Otherwise, we simply consider it to be one
of the overweight decreasing operations.

Whenever new overweight is created by a deletion, we say that a new unit of
overweight has been created. For the sake of the following proof, we assume
that units of overweight are marked such that they can be distinguished and
we can follow them as they move around in the tree.

Lemma 6.1 At most s(M − 2) push operations can occur.

Proof Suppose a particular unit of overweight u is moved up by a push
operation at times t1, t2, . . . , tr, where ti < ti+1 for 1 ≤ i ≤ r− 1. Just before
the first push operation at time t1 − 1, u sits on an overweighted edge (the
edge b), so this edge has falls of weight at least two.

Assume that at time ti−1, u sits on an edge with falls of weight W . At time
ti, it has been pushed up (onto the edge a). We will argue that at any time
t between time ti and time ti+1 − 1, this unit will sit on an edge with falls of
weight at least W + w − 1, where w is the weight of the edge at time t. If
this holds, then at time ti+1 − 1 this unit must sit on an edge of weight at
least two, and the falls must then have weight at least W + 2− 1 = W + 1.

Notice first that all the operations preserve the weight of falls from the top-
most edges involved in the operation. Actually, this is an absolutely necessary
requirement to ensure that condition C2 of definition 2.2 is fulfilled after the
operation. This means that the weight of falls from an overweighted edge
cannot change due to operations taking place in its subtree. Thus, an inspec-
tion of the operations shows that the weight of falls from an overweighted
edge can only change by decreasing the weight on the overweighted edge it-
self. This means that while a unit of overweight remains on an edge, the
claim is certainly true.

In between the push operations, units of overweight can also be moved onto
another edge when a deletion occurs (see the deletion operation in the ap-
pendix). However, if the claim holds immediately before the deletion, then
these units of overweight sit on edge b, which must have falls of weight at
least W +w2−1. When they are moved to edge a, the claim still holds, since
this edge has falls of weight W + (w1 + w2)− 1.
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We have now proved that at time ti+1 − 1 this unit of overweight will sit
on an edge with falls of weight at least one greater than at time ti − 1. By
induction, we have obtained that at time tr, the weight of falls from edge a

in the last push operation is at least r + 2. By theorem 4.5, we find that
r ≤ M − 2, from which the result follows. ✷

It is easy to bound the number of times weight decreasing operations can be
applied:

Lemma 6.2 At most s weight decreasing operations can occur.

Proof Only deletions introduce overweight and at most one unit is added
each time. As weight decreasing operations remove one unit of overweight
when they are applied, at most s such operations can occur. ✷

7 Conclusion

Theorem 7.1 Assume that a red-black tree T initially has |T | nodes. Fur-
thermore, assume that k insertions, s deletions, and a number of rebalancing
operations are performed. Then the number of rebalancing operations is no
more than (k + s)(⌊log2(N + 1)⌋ − 1) − s, where N = |T | + 2k is the ob-
vious bound on the number of nodes in the tree. In addition, the number
of rebalancing operations which change the structure of the tree is at most
k + s.

Proof Let us summarize how many times each type of operation can be
used:

Operation Bound From

blacking k(⌊log2(N + 1)⌋ − 2) corollary 5.2
red-balancing k lemma 5.3
push s(⌊log2(N + 1)⌋ − 3) lemma 6.1
weight decreasing s lemma 6.2

The results follow by adding up the bounds. ✷
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Appendix

w1 ≥ 1a

A
r =⇒

❅
❅
❅❅

�
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w1 − 1a

r r

1
b

1
c

B A

Insertion.

Comment: the leaf B is inserted to the left of the leaf A.

❅
❅
❅❅

�
�

��

w1a

w2
b

w3
c

r

A

=⇒

w1 + w2a

Deletion.

Comment: the leaf A is deleted.
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Blacking.

Restriction: at least one edge must be in a red-red conflict.
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Red-balancing.
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